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Abstract. A directed star forest is a forest all of whose components arestars with arcs emanating from the
center to the leaves. The acircuitic directed star arboricity of an oriented graphG is the minimum number
of edge-disjoint directed star forests whose union covers all edges ofG and such that the union of two
such forests is acircuitic. We show that graphs with maximumaverage degree less than7

3 (resp. 133
41 ) have

acircuitic directed star arboricity at most∆ (resp.∆+1); this implies that planar graphs of girth at least 14
(resp. 6) have acircuitic directed star arboricity at most∆ (resp.∆ +1).
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1 Introduction

We consider finite simple loopless undirected or oriented graphs, that is graphs with no cycle of length one
or two. For an undirected graph (resp. an oriented graph)G, we denote byV(G) its vertex set and byE(G)
its edge set (resp. byA(G) its arc set).

An edge-coloring of an undirected graphG is proper if no pair of incident edges receive the same
color. A proper edge-coloring ofG is acyclic if the graph induced by any two color classes is a forest. The
minimum number of colors needed to acyclically edge-colorG is theacyclic chromatic indexof G and is
denoted byχ′

a(G). The notion of acyclic coloring was introduced by Grünbaumin [7].
The best known upper bound on acyclic edge-coloring is due toAlon et al. [3] where they proved that

every graph has an acyclic(16∆)-edge-coloring. More recently, Muthu et al. [10] obtained better results
for graphs with large girth: in particular, for every undirected graphG with girth g≥ 9, χ′

a(G) ≤ 6∆(G).

Acyclic chromatic index can be related to the notion of star arboricity. The notion ofstar arboricity
was introduced by Akiyama and Kano in [1]. It is defined as the minimum number of edge-disjoint star
forests needed to coverE(G). They proved that complete graphs onn vertices can be decomposed into
⌈

n
2

⌉

+1 star forests. This notion was studied by many authors for some graph families such asd-regular
graphs, complete regular multipartite graphs or planar graphs (see [2, 4, 5]).

Considering planar graphs, Algor and Alon showed in [2] thatevery planar graph can be decomposed
into 6 star forests. This bound was decreased to 5 by Hakimi etal. in [9] and this bound is tight.
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In [2], Algor and Alon introduced the notion ofdirectedstar arboricity of a digraphG, defined as the
minimum number of edge-disjoint directed star forests needed to coverA(G) (adirected staris a star with
arcs emanating from the center to the leaves). In [8], Guiduli showed that every digraph with indegree and
outdegree both less thanD has directed star arboricity at mostD+20logD+84.

We introduced in [11] the new notion ofacircuitic directed star arboricity of an oriented graphG, de-
noted by adst(G), defined as the minimum number of edge-disjoint directed star forests needed to cover
A(G) in such a way that the union of any two such forests contains nocircuit. The study of this notion arises
from the study of oriented arc-colorings since every oriented graph with acircuitic directed star arboricity
at mostk admits an oriented(k ·2k−1)-arc-coloring (see [11] for more details).

It is easy to see that each color class of an acyclic edge-coloring of G is a matching (therefore a star
forest), and the graph induced by any two such matchings is a forest. We thus get that for every orientation
−→
G of an undirected graphG with χ′

a(G) ≤ k, adst(
−→
G) ≤ k.

In this paper, we consider the acyclic chromatic index and the acircuitic directed star arboricity of
oriented graphs with bounded maximum average degree.

Definition 1 Let G be a graph. Themaximum average degreeof G, denoted by mad(G), is given by

mad(G) = max
H⊆G

{

2|A(H)|

|V(H)|

}

We prove the following:

Theorem 2 Let G be an undirected graph (which is not a cycle) withmad(G) ≤ 7
3. Thenχ′

a(G) = ∆(G).

Therefore, we get:

Corollary 3 Let G be an oriented graph (which is not a cycle) withmad(G) ≤ 7
3. Thenadst(G) ≤ ∆(G).

For graphs with larger maximum average degree, we prove the following:

Theorem 4 Let G be an oriented graph withmad(G) < 133
41 . Thenadst(G) ≤ ∆(G)+1.

In case of planar graphs, the maximum average degree parameter is linked to the girth (the shortest
cycle of the graph) as follows [6]:

Observation 5 Let G be a planar graph with girth g, thenmad(G) <
2g

g−2
.

Therefore, we get:

Corollary 6

(1) Let G be an oriented planar graph (which is not a cycle) with girth g≥ 14. Thenadst(G) ≤ ∆(G).

(2) Let G be an oriented planar graph with girth g≥ 6. Thenadst(G) ≤ ∆(G)+1.

Moreover, we can easily see that for every undirected graphG, there exist an orientation
−→
G with

acircuitic directed star arboricity at least∆(G) (consider
−→
G containing a star of degree∆(G) with arcs

emanating from the leaves to the center). Therefore, for oriented planar graphs with girth at least 14, the
bound is tight, and for oriented planar graphsG with girth at least 6, we get∆(G) ≤ adst(G) ≤ ∆(G)+1.

This paper is organised as follows: we introduce the main definitions and notation in the next section
and prove Theorem 2 and 4 in Sections 3 and 4.
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2 Definitions and notation

Let G be an oriented graph. We denote by−→uv the arc fromu to v or simplyuv whenever its orientation is
not relevant (thereforeuv= −→uv or uv= −→vu).

For a vertexv of G, we denote byd−(v) the indegree ofv, byd+(v) its outdegree and byd(v) its degree,
that isd(v) = d+(v)+ d−(v). A vertex of degreek (resp. at mostk, at leastk) is called ak-vertex (resp.
≤k-vertex,≥k-vertex) and a vertex of degreek adjacent tod 2-vertices is called ak[d]-vertex. A neighbor
of degreek (resp. at mostk, at leastk) of a vertexu is called ak-neighbor (resp.≤k-neighbor,≥k-neighbor)
of u. We denote byN−(v) the set ofincoming neighborsof v (N−(v) = {u∈V | −→uv∈ A(G)}), by N+(v)
the set ofoutgoing neighborsof v (N+(v) = {w∈V | −→vw∈ A(G)}) and byN(v) the set ofneighborsof v,
that isN(v) = N−(v)∪N+(v). A source vertexis a vertexv with d−(v) = 0. Themaximum degreeand
minimum degreeof a graphG are respectively denoted by∆(G) andδ(G).

For an undirected (resp. oriented) graphG and a vertexvof V(G), we denote byG\v the graph obtained
from G by removingv together with the set of its incident edges (resp. arcs); similarly, for an edge (resp.
arc)a of E(G) (resp.A(G)), G\a denotes the graph obtained fromG by removinga. These two notions
are extended to sets in a standard way: for a set of verticesV ′ ⊆V(G), G\V ′ denotes the graph obtained
from G by successively removing all vertices ofV ′ and their incident edges (resp. arcs), and for a set of
edges (resp. arcs)W ⊆ E(G) (resp.W ⊆ A(G)), G\W denotes the graph obtained fromG by removing all
edges (resp. arcs) ofW.

The notions of arboricity discussed in the previous sectionmay be defined in terms of arc-coloring
or partitions of the set of the arcs. More precisely, ak-directed-star-coloring(or simply k-dst-coloring)
of an oriented graphG is a partition ofA(G) into k directed star forests{F1,F2, . . . ,Fk}. Equivalently,
a k-dst-coloring ofG is a k-coloring f of A(G) such that(i) −→uv,−→vw∈ A(G) ⇒ f (−→uv) 6= f (−→vw), and(ii)
−→uv,−→wv∈ A(G) ⇒ f (−→uv) 6= f (−→wv). Thedirected star arboricityof G, denoted by dst(G), is the smallestk
for whichG admits ak-dst-coloring.

An oriented graphG is acircuitic if it does not contain any circuit (that is a cycle with all arcs having
the same direction). Ak-acircuitic-directed-star-coloring(or simply k-adst-coloring) of a graphG is a
partition ofA(G) into k directed star forests{F1,F2, . . . ,Fk} such that for alli, j ∈ [1,k], Fi ∪Fj is acircuitic.
Equivalently, ak-adst-coloring ofG is ak-dst-coloring ofG such that no circuit inG is bichromatic. The
acircuitic directed star arboricityof G, denoted by adst(G), is the smallestk for which G admits ak-adst-
coloring.

For an undirected graphG, a given edge-coloringf of G and a vertexv∈V(G), we denote byCf (v) the
set ofincident colorsof v (i.e. Cf (v) = { f (uv) | u∈ N(v)}). For an oriented graphG, a given arc-coloring
f of G and a vertexv∈V(G), we denote byC−

f (v) the set ofincoming colorsof v (i.e. C−
f (v) = { f (−→uv) |

u∈ N−(v)}) and byC+
f (v) the set ofoutgoing colorsof v (i.e. C+

f (v) = { f (−→vu) | u∈ N+(v)}) (therefore

Cf (v) = C+
f (v)∪C+

f (v)).

3 Proof of Theorem 2

We use the method of reducible configurations and discharging procedures to prove Theorem 2.
In the rest of this section, letH be a minimal (with respect to inclusion as a subgraph) counter-example

to Theorem 2 and∆ = ∆(H). We shall show thatH does not contain a set of reducible configurations.
The drawing conventions for a forbidden configuration are the following: a vertex whose neighbors are

totally specified will be black (i.e. vertex of fixed degree),whereas a vertex whose neighbors are partially
specified will be white. Moreover, an edge will represent an arc with any of its two possible orientations.

In all the proofs which follow, we shall proceed similarly. We suppose thatH contains some configura-
tions and, for each of them, we consider a reductionH ′ of H obtained fromH by removing vertices and/or
arcs. SinceH ′ is a subgraph ofH, mad(H ′) ≤ mad(H). Therefore, due to the minimality ofH, there exists
an acyclic∆(H ′)-edge-coloringf of H ′; moreover,∆(H ′) ≤ ∆ and thusf is an acyclic∆-edge-coloring of
H ′. The coloringf is therefore a partial acyclic∆-edge-coloring ofH, that is an acyclic edge-coloring on
some subsetSof A(H), and we show how to extend it to an acyclic∆-edge-coloring ofH.

The existence of such a coloringf of H showed thatH does not contain each considered configuration.
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Figure 1: Forbidden configurations for Theorem 2
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Figure 2: Extented acyclic edge-coloring

Lemma 7 The graph H does not contain a 1-vertex.

Proof : Suppose thatH contains a dangling edgeuv and letH ′ = H \uv. We can easily extendf sinceuv
is adjacent to at most∆−1 colors. 2

SinceH is not a circuit and does not contains 1-vertices, we get∆ ≥ 3 (therefore, we have at least three
colors).

Lemma 8 The graph H does not contain the configuration (a) of Figure 1.

Proof : Let H ′ = H \v. We can setf (uv) = c1 for somec1 /∈ { f (u1u), f (ww1)} since|{ f (u1u), f (ww1)}| ≤
2. We can finally setf (vw) = c2 for somec2 /∈ { f (u1u), f (ww1)} since we have at least one available color
( f is acyclic sinceCf (v) ∩ Cf (w) = /0). 2

Lemma 9 The graph H does not contain the configuration (b) of Figure 1.

Proof : Let H ′ = H \{x,v2,w2}. Let us consider the two graphs of Figure 2. The bold colors are the colors
of the partial acyclic∆-edge-coloringf , and the notationa/b means that we consider two cases on the
same configuration.

We consider four distinct cases depending on the coloring ofuu1, vv1 andww1 : (1,1,1), (1,1,2),
(1,2,2) and(1,2,3). Figure 2 shows the four possible cases and gives a possible extension of the required
acyclic edge-coloring. 2

We now prove that every graph with no 1-vertex that does not contain the configurations of Figure 1
has mad≥ 7

3.
We assign to each vertexv an initial chargew(v) = d(v). Now, we use the following discharging rules :

Rule 1. Each 3-vertex gives13 to each of its 3-neighbors having a 2-neighbor;

Rule 2. Each 3-vertex gives16 to each of its other 2-neighbors.

We denote byw∗(v) the new charge of the vertexv after the discharging procedure.
Let v be ak-vertex; we shall prove that the new chargew∗(v) of each vertexv is at least73. We consider the
following cases (recall thatH has no 1-vertices):
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• if k = 2, thenw(v) = 2 andw∗(v) ≥ 2+min{ 1
3;2 · 1

6} = 7
3, since by Lemma 8 a 2-vertex has at least

one≥3-neighbor;

• if k = 3, thenw(v) = 3 andw∗(v) ≥ 3−max{2 · 1
3; 1

3 +2 · 1
6;3 · 1

6} = 7
3;

• if k≥ 4, thenw(v) = k andw∗(v) ≥ k−k · 1
3 > 7

3.

Observe that

∑
v∈V(H)

w(v) = ∑
v∈V(H)

w∗(v) = ∑
v∈V(H)

d(v),

and

mad(H) ≥
2|A(H)|

|V(H)|
=

∑
v∈V(H)

d(v)

|V(H)|
=

∑
v∈V(H)

w∗(v)

|V(H)|
≥

7
3|V(H)|

|V(H)|
=

7
3
.

The contradiction with the hypothesis mad(H) < 7
3 completes the proof of Theorem 2.

Therefore, every graph (which is not a cycle) with mad≤ 7
3 admits an acyclic∆-edge-coloring and thus

a ∆-adst-coloring.

4 Proof of Theorem 4

To prove this theorem, we use the same technique as before.
Let H be a minimal (with respect to inclusion as a subgraph) counter-example to Theorem 4 and∆ =

∆(H). We introduce here two new notions. For an uncolored arc−→uv of H, a colorc is called anavailable
color for −→uv if it satisfies the constraints of adst-coloring for−→uv; we denote byF f (−→uv) = C−

f (u)∪Cf (v)

the set offorbidden colors of−→uv; we can easily see that any colorc /∈ F f (−→uv) is an available color for−→uv.
A color c is called afeasible color for−→uv if assigning colorc to −→uv results in a partial adst-coloring. Note
that a feasible color is necessarily an available color whereas the contrary is false. We can also note that
for a given partial adst-coloringf of H and an uncolored arc−→uv, if C−

f (u)∩C+
f (v) = /0, then any available

color for−→uv is also feasible for−→uv (indeed, any circuit which contains−→uv will not be bichromatic).
In almost all cases, the completion process off will be the following: for an uncolored arc−→uv, we shall

initially determine its available colors, and then ensure,by recoloring some arcs if necessary, that any such
color is also feasible for−→uv.

We shall show in the following lemmas thatH contains none of the configurations depicted in Figure
3.

In [11], we proved that subcubic graphs (graphs of maximum degree at most three) admit a 4-adst-
coloring. Hence, we may assume that∆ ≥ 4 in our arguments.

Lemma 10 The graph H does not contain any of the configurations (a) and (b) of Figure 3.

Proof : Let H ′ = H \uu1. We can setf (uu1) = c for somec /∈ F f (uu1) since each available color foruu1

is also feasible (no circuit inH containsuu1) and|F f (uu1)| = |Cf (u1)| ≤ ∆−1. 2

Lemma 11 The graph H does not contain the configuration (c) of Figure 3.

Proof : Let H ′ = H \−→u1u. We can setf (−→u1u) = c for somec /∈ F f (−→u1u) since each available color for−→u1u
is also feasible (no circuit inH contains−→u1u) and|F f (−→u1u)| = |C−

f (u1)∪Cf (u)| ≤ ∆−1+1= ∆. 2

Note that by the two previous lemmas, ifu is a 2-vertex inH, thenu has one incoming and one outgoing
arc (δ−(u) = δ+(u) = 1).

Lemma 12 The graph H does not contain the configuration (d) of Figure 3.

Proof : Let H ′ = H \−→vu. We can setf (−→vu) = c for somec /∈ F f (vu) since each available color for−→vu is
also feasible (no circuit inH contains−→vu) and|F f (−→vu)| = |C−

f (v)∪Cf (u)| ≤ 1+ ∆−1= ∆. 2
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Figure 3: Forbidden configurations for Theorem 4(2)
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Figure 3: Forbidden configurations for Theorem 4(2)(cont’d)

Lemma 13 The graph H does not contain the configuration (e) of Figure 3.

Proof : Let H ′ = H \−→vw. Suppose first thatf (−→uv) /∈ C+
f (w); thereforeC−

f (v)∩C+
f (w) = /0 and thus any

available color for−→vw is also feasible: we can setf (−→vw) = c for somec /∈ F f (vw) since |F f (−→vw)| =
|C−

f (v)∪Cf (w)| ≤ 1+ ∆−1= ∆.
Suppose now thatf (−→uv) ∈C+(w). W.l.o.g., letf (−→uv) = f (−−→ww1) = . . . = f (−−→wwn) for somen, 1≤ n≤ k.

Since|F f (−−→wwi)| ≤ ∆−1 for 1≤ i ≤ n, we can recolorf (−−→wwi) = ci for someci /∈ F f (−−→wwi)∪ f (−→uv), that
leads us to the previous case. 2

Note that by the previous lemma, if−−→uvw is a directed path inH, then one ofv andw must have at least
two incoming arcs (δ−(v) ·δ−(w) ≥ 2).

Lemma 14 The graph H does not contain the configuration (f) of Figure 3.

Proof : Let H ′ = H \uv. Suppose first thatf (uu1) 6= f (vv1); we can setf (uv) = c for somec /∈ F f (uv)
since each available color for−→uv is also feasible (we haveCf (u)∩Cf (v) = /0) and|F f (uv)| = 2 < ∆ +1.

Suppose now thatf (uu1) = f (vv1). Let c /∈ F f (uv)∪Cf (v1) = Cf (v1); we have|Cf (v1)| ≤ ∆, and thus
such a color exists and is an available color foruv; moreover, sincec /∈Cf (v1), c is also a feasible color for
uvand therefore we can setf (uv) = c. 2

Lemma 15 The graph H does not contain the configuration (g) of Figure 3.

Proof : Let H ′ = H \uv. Let f (uu1) = a, f (uu2) = b and f (vv1) = c. By Lemmas 10, 11 and 13, there
existsi ∈ {1,2} such that−→uiu ∈ A(H); w.l.o.g., let−→u1u ∈ (H); that impliesa 6= b. We have two cases to
consider:

1. |{a,b,c}|= 3.

We haveCf (u)∩Cf (v) = /0 and therefore any available color for−→uv is feasible for−→uv (no bichromatic
circuit in H contains−→uv). We can thus setf (uv) = d for somed /∈ F f (uv) since|F f (uv)| ≤ 3 < ∆.

2. |{a,b,c}|= 2.

W.l.o.g. we assume thata = c. Suppose that−−→uvv1 is a directed path; thus, by Lemma 13, we have
|d−(v1)| ≥ 2. Let d /∈ S= F f (−→uv)∪C+

f (v1); we have|S| ≤ 2+ ∆− 2 = ∆, and thus such a color

exists and is an available color foruv; moreover, sinced /∈C+
f (v1), d is also a feasible color foruv

and therefore we can setf (uv) = d.

Suppose now that−−→v1vu is directed path; we haved−(u) = 2 by Lemma 12. We can recolorf (−→v1v) = d
for somed /∈ T = F f (−→v1v)∪ {c} since|T| ≤ ∆− 1+ 1 = ∆; this impliesC−

f (u)∩C+
f (v) = /0 and

therefore any available color for−→vu is feasible for−→vu (no bichromatic circuit inH contains−→vu): so,
we setf (−→vu) = e for somee /∈ F f (−→vu) since|F f (−→vu)| ≤ 3 < ∆.
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Lemma 16 The graph H does not contain the configuration (h) of Figure 3.

Proof : Let H ′ = H \−→uv. By Lemma 10, we have−→u2u ∈ A(H), and by Lemma 13,d−(v) ≥ 2 (w.l.o.g.
assume−→v1v∈ A(H)).

Suppose that either−→v2v∈A(H) or f (−→u2u) 6= f (−→vv2); therefore,C−
f (u)∩C+

f (v) = /0 and thus any available

color for−→uv is also feasible; we can thus setf (−→uv) = c for somec /∈ F f (−→uv) since|F f (uv)| ≤ 3 < ∆.
Suppose now thatf (−→u2u)= f (−→vv2). Consider the set of colorsS= F f (−→uv)∪(C−

f (u2)∩C+
f (v2)). Clearly,

any colorc /∈ S is feasible for−→uv. If |S| ≤ ∆, we can setf (−→uv) = c for somec /∈ S. If |S| = ∆+1, it implies
C−

f (u2) = C+
f (v2), d−(u2) = d+(v2) = ∆−1 and f (−→v1v) /∈C+

f (v2). In this case, we erasef (−→vv2) and pick

one outgoing arc fromv2, denoted by
−−→
v2v′2. Denote f (

−−→
v2v′2) = d; since|F f (v2v′2)| = |C+

f (v2)| ≤ ∆− 1,

we can recolorf (
−−→
v2v′2) = e for somee /∈ F f (v2v′2)∪ {d}. Thus, the colord is feasible for−→vv2; indeed,

f (−→v1v) /∈ { f (v2w) | w ∈ N+(v2) \ v′2)} andd /∈ C+
f (v′2). Thus, we setf (−→vv2) = d, which leads us to the

previous case (f (−→u2u) 6= f (−→vv2)). 2

Lemma 17 The graph H does not contain the configuration (i) of Figure 3.

Proof : Let H ′ = H \u. By Lemma 16,u has two incoming arcs and one outgoing arc (w.l.o.g. assume
−→vu,−→wu,−→ux∈A(H)). We first setf (−→vu)= c for somec /∈S= F f (−→vu)∪{ f (xx1), f (xx2)} since|S|≤ 2+2≤∆.
Let T = F f (−→wu)∪{ f (xx1), f (xx2)}. We consider two cases:

1. If |T| ≤ ∆, we can setf (−→wu) = d for somed /∈ T. ThereforeC−
f (u)∩C+

f (x) = /0, and thus any

available color for−→ux is feasible and we can setf (−→ux) = e for somee /∈ F f (−→ux) since|F f (−→ux)| ≤ 4≤
∆.

2. If |T|= ∆+1, this implies∆ = 4. Assume w.l.o.g. thatC−
f (v) =C−

f (w) = {1,2} andC+
f (x) = {3,4}.

We can recolor in this casef (−→vu) = 3, and setf (−→wu) = 4; finally, the color 5 is clearly feasible for
−→ux and we setf (−→ux) = 5.

2

Lemma 18 The graph H does not contain the configuration (j) of Figure 3.

Proof : By Lemmas 10 and 16, we haved+(u) ≤ 1. We consider three cases:

1. Suppose first thatu is a sink and letH ′ = H \wu. SinceC−
f (w)∩C+

f (u) = /0, any available color for
−→wu is feasible and thus we can setf (−→wu) = c for somec /∈ F f (wu) since|F f (wu)| ≤ 4≤ ∆.

2. Suppose now that one of the arcs−→uv,−→uw belongs toA(H) (w.l.o.g. assume−→uv ∈ A(H)) and let
H ′ = H \wu. By Lemma 16, we have−−→w1w,−−→w2w∈ A(H). Let H ′ = H \−→wu.

If C−
f (w)∩C+

f (u) = /0, any available color for−→wu is also feasible, and therefore, we can setf (−→wu) = c

for somec /∈ F f ( f (−→wu)) since|F f (−→wu)| ≤ 4≤ ∆.

Otherwise,f (−→uv) ∈C−
f (w) (w.l.o.g. assumef (−→uv) = f (−−→w1w)). Let S= F f (−→wu)∪C+

f (v). Any color

c /∈ S is feasible for−→wu sincec /∈ C+
f (v) and thus, if|S| ≤ ∆, we can setf (−→wu) = c. Otherwise,

we have|S| = ∆ + 1, which implies∆ = 4 andd+(v) = 2; therefore, we may thus assume w.l.o.g.
that f (−−→w1w) = f (−→uv) = 1, f (−−→w2w) = 2, f (−→u1u) = 3, f (−→vv1) = 4 and f (−→vx) = 5. Then, we erase the
colors f (−→uv) and f (−→vv1) and setf (−→uv) = 4; now, any colorc /∈ F f (−→vv1) is feasible sinceC−

f (v)∩

C+
f (v1) = /0, and we can setf (−→vv1) = c since |F f (−→vv1)| ≤ ∆. This leads us to the previous case

( f (−→uv) /∈ { f (w1w), f (w2w)}).
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3. Suppose finally that−→uu1 ∈ A(H); by Lemmas 10 and 16, we have−→v1v,−→xv,−−→w1w,−−→w2w∈ A(H). Since
k≤ ∆−2, we haved(x)≤ ∆−1. LetH ′ = H \v. We first setf (−→v1v) = c for somec /∈ S= F f (−→v1v)∪
f (−→uu1) since |S| ≤ ∆− 1+ 1 = ∆ and f (−→xv) = d for somed /∈ T = F f (xv)∪ f (−→uu1) = C−

f (x)∪
{ f (−→v1v), f (−→uu1)} since|T| ≤ ∆− 2+ 2 = ∆. Therefore, any available color for−→vu is also feasible
sinceC−

f (v)∩C+
f (u) = /0; we can thus setf (−→vu) = e for somee /∈ F f (−→vu).

2

Lemma 19 The graph H does not contain the configuration (k) of Figure 3.

Proof : Let H ′ = H \v. By Lemmas 10 and 11, we have−→v1v∈ A(H) and by Lemma 12 we haved+(u) > 0
(w.l.o.g. assume−→uu1 ∈ A(H)). We shall consider three cases depending on the cardinality of the color set
C+

f (u).

1. |C+
f (u)| = 1.

We set f (−→v1v) = c for somec /∈ S= F f (−→v1v)∪C+
f (u) since|S| ≤ ∆− 1+ 1 = ∆. Then, we have

C−
f (v)∩C+

f (u) = /0 and thus any available color for−→vu is also feasible. We then setf (−→vu) = d for

somed /∈ F f (−→vu) since|F f (−→vu)| = 2 < ∆.

2. |C+
f (u)| = 2.

W.l.o.g., assumef (−→uu1) = 1 and f (−→uu2) = 2. LetS= F f (−→v1v)∪C+
f (u) = C−

f (v1)∪Cf (v)∪C+
f (u) =

C−
f (v1)∪C+

f (u). Clearly, if |S| ≤ ∆, we can proceed as in the previous case.

If |S| = ∆ + 1, C−
f (v1) = {3,4, . . . ,∆ + 1}. Suppose first that−→uu3 ∈ A(H) and w.l.o.g. assume

f (−→uu3) = 2. We can recolorf (−→uu1) = c for somec /∈ F f (−→uu1)∪{1} since|F f (−→uu1)| ≤ ∆−1. This
implies|S| ≤ ∆ and therefore, we can also proceed as in the previous case.

Suppose now that−→u3u∈ A(H) and assume w.l.o.g.f (−→u3u) = 3. Let T = {4,5, . . . ,∆ + 1}. If there
exists somei ∈ {1,2} such thatT 6⊆C+

f (ui), we have|T \C+
f (ui)| 6= /0 and therefore, we can pick a

colorc∈ T \C+
f (ui) and setf (−→v1v) = i and f (−→vu) = c: the colorc is feasible for−→vu since f (−−−→uu3−i) 6=

f (−→v1v) andc /∈C+
f (ui)).

Finally, we can suppose that for alli ∈ {1,2},T ⊆ C+
f (ui). We first erasef (−→vv1) and consider four

subcases:

• C+
f (u1) = T and 2/∈C−

f (u1).

We can recolorf (−→uu1) = 2 (the color 2 is feasible for−→uu1 since 3/∈C+
f (u1)) and setf (−→v1v) = 1.

We thus haveC−
f (v)∩C+

f (u) = /0 which implies that any available color for−→vu is also feasible;

we can setf (−→vu) = c for somec /∈ F f (−→vu) since|F f (−→vu)| = 3 < ∆.

• C+
f (u1) = T ∪{2}.

Let −−→u1w denote the outgoing arc ofu1 with f (−−→u1w) = 2. We first erasef (−→uu1) and we recolor
f (−−→u1w) = c for somec /∈U = F f (−−→u1w)∪{2} (we have|U | ≤∆−1+1= ∆); then, 2 is a feasible
color sincef (−→u3u) /∈ { f (u1x) | x ∈ N+(u1) \w)} and 2/∈ C+

f (w) and we setf (−→uu1) = 2. We

can then setf (−→v1v) = 1, which impliesC−
f (v)∩C+

f (u) = /0. Therefore any available color for
−→vu is also feasible and we can setf (−→vu) = c for somec /∈ F f (−→vu) since|F f (−→vu)| = 3 < ∆.

• C+
f (u1) = T ∪{3}.

Let −−→u1w denote the outgoing arc ofu1 with f (−−→u1w) = 3. We can setf (−−→u1w) = c for some
c /∈ U = F f (−−→u1w)∪{3} (we have|U | ≤ ∆− 1+ 1). At this point, we haveC+

f (u1) = T and

2 /∈C−
f (u1), orC+

f (u1) = T ∪{2}: these two subcases were already considered before.

9



• C+
f (u1) = T andC−

f (u1) = {2}.

By considering the three previous subcases on the vertexu2, we deduce that we haveC+
f (v2) =

T andC−
f (v2) = {1}. In this case, we erasef (−→uu1) and f (−→uu2) and recolorf (−→u3u) = c for

somec /∈ V = F f (−→u3u)∪{3} (we have|V| ≤ ∆−1+ 1). We thus haveC−
f (u)∩C+

f (ui) = /0
for i = 1,2; therefore the color 3 is feasible for−→uu1 and−→uu2 since 3/∈ F f (−→uui) and we can set
f (−→uu1) = 3, f (−→uu2) = 3. Finally, we setf (−→v1v) = 1, which impliesC−

f (v)∩C+
f (u) = /0: we can

set f (−→vu) = d for somed /∈ F f (−→vu) since|F f (−→vu)| ≤ 3 < ∆.

3. |C+
f (u)| = 3.

W.l.o.g. assumef (−→uu1) = 1, f (−→uu2) = 2, f (−→uu3) = 3. Let S= F f (−→v1v)∪C+
f (u). If |S| ≤ ∆, we

can setf (−→v1v) = c for somec /∈ S and f (−→vu) = d for somed /∈ F f (−→vu) since any available color
for −→vu is also feasible (we haveC−

f (v)∩C+
f (u) = /0) and F f (−→vu) = 4 ≤ ∆. If |S| = ∆ + 1, this

implies{4,5, . . . ,∆+1}⊆C−
f (v1) and therefore at least two colors ofC+

f (u) do not belong toC−
f (v1).

Suppose w.l.o.g. that 1/∈ C−
f (v1). We then setf (−→uu1) = c for somec /∈ T = F f (−→uu1)∪{1} since

|T| ≤ ∆−1+1 = ∆. We can then setf (−→v1v) = 1, which impliesC−
f (v)∩C+

f (u) = /0. We finally set

f (−→vu) = d for somed /∈ F f (−→vu) since|F f (−→vu)| ≤ 4≤ ∆.

2

Lemma 20 The graph H does not contain the configuration (l) of Figure 3.

Proof : Let H ′ = H \v. By Lemma 19, we have−→uv∈A(H) andd(v1)≥ 5 (therefore,∆≥ 5), and by Lemma
13 we haved−(v1) ≥ 2. LetS= F f (−→uv)∪C+

f (v1). If |S| ≤ ∆, we can setf (−→uv) = c for somec /∈ S, which

impliesC−
f (v)∩C+

f (v1) = /0: any available color for−→vv1 is also feasible and thus we can set andf (−→vv1) = d

for somed /∈ F f (−→vv1) since |F f (−→vv1)| ≤ ∆. If |S| = ∆ + 1, it means thatC−
f (u) = 3 (w.l.o.g. assume

f (−→u1u) = 1, f (−→u2u) = 2, f (−→wu) = 3) and|C+
f (v1)| = ∆−2 (w.l.o.g. assumeC+

f (v1) = {4,5, . . . ,∆+1}). In
this case, we erasef (−→wu), which implies|S| ≤ 2+∆−2= ∆ and we setf (−→uv) = 3. Then, we setf (−→wu) = d
for somed /∈ F f (−→wu) since|F f (−→wu)| ≤ 5≤ ∆. Finally, since 3/∈C+

f (v1), any available color for−→vv1 is also

feasible: we can setf (−→vv1) = d for somed /∈ F f (−→vv1) since|F f (−→vv1)| ≤ ∆. 2

Note that on the four last configurations (m),(n),(o) and (p)of Figure 3, by Lemmas 10 and 11, we have
a directed 2-path linkingu andv′i , for all i ∈ [1,k].

Lemma 21 The graph H does not contain the configuration (m) of Figure 3.

Proof : Let H ′ = H \ v1. We consider two cases:

1. Suppose first that there existsi ∈ [1,k] such that
−−→
uviv′i is a directed path inH (w.l.o.g. assume

−−−→
uv1v′1).

We can setf (
−−→
v1v′1) = c for somec /∈ F f (

−−→
v1v′1) since|F f (

−−→
v1v′1)| ≤ ∆−1. Clearly, any feasible color

for −→uv1 does not belong tof (
−−→
v1v′1) ∪ C−

f (u) ∪ { f (
−−→
v′j v j) | f (−→v j u) = c}; therefore at most∆ colors are

not feasible and it remains at least one feasible color to setf (−→uv1).

2. Suppose now that
−−→
v′iviu is a directed path inH for all i ∈ [1,k]. By Lemma 12, we have−→uu1 ∈ A(H).

We can setf (
−−→
v′1v1) = c for somec /∈ S= F f (

−−→
v′1v1)∪{ f (−→uu1)} since|S| ≤ ∆−1+1 = ∆. Thus, we

haveC−
f (v1)∩C+

f (u) = /0 which implies that any available color for−→v1u is also feasible; we then set

f (−→v1u) = d for somed /∈ F f (−→v1u) since|F f (−→v1v)| ≤ ∆.

2

Lemma 22 The graph H does not contain the configuration (n) of Figure 3.
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Proof : Suppose first that−→uvi ∈ A(H) for all i ∈ [1,k]. By Lemma 13, we haved−(v′i) ≥ 2 for all i ∈ [1,k].
Let H ′ = H \ v1. We can setf (−→uv1) = c for somec /∈ S= F f (−→uv1)∪C+

f (v′1) since|S| ≤ 2+ ∆− 2 = ∆.

Then, we haveC−
f (v1)∩C+

f (v′1) = /0 and therefore any available color for
−−→
v1v′1 is also feasible: we can set

f (
−−→
v1v′1) = d for somed /∈ F f (

−−→
v1v′1) since|F f (

−−→
v1v′1)| ≤ ∆.

Suppose now that there existsi ∈ [1,k] such that−→viu∈ A(H) (w.l.o.g. assume−→v2u∈ A(H)). We shall
consider two cases depending on the orientations ofuu1 anduu2:

• −→uu1,
−→uu2 ∈ A(H).

Let H ′ = H \ v1. We can setf (
−−→
v1v′1) = c for somec /∈ F f (

−−→
v1v′1) since|F f (

−−→
v1v′1)| ≤ ∆−1. Clearly,

any feasible color for−→uv1 does not belong tof (
−−→
v1v′1) ∪C−

f (u) ∪ { f (
−−→
v′j v j) | f (−→v j u) = c}; therefore at

most∆ colors are not feasible for−→uv1 and it remains at least one feasible color to setf (−→uv1).

• −→u1u∈ A(H).

LetH ′ = H \v2. We can setf (
−−→
v′2v2)= c for somec /∈S= F f (

−−→
v′2v2)∪{ f (uu2)} since|S| ≤∆−1+1=

∆. Clearly, any feasible color for−→v2u does not belong tof (
−−→
v′2v2) ∪ C−

f (u) ∪ { f (
−−→
v j v′j) | f (−→uvj) = c};

therefore at most∆ colors are not feasible for−→v2u and it remains at least 1 feasible color to setf (−→v2u).

2

Lemma 23 The graph H does not contain the configuration (o) of Figure 3.

Proof : Let H ′ = H \ v1. By Lemma 22, we have−→viu ∈ A(H) for all i ∈ [1,k]. We can setf (
−−→
v1v′1) = c

for somec /∈ S= F f (
−−→
v1v′1)∪{ f (uu2)} since|S| ≤ ∆−1+1= ∆. Therefore,C−

f (v1)∩C+
f (u) = /0 and any

available color for−→v1u is also feasible; we thus setf (−→v1u) = d for somed /∈ F f (−→v1u). 2

Lemma 24 The graph H does not contain the configuration (p) of Figure 3.

Proof : Let H ′ = H \uw. By Lemmas 22 and 23, we have−→viu∈ A(H) for all i ∈ [1,k−2], and−→uu1,
−→uw∈

A(H). Clearly, any feasible color for−→uu2 does not belong toF f (−→uu2)∪ { f (
−−→
v′jv j) | f (−→v ju)∈{ f (ww1), f (ww2)}};

therefore at most∆ colors are not feasible and thus it remains at least 1 feasible color to setf (−→uw). 2

We now prove that every graph that does not contain the configurations of Figure 3 has mad≥ 133
41 .

We call astrong k-vertexak-vertex which is adjacent to at mostk−3 2-vertices, and aweak k-vertexa
k[k−2]-vertex. We also callstrong 3-vertexa 3-vertex which is adjacent to at most one 3-vertex, andweak
3-vertexa 3-vertex adjacent to two 3-vertices.

Note that by Lemma 22, ifH contains a weakk-vertexu, thek−2 2-verticesvi adjacent tou, 1≤ i ≤
k−2, are directed towardsu (i.e.−→viu∈ A(H) ∀ i ∈ [1,k−2]). Therefore, sinceH contains no source vertex
(by Lemmas 10 and 11), a 2-vertex cannot be adjacent to two weak k-vertices.

We assign to each vertexv an initial chargew(v) = d(v). Now, we use the following discharging rules :

Rule 1. Each strong 3-vertex gives241 to each of its 3-neighbors;

Rule 2. Each 4-vertex gives27
41 to each of its 2-neighbors and641 to each of its 3-neighbors;

Rule 3. Each≥5-vertex gives6
41 to each of its 3-neighbors;

Rule 4. Each weak≥5-vertex gives24
41 to each of its 2-neighbors;

Rule 5. Each strong≥5-vertex gives27
41 to each of its 2-neighbors.

We denote byw∗(v) the new charge of the vertexv after the discharging procedure.
Let H be a minimal counter-example to Theorem 4 andv be ak-vertex; we shall prove that the new charge
w∗(v) of each vertexv is at least133

41 . We consider the following cases (recall thatH has no 1-vertices):
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• if k = 2, thenw(v) = 2 andw∗(v)≥ 2+ 24
41 + 27

41 = 133
41 , since by Lemma 22 a 2-vertex is not adjacent

to two weak≥5-vertices;

• if k = 3 andv is a strong 3-vertex, thenw(v) = 3 andw∗(v) ≥ 3+2 · 6
41−

2
41 = 133

41 ;

• if k = 3 andv is a weak 3-vertex, thenw(v) = 3 andw∗(v) = 3+2 · 2
41 + 6

41 = 133
41 , since by Lemma

18 a weak 3-vertex is adjacent to two strong 3-vertices;

• if k = 4 andv is adjacent to a 2-vertex, thenw(v) = 4 andw∗(v)≥ 4− 27
41 = 137

41 , since by Lemma 19,
a 4-vertex is linked to a 2-vertex by an outgoing arc and therefore, by Lemmas 22 and 23, a 4-vertex
can have only one 2-neighbor; moreover, by Lemma 20, a 4-vertex is not adjacent to a 3-vertex if it
is already adjacent to 2-vertices;

• if k = 4 andv is not adjacent to a 2-vertex, thenw(v) = 4 andw∗(v) ≥ 4−4 · 6
41 = 140

41 ;

• if k≥ 5 andv is a strong k-vertex, thenw(v) = k andw∗(v) ≥ k−3 · 6
41− (k−3) · 27

41 ≥
133
41 ;

• if k≥ 5 andv is a weak k-vertex, thenw(v) = k andw∗(v) ≥ k− (k−2) · 24
41 ≥

133
41 , since by Lemma

24 the two other neighbors of a weakk-vertex are≥4-vertices.

As in the proof of Theorem 2, we get that mad(H) ≥ 133
41 . The contradiction concludes the proof of

Theorem 4.
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