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a Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, Zielona Góra, Poland
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Abstract

An arc-coloured path in a digraph is rainbow if its arcs have distinct colours. A
vertex-coloured path is vertex rainbow if its internal vertices have distinct colours. A
totally-coloured path is total rainbow if its arcs and internal vertices have distinct
colours. An arc-coloured (resp. vertex-coloured, totally-coloured) digraph D is
rainbow connected (resp. rainbow vertex-connected, total rainbow connected) if
any two vertices of D are connected by a rainbow (resp. vertex rainbow, total
rainbow) path. The rainbow connection number (resp. rainbow vertex-connection
number, total rainbow connection number) of a digraph D is the smallest number
of colours needed to make D rainbow connected (resp. rainbow vertex-connected,
total rainbow connected).

In this paper, we study the rainbow connection, rainbow vertex-connection and
total rainbow connection numbers of digraphs. We give some properties of these
parameters and establish relations between them. The rainbow connection number
and the rainbow vertex-connection number of a digraph D are both upper bounded
by the order of D, while its total rainbow connection number is upper bounded by
twice of its order. In particular, we prove that a digraph of order n has rainbow
connection number n if and only if it is Hamiltonian and has three vertices with
eccentricity n− 1, that it has rainbow vertex-connection number n if and only if it
has a Hamiltonian cycle C and three vertices with eccentricity n−1 such that no two
of them are consecutive on C, and that it has total rainbow connection number 2n
if and only if it has rainbow vertex-connection number n.
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1 Introduction

We consider finite and simple graphs only, and refer to [5] for terminology and notation
not defined here.

In an edge-coloured graph G, a path is said to be rainbow if it does not use two edges
with the same colour. Then the graph G is said to be rainbow connected if any two vertices
are connected by a rainbow path. The rainbow connection number of G, denoted by rc(G),
is the smallest possible number of colours in a rainbow connected colouring of G.

The concept of rainbow connection in graphs was introduced by Chartrand, Johns,
McKeon and Zhang in [8]. Since then, the rainbow connection number has attracted much
attention. The rainbow connection number of some special graph classes was determined
in [6, 12, 13] and the rainbow connection number of graphs with fixed minimum degree was
considered in [6, 14, 21, 22]. Also, different other parameters similar to rainbow connection
were introduced. Krivelevich and Yuster [14] introduced the concept of rainbow vertex-
connection. Liu, Mestre and Sousa [20] proposed the concept of total rainbow connection.
A vertex-coloured path is vertex rainbow if its internal vertices have distinct colours. A
vertex-coloured graph G is rainbow vertex-connected if any two vertices are connected
by a vertex rainbow path. In a totally-coloured graph G a path is total rainbow if its
edges and internal vertices have distinct colours. A totally-coloured graph G is total
rainbow connected if any two vertices are connected by a total rainbow path. The rainbow
vertex-connection number (resp. total rainbow connection number) of a connected graph
G, denoted by rvc(G) (resp. trc(G)), is the smallest number of colors needed to make G
rainbow vertex-connected (resp. total rainbow connected).

The computational complexity of rainbow connectivity, rainbow vertex-connectivity
and total rainbow connectivity was studied in [4, 7, 9, 10, 15]. It was shown that computing
the rainbow connection number, the rainbow vertex-connection number and the total
rainbow connection number of an arbitrary graph is NP-hard. Moreover, it was proved
that it is already NP-complete to decide whether rc(G) = 2, or rvc(G) = 2, or trc(G) = 3.
See [18] or [19] for a survey about these different parameters.

The notions of rainbow connection and strong rainbow connection readily extend to
digraphs, using arc-colouring instead of edge-colourings and directed paths (simply called
paths in this paper) instead of paths. Note that in order to have bounded rainbow
connection number, a digraph must be strongly connected.

Let D be a digraph. A k-vertex-colouring, a t-arc-colouring and a p-total-colouring
of D is a mapping c : V (D) → {1, . . . , k}, ϕ : A(D) → {1, . . . , t}, f : V (D) ∪ A(D) →
{1, . . . , p}, respectively. A vertex-coloured digraph, an arc-coloured digraph, a totally-
coloured digraph, is then a pair (D, c), (D,ϕ), (D, f), respectively, where D is a digraph
and c is a vertex-colouring, ϕ is an arc-colouring, and f is a total-colouring of D, respec-
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tively.
A path P in (D,ϕ) is rainbow if no two arcs of P are coloured with the same colour.

If any two vertices in an arc-coloured digraph (D,ϕ) are connected by a rainbow path,
then (D,ϕ) is said to be rainbow connected (or, equivalently, ϕ is a rainbow arc-colouring
of G).

A path P in a vertex-coloured digraph (D, c) is vertex rainbow if its internal vertices
have distinct colours. A vertex-coloured digraph (D, c) is rainbow vertex-connected (or,
equivalently, c is a rainbow vertex-colouring ofD) if any two vertices in (D, c) are connected
by a rainbow path.

A path P in a totally-coloured digraph (D, f) is total rainbow if its edges and internal
vertices have distinct colours. A totally-coloured digraph (D, f) is total rainbow connected
(or, equivalently, f is a rainbow total-colouring of D) if any two vertices in (D, f) are
connected by a rainbow path.

The rainbow connection number (rainbow vertex-connection number, total rainbow con-
nection number) of a strong digraph D, is the minimum number of colours in a rainbow
colouring (a rainbow vertex-colouring, a rainbow total-colouring). The rainbow connec-
tion number, the rainbow vertex-connection number, the total rainbow connection number
are denoted by −→rc(D), −→rvc(D) and

−→
trc(D), respectively.

The study of rainbow connection in oriented graphs (that is, antisymmetric digraphs)
was initiated by Dorbec, Schiermeyer and the authors in [11] and then studied by Alva-
Samos and Montellano-Ballesteros in [1, 2, 3]. Lei, Li, Liu and Shi [16] introduced the
rainbow vertex-connection of digraphs. The total rainbow connection was studied in [17].
The strong version of rainbow connection was considered in [1, 16, 17, 23].

In [11] it has been observed that the rainbow connection number of a digraph is upper
bounded by its order and a characterization of all oriented graphs with rainbow connection
number equal to their order has been given. However, this characterization does not lead
to a polynomial time algorithm for the corresponding decision problem. In this paper
we propose a new characterization of digraphs with rainbow connection number equal to
their order. The obtained characterization shows that the problem of deciding whether a
digraph of order n has rainbow connection number n can be solved in polynomial time.
In contrast, Ananth, Nasre and Sarpatwar in [4] proved that the problem of deciding
whether a digraph has rainbow connection number 2 is NP-complete.

Whereas it is easily observed that a graph G of order n ≥ 2 has rainbow vertex-
connection number at most n−2, the rainbow vertex-connection number of a digraph can
be equal to its order. We prove that a digraph D of order n has rainbow vertex-connection
number n if and only if it has a Hamiltonian cycle C and three vertices with eccentricity
n − 1 such that no two of them are consecutive vertices of C. For a digraph D of order
n, the total rainbow connection number is at most 2n (see Section 3). We prove that a
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digraph D of order n has total rainbow connection number 2n if and only if it has rainbow
vertex-connection number n.

This paper is organized as follows. After some preliminaries given in the next section,
we give in Section 3 some basic results about the rainbow vertex-connection number and
the total rainbow connection number of digraphs and some relations between these two
parameters. In Section 4 we give some sufficient conditions for a digraph of order n to
have rainbow connection number less than n, rainbow vertex-connection number less than
n and total rainbow connection number less than 2n. Finally, in Section 5, we propose
a characterization of all digraphs of order n with rainbow connection number n, with
rainbow vertex-connection number n, and with total rainbow connection 2n, respectively.

2 Preliminaries

For a given digraph D, we denote by V (D) and A(D) its set of vertices and set of arcs,
respectively. Given an arc xy in D, we say that y is an out-neighbour of x, while x is an
in-neighbour of y. Moreover, we call x the tail of xy and y the head of xy. We denote
by N+

D (x) the set of out-neighbours of x in D, and by N−
D (x) the set of in-neighbours of

x in D. The out-degree deg+D(x) of x in D is the cardinality of its out-neighbourhood,
that is deg+D(x) = |N+

D (x)|, and the in-degree deg−D(x) of x in D is the cardinality of its
in-neighbourhood, that is deg−D(x) = |N−

D (x)|.
Given two digraphs D1 and D2, not necessarily vertex disjoint, we denote by D1 ∪D2

the digraph with vertex set V (D1 ∪ D2) = V (D1) ∪ V (D2) and arc set A(D1 ∪ D2) =
A(D1) ∪ A(D2).

A path of length k ≥ 1 in a digraph D is a sequence x0 . . . xk of vertices such that
xixi+1 ∈ A(D) for every i, 0 ≤ i ≤ k − 1. Such a path P , going from x0 to xk, is referred
to as an x0xk-path. For every i, j, 0 ≤ i < j ≤ k, we say that xi precedes xj in P . Any
vertex in V (P )\{x0, xk} is an internal vertex of P . For every i, j, 0 ≤ i < j ≤ k, P [xi, xj]
denotes the subpath of P induced by the vertices xi, . . . , xj . A path P is elementary if
no vertex appears twice in P . An elementary path induced by a path Q is the unique
elementary path P obtained from Q by repeatedly deleting cycles, that is replacing a
sequence of the form u1 . . . ukxv1 . . . vℓxw1 . . . wm by u1 . . . ukxw1 . . . wm as many times as
necessary.

A digraph D is strongly connected (strong for short) if there exists an xy-path in D
for every two vertices x and y. A strong component of a digraph D is a maximal strong
induced subdigraph of D.

The distance from a vertex x to a vertex y in a digraph D, denoted by distD(x, y), is
the length of a shortest xy-path in D (if there is no such path, we let distD(x, y) = ∞).
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The diameter of D, denoted by diam(D), is the maximum distance between any two
vertices in D. Two vertices at distance diam(D) are antipodal vertices. The eccentricity
of a vertex x in D, denoted by eccD(x), is the maximum distance from x to any other
vertex of D.

A cycle of length k ≥ 1 in a digraph D is a sequence x0 . . . xkx0 of vertices such that
xixi+1 ∈ A(D) for every i, 0 ≤ i ≤ k (subscripts are taken modulo k). Since cycles are
denoted similarly all along the paper, it is taken for granted that subscripts are always
taken modulo the length of the cycle. By C[xi, xj ] we denote the xixj-path contained in
C (that is, C[xi, xj] = xixi+1 . . . xj) and |C[xi, xj ]| stands for the length of this path.

Recall that a Hamiltonian path in a digraph D is a path P in D such that V (P ) =
V (D), and that a Hamiltonian cycle in D is a cycle C in D such that V (C) = V (D). A
Hamiltonian digraph is then a digraph containing a Hamiltonian cycle.

Lemma 2.1 If D is a digraph and P is a Hamiltonian path in D, then the vertices of
any strong component of D induce a subpath of P .

Proof. Suppose to the contrary that D1 is a strong component of D such that P [V (D1)]
is not connected, which implies, in particular, 2 ≤ |V (D1)| < |V (D)|. Let P = v1 . . . vn, p
be the smallest index such that vp−1 ∈ V (D1) and vp /∈ V (D1), and q be the smallest index
such that q > p, vq−1 /∈ V (D1) and vq ∈ V (D1) (since P [V (D1)] is not connected, such
indices p and q necessarily exist). Thus the internal vertices of the path P ′ = vp−1vp . . . vq
are not in D1. Consider the digraph D1∪P ′. Since D1 is a strong digraph, it follows that
D1 ∪ P ′ is also strong, contradicting the assumption that D1 is a strong component. �

Lemma 2.2 Let D be a Hamiltonian digraph of order n with diam(D) = n − 1. For
every two vertices u and v of D with distD(u, v) = n − 1, vu ∈ A(D) and vu belongs to
each Hamiltonian cycle of D.

Proof. Suppose to the contrary that either vu /∈ A(D) or there is a Hamiltonian cycle C
not containing vu. In both cases, this implies that the vertices v and u are not consecutive
along the cycle C, and thus distD(u, v) ≤ |C[u, v]| < n− 1, a contradiction. �

Corollary 2.3 If D is a Hamiltonian digraph, u and v two vertices of D with
distD(u, v) = n− 1, then vu ∈ A(D) and the digraph D − vu is not Hamiltonian.

In [11], a property called Head-Tail-Property was introduced and used for characteriz-
ing oriented digraphs with rainbow connection number equal to their order. We will also
use this definition and the following proposition in this paper.
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xi−1 xi

Figure 1: The vertex xi has the Head-Tail-Property with respect to the cycle C.

Definition 2.4 (Head-Tail-Property) Let C = x0 . . . xk−1x0 be a cycle in a digraph
D. A vertex xi ∈ V (C) has the Head-Tail-Property with respect to C if, when going
along the cycle C from xi to xi−1, we meet the head of each chord before its tail (see
Figure 1 for an example). In particular, if D is itself a cycle, then every vertex of D has
the Head-Tail-Property with respect to D.

Proposition 2.5 (Dorbec, Schiermeyer, Sidorowicz and Sopena [11]) Let D be a
digraph and C = x0 . . . xn−1x0 be a Hamiltonian cycle of D. If a vertex xi, 0 ≤ i ≤ n− 1,
has the Head-Tail-Property with respect to C, then distD(xi, xi−1) = n− 1.

3 Some basic results

Recall that the converse Dc of a digraph D is obtained by reversing all the arcs of D,
that is, V (Dc) = V (D) and A(Dc) = {vu | uv ∈ A(D)}. Clearly, every rainbow vertex-
colouring, rainbow arc-colouring or rainbow total-colouring of D is a rainbow vertex-
colouring, rainbow arc-colouring or rainbow total-colouring of Dc, respectively.

Observation 3.1 For every strong digraph D, −→rc(Dc) = −→rc(D), −→rvc(Dc) = −→rvc(D) and
−→
trc(Dc) =

−→
trc(D).

Note that in a rainbow connected digraph D, there must be a path with at least
diam(D) colours between antipodal vertices. In [11], it was proved that the rainbow
connection number of every strong digraph is upper bounded by its order. Similarly, in
a rainbow vertex-connected digraph D, there must be a path with at least diam(D) − 1
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colours and the vertex-colouring that assigns different colours to each vertex ofD is clearly
a rainbow vertex-colouring. We thus have the following proposition.

Proposition 3.2 For every strong digraph D,

diam(D) ≤ −→rc(D) ≤ n and diam(D)− 1 ≤ −→rvc(D) ≤ n.

Observe that these upper bounds are tight since −→rc(Cn) = n and −→rvc(Cn) = n for the
cycle Cn of order n. In [17], it was proved that −→rvc(D) = 0 if and only if D is a symmetric
complete digraph, and that −→rvc(D) = 1 if and only if diam(D) = 2.

The next proposition deals with strong digraphs whose underlying undirected graph
is not 2-connected.

Proposition 3.3 If S is the set of cut vertices of a rainbow vertex-coloured digraph D,
then all vertices of S are assigned distinct colours.

Proof. Let u, u′ be any two distinct vertices of S, D1, . . . , Dp and D′
1, . . . , D

′
q be the

connected components (not necessarily strong) of D− u and D− u′, respectively. Let Di

be a component that does not contain u′, and D′
j be a component that does not contain u.

Thus each path that joins a vertex of Di to a vertex of D′
j must contain both vertices

u and u′. Therefore, in any rainbow vertex-colouring of D, vertices u and u′ must get
different colours. �

Using Proposition 3.3, we can easily construct a digraph with rainbow vertex-
connection number 2. Indeed, let K1, K2 and K3 be three vertex-disjoint symmetric
complete digraphs of order at least 2. Let v1 ∈ V (K1), v2, v

′
2 ∈ V (K2) and v3 ∈ V (K3).

Let D be the strong digraph obtained by identifying v1 with v2, and v3 with v′2. In any
rainbow vertex-colouring c of D, vertices v2 and v′2 must be coloured differently, while all
other vertices can get either the colour c(v2) or c(v

′
2). Thus

−→rvc(D) = 2.
By Proposition 3.3, each digraph with rainbow vertex-connection number 2 has at

most two cut vertices. However, 2-connected digraphs might also have rainbow vertex-
connection number 2.

Proposition 3.4 If D is a strong bipartite digraph with diam(D) = 3, then −→rvc(D) = 2.

Proof. Let (V1, V2) be a vertex partition of V (D). Let us colour the vertices of V1 with
colour 1 and the vertices of V2 with colour 2. Each path of length 1 or 2 is clearly rainbow.
Each path of length 3 has two internal vertices whose colours are obviously 1 and 2. Since
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diam(D) = 3, the proposed colouring is a rainbow vertex-colouring of D and the result
follows. �

However, deciding whether a strong digraph has rainbow vertex-connection number 2
seems not so easy and we thus propose the following problem.

Problem 1 Characterize strong digraphs with rainbow vertex-connection number 2.

The rainbow connection number and the rainbow vertex-connection number of a di-
graph D are lower bounded by diam(D) and diam(D) − 1, respectively. However there
is no upper bound on these two parameters which is a function of diam(D). To see
that, let C1

3 , . . . , C
s
3 be s vertex-disjoint directed 3-cycles with V (C i

3) = {xi, yi, zi} and
A(C i

3) = {xiyi, yizi, zixi} for every i, 1 ≤ i ≤ s. Let D be the digraph obtained by iden-
tification all vertices xi, 1 ≤ i ≤ s. We clearly have diam(D) = 4. On the other hand,
all arcs yizi, 1 ≤ i ≤ s must get distinct colours in any rainbow colouring of D since any
two such arcs, say yaza and ybzb, belong to any path from ya to zb. This gives

−→rc(D) ≥ s.
Now, let Ks be the symmetric complete digraph of order n and let V (Ks) = {v1, . . . , vs}.
Let D′ be the digraph obtained from Ks by adding s new vertices w1, . . . ws together
with arcs viwi and wivi for every i, 1 ≤ i ≤ s. We clearly have diam(D) = 3 and, by
Proposition 3.3, −→rvc(D) ≥ s since {v1, . . . , vs} is a set of s cut vertices in D′.

The next theorem shows that the rainbow vertex-connection number of 2-connected
digraphs cannot be bounded by a the function of the diameter.

Theorem 3.5 For every integers d and k, 4 ≤ d ≤ k, there exists a 2-connected strong
oriented graph Dd,k with diam(Dd,k) = d and −→rvc(Dd,k) ≥ k.

Proof. We first consider the case 5 ≤ d ≤ k and let t = d− 5. Let Dd,k be the oriented
graph with vertex set

V (Dd,k) = {x1, . . . , xk} ∪ {y1, . . . , yk} ∪ {z11 , . . . , z
1+t
1 } ∪ {z2, . . . , zk},

and set of arcs

A(Dd,k) = {x1z
1
1 , z

1
1z

2
1 , . . . , z

1+t
1 y1} ∪ {xizi, ziyi | 2 ≤ i ≤ k}

∪ {yixj | 1 ≤ i, j ≤ k, i 6= j}.

Hence, each vertex xi, 2 ≤ i ≤ k, is joined to yi by a 2-path xiziyi, the vertex x1 is joined
to y1 by a (t+ 2)-path x1z

1
1 . . . z

1+t
1 y1 and any two vertices xi and yj, 1 ≤ i, j ≤ k, i 6= j,

are linked by the arc yjxi.
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We first claim that diam(Dd,k) = t + 5 = d. Indeed, the unique shortest path from
x1 to yj, 2 ≤ j ≤ k, is x1z

1
1 . . . z

1+t
1 y1xjzjyj, of length t+ 5, and thus eccDd,k

(x1) = t+ 5.
Moreover, any two vertices xi and xj, 1 ≤ i, j ≤ k, i 6= j, are linked by a path of length 3
if i > 1, or of length t + 3 if i = 1. Similarly, any two vertices yi and yj, 1 ≤ i, j ≤ k,
i 6= j, are linked by a path of length 3 if j > 1, or of length t+ 3 if j = 1. Any other two
vertices are linked by a path of length at most t+ 2.

Observe now that the t + 2 vertices z11 , . . . , z
1+t
1 , zj lie on every x1yj-path. Moreover,

any two vertices zi and zj , 2 ≤ i < j ≤ k, clearly lie on every xiyj-path. Therefore,
the k + t vertices z11 , . . . , z

1+t
1 , z2, . . . , zk must be assigned distinct colours in any rainbow

vertex-colouring of Dd,k, which implies −→rvc(Dd,k) ≥ k + t ≥ k.

We finally consider the case d = 4. Let D4,k, k ≥ 4, be the oriented graph with vertex
set

V (D4,k) = {x1, . . . , xk} ∪ {y1, . . . , yk} ∪ {z1, . . . , zk},

and set of arcs

A(D4,k) = {xizi, ziyi | 1 ≤ i ≤ k} ∪ {zixj, yixj | 1 ≤ i, j ≤ k, i 6= j}.

We clearly have diam(D4,k) = 4. Moreover, since every two vertices zi and zj, i 6= j, lie on
every xiyj-path, the k vertices z1, . . . , zk must be assigned distinct colours in any rainbow
vertex-colouring of D4,k, which implies −→rvc(D4,k) ≥ k. �

Theorem 3.5 provides examples of 2-connected oriented graphs with large rainbow
vertex-connection number and given diameter at least 4. The situation for diameter 3 is
less clear and we propose the following problem.

Problem 2 Does there exist a constant t such that, for every 2-connected strong oriented
graph (or digraph) D with diam(D) = 3, −→rvc(D) ≤ t?

In a rainbow total-coloring, any pair of vertices is joined by a total rainbow path.
Since each total rainbow path is also rainbow and vertex rainbow, both the rainbow
connection number and the rainbow vertex-connection number are upper bounded by the
total rainbow connection number.

Proposition 3.6 For every strong digraph D,

−→
trc(D) ≥ max{−→rc(D),−→rvc(D)}.

On the other hand, an upper bound on the total rainbow connection number of a
strong digraph is the following.
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Lemma 3.7 For every strong digraph D of order n,

−→
trc(D) ≤ n+min{−→rc(D),−→rvc(D)}.

Proof. Suppose first that min{−→rc(D),−→rvc(D)} = −→rc(D) = k. Let ϕ be a rainbow k-arc-
colouring of D and c be a n-vertex-colouring of D such that no two vertices are assigned
the same colour. Consider the total-colouring f of D given by f(v) = c(v) for every vertex
v and f(uv) = ϕ(uv) for every arc uv. Obviously every elementary path in (D, f) is vertex
rainbow. Since ϕ is a rainbow colouring, there exists a total rainbow path between any
two vertices and thus f is a total rainbow colouring of D, which implies

−→
trc(D) ≤ n+ k.

Suppose now that min{−→rc(D),−→rvc(D)} = −→rvc(D) = t and let V (D) = {v1, . . . vn}. Let
c be a rainbow t-vertex-colouring of D, ϕ be the n-arc-colouring of D given by ϕ(xixj) = i
for every arc xixj, and f be the total-colouring of D defined as above. Again, every

elementary path in (G, f) is total rainbow, and thus
−→
trc(D) ≤ n+ t. �

From Proposition 3.2 and Lemma 3.7, we get the following result.

Corollary 3.8 Let D be a strong digraph with n vertices. Then

max{−→rc(D),−→rvc(D)} ≤
−→
trc(D) ≤ 2n.

For many strong digraphs D, −→rc(D) + −→rvc(D) colours are enough to make D total
rainbow connected. The next theorem gives an example of a strong digraph that needs
more colours for any total rainbow colouring.

Theorem 3.9 There exists a strong digraph D with
−→
trc(D) > −→rc(D) +−→rvc(D).

Proof. Let Tk, k ≥ 7, be the tournament with vertex set

V (Tk) = {x1, . . . , xk} ∪ {y1, . . . , yk},

and arc set A(Tk) = A1
k ∪ A2

k ∪ A3
k ∪ A4

k, with

A1
k = {xixj | 1 ≤ i < j ≤ k},

A2
k = {yiyj | 1 ≤ i < j ≤ k},

A3
k = {yixj | 1 ≤ i, j ≤ k, i 6= j}, and

A4
k = {xiyi | 1 ≤ i ≤ k}.
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Therefore, both sets X = {x1, . . . , xk} and Y = {y1, . . . , yk} induce a transitive sub-
tournament of Tk, and all arcs between X and Y are directed from Y to X except for the
perfect matching {xiyi | 1 ≤ i ≤ k}.

Observe that distTk
(xi, yj) = 3 for i > j and any two other vertices are at distance

either 1 or 2 from each other. Thus diam(Tk) = 3. If we colour each vertex of X with
colour 1 and each vertex of Y with colour 2, then we clearly obtain a rainbow 2-vertex-
colouring of Tk, which implies −→rvc(Tk) = 2.

Consider now the 4-arc-colouring ϕ given by (i) ϕ(e) = 1 for every e ∈ A1
k ∪ A2

k,
(ii) ϕ(e) = 2 for every e ∈ A3

k, and (iii) ϕ(x1y1) = 3 and ϕ(xiyi) = 4 for every i, 2 ≤ i ≤ k
(arcs in A4

k). For every two vertices a and b in Tk with ab /∈ A(Tk), there exists a rainbow
ab-path Pa,b in (Tk, ϕ) given as follows:

• if (a, b) = (xj, xi), 1 ≤ i < j ≤ k, then Pa,b = xjyjxi,

• if (a, b) = (yj, yi), 1 ≤ i < j ≤ k, then Pa,b = yjxiyi,

• if (a, b) = (y1, x1), then Pa,b = y1y2x1,

• if (a, b) = (yi, xi), 2 ≤ i ≤ k, then Pa,b = yixi−1xi,

• if (a, b) = (x1, yj), 2 ≤ j ≤ k, then Pa,b = x1y1yj,

• if (a, b) = (xi, yj), 2 ≤ i, j ≤ k, i 6= j, then Pa,b = xiyix1y1yj.

Thus (Tk, ϕ) is rainbow connected, which implies −→rc(Tk) ≤ 4.
We now claim that the total rainbow connection number of Tk is at least 7. Let f be

a total rainbow colouring of Tk using
−→
trc(Tk) = t colours. Suppose first that there are

two arcs xiyi and xjyj, i < j, with f(xiyi) = f(xjyj). By our assumption there exists a
total-rainbow xjyi-path P . Since both arcs xiyi and xjyj have the same colour, P contains
at most one of them. However, each such path has at least four arcs, so that we need at
least 7 colours to colour P . On the other hand, if no two arcs from X to Y are assigned
the same colour, then t ≥ k ≥ 7.

Therefore, for every k ≥ 7,
−→
trc(Tk) >

−→rc(Tk) +
−→rvc(Tk). �

Lei, Liu, Magnant and Shi [17] asked whether there exists an infinite family of digraphs

D such that
−→
trc(D) is unbounded, while max{−→rc(D),−→rvc(D)} is bounded.

Problem 3 For any integer d, does there exist an infinite family of digraphs with
−→
trc(D)−

(−→rc(D) +−→rvc(D)) > d?

Finally, the following proposition directly follows from the definitions.

11



Proposition 3.10 If D′ is a strong spanning subdigraph of a digraph D, then

−→rc(D) ≤ −→rc(D′), −→rvc(D) ≤ −→rvc(D′), and
−→
trc(D) ≤

−→
trc(D′).

4 Digraphs with non-maximum connection numbers

In this section, we give several sufficient conditions for a digraph D of order n to satisfy
the inequalities −→rc(D) < n, −→rvc(D) < n and

−→
trc(D) < 2n. We first define two useful

properties of pairs of distinct vertices in a strong digraph.

Definition 4.1 (Vertex-Rainbow-In-Property) Let D be a strong digraph. Two dis-
tinct vertices u, v ∈ V (D) have the Vertex-Rainbow-In-Property if

(i) for any two vertices a, b ∈ V (D) \ {u, v}, there is an ab-path that does not contain
both u and v,

(ii) for any vertex a ∈ V (D)\{u, v}, there is an au-path not containing v and an av-path
not containing u.

Definition 4.2 (Vertex-Rainbow-Out-Property) Let D be a strong digraph. Two
distinct vertices u, v ∈ V (D) have the Vertex-Rainbow-Out-Property if

(i) for any two vertices a, b ∈ V (D) \ {u, v}, there is an ab-path that does not contain
both u and v,

(ii) for any vertex b ∈ V (D) \ {u, v}, there is a ub-path not containing v and a vb-path
not containing u.

Note here that two vertices u and v have the Vertex-Rainbow-In-Property (resp. the
Vertex-Rainbow-Out-Property) in D if and only if u and v have the Vertex-Rainbow-Out-
Property (resp. the Vertex-Rainbow-In-Property) in the converse Dc of D.

The two following lemmas prove that each of these properties provides a sufficient
condition for a strong digraph D to satisfy the inequalities −→rc(D) < n, −→rvc(D) < n and
−→
trc(D) < 2n.

Lemma 4.3 If D is a strong digraph of order n which contains two vertices having the
Vertex-Rainbow-In-Property, then −→rvc(D) ≤ n− 1, −→rc(D) ≤ n− 1 and

−→
trc(D) ≤ 2n− 2.
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Proof. Let V (D) = {x1, x2, . . . xn} and suppose that xp and xq, 1 ≤ p < q ≤ n, have
the Vertex-Rainbow-In-Property. Let c be the (n − 1)-vertex-colouring of D defined by
c(xi) = i for every i, 1 ≤ i < q, c(xq) = p, and c(xi) = i − 1 for every i, q < i ≤ n, so
that both vertices xp and xq are assigned the colour p and all other vertices are assigned
distinct colours. Since xp and xq have the Vertex-Rainbow-In-Property, c is a rainbow
(n− 1)-vertex-colouring of D, and thus −→rvc(D) ≤ n− 1.

Let now ϕ be the (n − 1)-arc-colouring of D defined by ϕ(xixj) = c(xj) for every
arc xixj in A(D). Observe that the only colour that can appear more than once on an
elementary path P is p. In such a case, both xp and xq are internal vertices of P , or P is
an xaxb-path with xb ∈ {xp, xq}. However, since xp and xq have the Vertex-Rainbow-In-
Property, there is an xaxb-path not containing xp or not containing xq so that this path
is rainbow. Therefore, (D,ϕ) is rainbow connected and thus −→rc(D) ≤ n− 1.

Finally, the (2n−2)-total-colouring f ofD defined by f(xi) = c(xi) for every xi ∈ V (D)
and f(xixj) = n−1+ϕ(xixj) for every xixj ∈ A(D) is obviously a rainbow total-colouring

of D, so that
−→
trc(D) ≤ 2n− 2. �

Lemma 4.4 If D is a strong digraph of order n which contains two vertices having the
Vertex-Rainbow-Out-Property, then −→rvc(D) ≤ n− 1, −→rc(D) ≤ n− 1 and

−→
trc(D) ≤ 2n− 2.

Proof. This directly follows from Observation 3.1 and Lemma 4.3 since any two vertices
having the Vertex-Rainbow-Out-Property in D have the Vertex-Rainbow-In-Property in
Dc. �

We now provide a sufficient condition for a Hamiltonian digraph to contain two vertices
having the Vertex-Rainbow-In-Property.

Lemma 4.5 Let D be a Hamiltonian digraph of order n, C = x0x1 . . . xn−1x0 a Hamil-
tonian cycle of D, and xp, xq, 0 ≤ p, q ≤ n − 1, two vertices with xp 6= xq (we may have
p = q + 1 or q = p + 1). If there is an xpxq+1-path not containing xp+1 and there is an
xqxp+1-path not containing xq+1, then the vertices xp+1 and xq+1 have the Vertex-Rainbow-
In-Property (subscripts are taken modulo n).

Proof. Let Pp be an xpxq+1-path not containing xp+1 and Pq be an xqxp+1-path not
containing xq+1. We first prove that for any two vertices xa, xb /∈ {xp+1, xq+1}, there
exists an xaxb-path that does not contain both xp+1 and xq+1. We may assume that
either xa, xb ∈ C[xp+2, xq] and xb precedes xa, or xa, xb ∈ C[xq+2, xp] and xb precedes xa,
since otherwise the xaxb-subpath of C does not contain both xp+1 and xq+1. In the former
case, the path C[xa, xq] ∪ Pq ∪ C[xp+1xb] does not contain xq+1. In the latter case, the
path C[xa, xp] ∪ Pp ∪ C[xq+1xb] does not contain xp+1.
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We now prove that for any xa /∈ {xp+1, xq+1}, there is an xaxp+1-path not contain-
ing xq+1 and an xaxq+1-path not containing xp+1. If xa ∈ C[xp+2, xq], then C[xa, xq+1]
is an xaxq+1-path not containing xp+1, and C[xa, xq] ∪ Pq is an xaxp+1-path not contain-
ing xq+1. On the other hand, if xa ∈ C[xq+2, xp], then C[xa, xp+1] and C[xa, xp] ∪ Pp are
the required paths. �

In [11], it was proved that an oriented graph whose rainbow connection number equals
its order must be Hamiltonian. We will prove that this result can be extended to all
digraphs, and that it also holds for the rainbow vertex-connection number. Moreover, we
will prove that the total rainbow connection number of a non-Hamiltonian strong digraph
of order n is at most 2n− 2.

We first prove these results for digraphs with diameter n− 1.

Lemma 4.6 Let D be a non-Hamiltonian strong digraph of order n. If diam(D) = n−1,

then −→rvc(D) ≤ n− 1, −→rc(D) ≤ n− 1, and
−→
trc(D) ≤ 2n− 2.

Proof. Let D be a non-Hamiltonian strong digraph with diam(D) = n − 1. Let v1 and
vn be two antipodal vertices and P = v1v2 . . . vn be a v1vn-path of length n− 1. Since P
is a shortest path, all arcs of D that are not in P are of the form vivj with 1 ≤ j < i ≤ n.
Furthermore, vnv1 /∈ A(G) since D is non-Hamiltonian. Let Q be a shortest vnv1-path
and vnvi be the first arc in Q.

Suppose first that there is a vertex vk such that vk /∈ Q, vk+1 ∈ Q and k 6= n− 1. We
claim that the vertices vk and vn have the Vertex-Rainbow-Out-Property. We first prove
that for any two vertices va, vb ∈ V (D)\{vk, vn}, there is a vavb-path that does not contain
both vk and vn. Observe that if va precedes vb in P , then P [va, vb] does not contain vn.
Otherwise, we consider two cases, k < a < n and 1 < a < k. In the former case, there
is a vavb-path not containing vk. Indeed, if 1 ≤ b ≤ k − 1, then P [va, vn] ∪ Q ∪ P [v1, vb]
is the required path, and if k + 1 ≤ b < a, then P [va, vn] ∪Q[vn, vk+1] ∪ P [vk+1, vb] is the
required path. In the latter case, we necessarily have 1 ≤ b < a, and thus P [va, vk+1] ∪
Q[vk+1, v1] ∪ P [v1, vb] (or P [va, vk+1] ∪Q[vk+1, v1] if vb = v1) does not contain vn.

Now, let vb ∈ V (D) \ {vk, vn}. If 1 ≤ b ≤ k − 1, then Q ∪ P [v1, vb] is a vnvb-path not
containing vk, and vkvk+1 ∪ Q[vk+1, v1] ∪ P [v1, vb] is a vkvb-path not containing vn. Thus
the vertices vk and vn have the Vertex-Rainbow-Out-Property and, thanks to Lemma 4.4,
we get −→rvc(D) ≤ n− 1, −→rc(D) ≤ n− 1 and

−→
trc(D) ≤ 2n− 2.

Suppose now that there is no vertex vk such that vk /∈ Q, vk+1 ∈ Q and k 6= n − 1.
This implies that Q contains all vertices v1, . . . , vi (recall that vnvi is the first arc in Q).
In this case, we claim that the vertices v1 and vn have the Vertex-Rainbow-Out-Property.
Let va, vb ∈ V (D) \ {v1, vn}. If va precedes vb, then P [va, vb] contains neither v1 nor vn.
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Figure 2: (a) A pair of opposite chords (we may have xs = xp or xr = xq). (b) A pair of
almost opposite chords (we may have xr = xq or xr = xp−1).

Otherwise, the vavb-path P [va, vn] ∪ Q[vn, v2] ∪ P [v2, vb] does not contain v1. Moreover,
P [v1, vb] is a v1vb-path that does not contain vn. If 2 ≤ b ≤ i− 1, then Q[vn, vb] is a vnvb-
path not containing v1. Otherwise, vnvi ∪ P [vi, vb] is a vnvb-path not containing v1. Thus
the vertices v1 and vn have the Vertex-Rainbow-Out-Property and, thanks to Lemma 4.4,
again we get −→rvc(D) ≤ n− 1, −→rc(D) ≤ n− 1 and

−→
trc(D) ≤ 2n− 2. �

It remains to consider the case of strong digraphs of order n with diameter at most
n− 2. We will thus consider the case of digraphs having a Hamiltonian cycle with some
“special” chords. Let C = x0 . . . xn−1x0 be a cycle of length n. A chord of C is an arc
xpxq, 0 ≤ p, q ≤ n− 1, with xq 6= xp+1. A pair of chords (xpxq, xrxs) is a pair of opposite
chords if xs, xr ∈ C[xq, xp] and xp, xq ∈ C[xs, xr] (see Figure 2 (a)), and a pair of almost
opposite chords if s = p + 1 and xr ∈ C[xq, xp−1] (see Figure 2 (b)). A pair of chords
(xpxq, xrxs) is a pair of crossing chords if xs ∈ C[xp+2, xq−1] and xr ∈ C[xq+1, xp−1] (see
Figure 3). A triple of chords (xpxq, xrxs, xtxu) is a triple of crossing chords if (xpxq, xrxs)
is a pair of crossing chords, xt ∈ C[xs, xq−1] and xu ∈ C[xr+2, xp+1] (see Figure 4).

Lemma 4.7 If D is a Hamiltonian digraph of order n and C a Hamiltonian cycle of D
having a pair of opposite chords, then −→rvc(D) ≤ n−1, −→rc(D) ≤ n−1 and

−→
trc(D) ≤ 2n−2.

Proof. Let C = x0 . . . xn−1x0, and (xpxq, xrxs) be a pair of opposite chords of C. Since
xrxs∪C[xs, xp+1] is an xrxp+1-path not containing xr+1 and xpxq∪C[xq, xr+1] is an xpxr+1-
path not containing xp+1, we get by Lemma 4.5 that the vertices xr+1 and xp+1 have the
Vertex-Rainbow-In-Property. The result then follows by Lemma 4.3. �
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Figure 3: A pair of crossing chords (we may have xs = xp+2, or xs = xq−1, or xr = xq+1,
or xs = xp−1).
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Figure 4: A triple of crossing chords (we may have xu = xp or xu = xp+1).
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Lemma 4.8 If D is a Hamiltonian digraph of order n and C a Hamiltonian cycle of
D having a pair of almost opposite chords, then −→rvc(D) ≤ n − 1, −→rc(D) ≤ n − 1 and
−→
trc(D) ≤ 2n− 2.

Proof. Let C = x0 . . . xn−1x0, and (xpxq, xrxs) be a pair of almost opposite chords of C,
so that xs = xp+1. Since the path xpxq ∪ C[xq, xr+1] does not contain xs, and xrxs is an
xrxs-path not containing xr+1, we get by Lemma 4.5 that the vertices xr+1 and xs = xp+1

have the Vertex-Rainbow-In-Property. The result then follows by Lemma 4.3. �

Lemma 4.9 If D is a Hamiltonian digraph of order n and C a Hamiltonian cycle of D
having a triple of crossing chords, then −→rvc(D) ≤ n−1, −→rc(D) ≤ n−1 and

−→
trc(D) ≤ 2n−2.

Proof. Let C = x0 . . . xn−1x0, and (xpxq, xrxs, xtxu) be a triple of crossing chords of C.
We claim that the vertices xr+1 and xp+1 have the Vertex-Rainbow-In-Property. Observe
first that xpxq ∪C[xq, xr+1] is an xpxr+1-path not containing xp+1. Next xrxs∪C[xs, xt]∪
xtxu∪C[xu, xp+1] is an xrxp+1-path not containing xr+1 (we put C[xs, xt] = ∅ while xt = xs

and C[xu, xp+1] = ∅ while xu = xp+1). Thus, we get by Lemma 4.5 that the vertices xr+1

and xp+1 have the Vertex-Rainbow-In-Property and the result follows by Lemma 4.3. �

We are now able to extend Lemma 4.6 to strong digraphs of order n with diameter at
most n− 2.

Lemma 4.10 If D is a strong digraph of order n with diam(D) ≤ n− 2, then −→rvc(D) ≤

n− 1, −→rc(D) ≤ n− 1 and
−→
trc(D) ≤ 2n− 2.

Proof. Let T be a BFS-tree of D with root r and L be the set of leaves of T . For every
vertex v, we denote by Bv the branch of v, that is, the unique rv-path in T . We say that a
vertex u precedes v in T , denoted u �T v, if u ∈ V (Bv). (In the literature, u is sometimes
called an ancestor of v in T .)

Suppose first that ℓ1 and ℓ2 are two leaves of T such that there is an ℓ1r-path Pℓ1 in D
not containing ℓ2 and an ℓ2r-path Pℓ2 in D not containing ℓ1. We claim that the vertices
ℓ1 and ℓ2 have the Vertex-Rainbow-Out-Property. To see that, let a, b ∈ V (D) \ {ℓ1, ℓ2}
and Q be any ab-path in D. If Q does not contain both vertices ℓ1 and ℓ2 we are done.
Suppose now that Q contains both vertices ℓ1 and ℓ2. We can assume without loss of
generality that ℓ1 precedes ℓ2 in Q. In that case, the ab-path Q[a, ℓ1] ∪ Pℓ1 ∪Bb does not
contain ℓ2.

Furthermore, the paths Pℓ1 ∪ Bb and Pℓ2 ∪ Bb do not contain ℓ2 and ℓ1, respectively,
and thus ℓ1 and ℓ2 have the Vertex-Rainbow-Out-Property. By Lemma 4.4, we get that
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the inequalities −→rvc(D) ≤ n − 1, −→rc(D) ≤ n − 1 and
−→
trc(D) ≤ 2n − 2 hold and we are

done.

Suppose now that for any two leaves ℓ1, ℓ2 ∈ L, either every ℓ1r-path contains ℓ2 or
every ℓ2r-path contains ℓ1. For every leaf ℓ ∈ L, we denote by Pℓ a shortest ℓr-path
in D. Let ≤L be the partial order on L defined in the following way: for every ℓ1, ℓ2 ∈ L,
ℓ1 ≤L ℓ2 if and only if ℓ2 ∈ Pℓ1 . By our assumption, either ℓ1 ≤L ℓ2 or ℓ2 ≤L ℓ1 for any
two leaves ℓ1, ℓ2, and thus ≤L is a linear ordering of L.

Let L = {ℓ1, . . . , ℓs} with ℓi ≤L ℓj for every i, j, 1 ≤ i < j ≤ s. Note that for every i,
1 ≤ i ≤ s, Pℓi contains all vertices ℓi+1, . . . , ℓs, in that order. Moreover, Pℓj ⊆ Pℓi for
every i, j, 1 ≤ i < j ≤ s. We then let P = Pℓ1 .

We consider two cases.

1. V (Bℓ2 ∪ . . . ∪Bℓs) \ V (P ) 6= ∅.

Since all leaves are in P , there exists a vertex x ∈ V (Bℓ2 ∪ . . . ∪ Bℓs) \ V (P ) such
that x has an out-neighbour x′ with x′ ∈ V (P ). We choose the vertex x in such
a way that distD(r, x) is maximum. Since every leaf ℓi with x �T ℓi is in P , the
maximality of distD(r, x) implies that every vertex y with x �T y is in P .

We claim that the vertices ℓ1 and x have the Vertex-Rainbow-Out-Property. To see
that, let a, b ∈ V (D) \ {ℓ1, x}.

Let Q be any ab-path. If Q does not contain both ℓ1 and x, we are done. So
assume that Q contains both vertices ℓ1 and x. Suppose first that ℓ1 precedes x
in Q. If x �T b, then b belongs to P , and thus Q[a, ℓ1]∪P [ℓ1, b] does not contain x.
Otherwise, Bb does not contain x, and thus Q[a, ℓ1] ∪ P ∪ Bb does not contain x.
Suppose now that x precedes ℓ1 in Q. Since the out-neighbour x′ of x is in P and
ℓ1 is the first vertex of P , P [x′, r] does not contain ℓ1. Furthermore, Bb also does
not contain ℓ1, and thus Q[a, x] ∪ xx′ ∪ P [x′, r] ∪Bb does not contain ℓ1. Hence, in
all cases, we can find an ab-path that does not contain both vertices ℓ1 and x.

Now we need to show that there exists an ℓ1b-path not containing x and an xb-path
not containing ℓ1. If x /∈ Bb, then P ∪Bb is an ℓ1b-path not containing x. If x ∈ Bb,
which implies x �T b and thus b ∈ P , then P [ℓ1, b] is an ℓ1b-path not containing x.
Finally, xx′ ∪ P [x′, r] ∪ Bb is an xb-path not containing ℓ1.

Therefore, the vertices ℓ1 and x have the Vertex-Rainbow-Out-Property and the
theorem follows from Lemma 4.4.

2. V (Bℓ2 ∪ . . . ∪Bℓs) ⊆ V (P ).

We consider two subcases, depending on whether the path P contains an internal
vertex of Bℓ1 or not.
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(a) P contains an internal vertex of Bℓ1.

We consider two subcases.

i. There exists an arc xx′ in Bℓ1 with x /∈ V (P ), x′ ∈ V (P ) and x′ 6= ℓ1.
In that case, we claim that the vertices x and ℓ1 have the Vertex-Rainbow-
Out-Property. Let a, b ∈ V (D) \ {x, ℓ1}. We first prove that there exists
an ab-path not containing both x and ℓ1.
Suppose first that a and b are internal vertices of Bℓ1 . If a �T b, then
Bℓ1 [a, b] does not contain ℓ1. Otherwise, we have three possible cases: x �T

b �T a, b �T x �T a, or b �T a �T x. In the first case, Bℓ1 [a, ℓ1]∪P [ℓ1, x
′]∪

Bb[x
′, b] does not contain x. In the second case, Bℓ1 [a, ℓ1] ∪ P [ℓ1, r] ∪ Bb

does not contain x. In the last case, Bℓ1 [a, x
′] ∪ P [x′, r] ∪ Bb does not

contain ℓ1.
Suppose now that none of a and b is an internal vertex of Bℓ1 , which implies
a, b ∈ V (P ). If a precedes b in P , then P [a, b] contains neither x nor ℓ1. If
b precedes a in P , then P [a, r] ∪Bb does not contain ℓ1.
Suppose finally that exactly one of the vertices a and b is an internal vertex
of Bℓ1 . If b is an internal vertex of Bℓ1 , then P [a, r]∪Bb does not contain ℓ1.
If a is an internal vertex of Bℓ1 , we consider two cases. If x ≤T a ≤T ℓ1,
then Bℓ1 [a, ℓ1] ∪ P [ℓ1, b] does not contain x. If r ≤T a ≤T x, then an
ab-path not containing ℓ1 is Bℓ1 [a, x

′] ∪ P [x′, b] if x′ precedes b in P , or
Bℓ1 [a, x

′] ∪ P [x′, r] ∪Bb if b precedes x
′ in P .

Therefore, in each case, there exists an ab-path not containing both x
and ℓ1.

We now prove that condition (ii) of the Vertex-Rainbow-Out-Property is
also satisfied. Suppose first that b belongs to Bℓ1 . If x �T b �T ℓ1, then
Bℓ1 [x, b] is an xb-path not containing ℓ1, and P [ℓ1, x

′]∪Bℓ1 [x
′, b] is an ℓ1b-

path not containing x. If r �T b �T x, then xx′∪P [x′, r]∪Bb is an xb-path
not containing ℓ1, and P ∪ Bb is an ℓ1b-path not containing x. Suppose
finally that b belongs to P \ Bl1 . In that case, P [ℓ1, b] is an ℓ1b-path not
containing x, and xx′ ∪ P [x′, r] ∪ Bb is an xb-path not containing ℓ1.

Therefore, the vertices x and ℓ1 have the Vertex-Rainbow-Out-Property,
and the theorem follows from Lemma 4.4.

ii. For each arc xx′ in Bℓ1 with x /∈ V (P ), if any, x′ /∈ V (P ) \ {ℓ1}.
In that case, for every vertex x ∈ Bℓ1 \ P , no vertex y with x �T y and
y 6= ℓ1 is in P . We thus have Bℓ1 = rx1x2 . . . xpy1y2 . . . yqℓ1, with xi ∈ V (P )
for every i, 1 ≤ i ≤ p, and yj /∈ V (P ) for every j, 1 ≤ j ≤ q. Observe
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r x1 xp1 xp1+1 xp1+p2 xp1+...+pα−1+1 xp y1 yq ℓ1

Figure 5: The subpaths P1, . . . , Pα induced by vertices x1, . . . , xp.

that since P contains an internal vertex of Bℓ1 , we necessarily have p ≥ 1.
Moreover, we also have q ≥ 1, since otherwise the path P would contain
all vertices of D, which would imply diam(D) = n − 1, contradicting the
assumption diam(D) ≤ n− 2.

We first claim that for every i, 1 ≤ i ≤ p − 1, if xi precedes xi+1 in P ,
then xixi+1 ∈ A(P ). Indeed, if xixi+1 /∈ A(P ), then replacing the subpath
P [xi, xi+1] of P by the arc xixi+1 gives an ℓ1r-path shorter than P , a
contradiction. This implies that the vertices x1, . . . , xp induce α subpaths
P1, . . . , Pα of P , α ≥ 1, of respective order p1, . . . , pα ≥ 1, with P1 =
x1 . . . xp1 , . . . , Pα = xp1+···+pα−1

. . . xp. Note that for every i, j, 1 ≤ i < j ≤
α, each vertex of Pj precedes each vertex of Pi in P (see Figure 5).

Consider now the spanning subdigraph D′ of D which contains all the arcs
of P and Bℓ1 , that is, V (D′) = V (D) and A(D′) = A(P ) ∪ A(Bℓ1). Note
that since D′ is the union of an ℓ1r-path and an rℓ1-path, D

′ is a strong
digraph.
Let v be the out-neighbour of xp1 in D′ with xp1v ∈ A(P ) (observe that
xu 6= xp1+1 and it may happen that v = r, or that p1 = p). We claim
that the vertices v and y1 have the Vertex-Rainbow-In-Property in D′.
To see that, let a, b ∈ V (D′) \ {v, y1} and Q be any ab-path in D′. If
Q does not contain both v and y1 we are done. Otherwise, we consider
two cases. Suppose first that v precedes y1 in Q. Since d−D′(v) = 1, Q also
contains xp1 , and thus Q = a . . . xp1v . . . y1 . . . b. We then obtain an ab-path
not containing v by replacing in Q the subpath Q[xp1 , y1] by Bℓ1 [xp1 , y1].
Suppose now that y1 precedes v inQ. Since d−D′(y1) = 1, Q also contains xp,
and thus Q = a . . . xpy1 . . . v . . . b. In that case, we obtain an ab-path not
containing y1 by replacing in Q the subpath Q[xp, v] by P [xp, v] (recall
that either xp = xp1 or xp precedes xp1 in P ). Let now Q′ be any av-path
and Q′′ be any ay1-path. If Q

′ contains y1, then it also contains xp, so that
we get an av-path not containing y1 by replacing Q′[xp, v] by P [xp, v]. On
the other hand, if Q′′ contains v, then it also contains xp1 , so that we get
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an ay1-path not containing v by replacing Q′′[xp1 , y1] by Bℓ1 [xp1 , y1].
Therefore, the vertices v and y1 have the Vertex-Rainbow-In-Property
in D′. By Lemma 4.3, we get −→rvc(D′) ≤ n − 1, −→rc(D′) ≤ n − 1 and
−→
trc(D′) ≤ 2n− 2. The theorem then follows from Proposition 3.10.

(b) P does not contain any internal vertex of Bℓ1.

Observe first that since diam(D) ≤ n − 2 and P is a shortest ℓ1r-path, Bℓ1

contains at least one internal vertex. Similarly, since diam(D) ≤ n−2 and Bℓ1

is a shortest rℓ1-path, P contains at least one internal vertex.

Let P = x1x2 . . . xt, with x1 = ℓ1 and xt = r, and Bℓ1 = xtxt+1 . . . xnx1. We
thus have V (P )∩V (Bℓ1) = {x1, xt} and V (P )∪V (Bℓ1) = V (D), which implies
that C = P ∪ Bℓ1 = x1x2 . . . xn is a Hamiltonian cycle of D.

If C has either a pair of opposite chords, a pair of almost opposite chords, or
a triple of crossing chords, then the result directly follows from Lemma 4.7,
Lemma 4.8, or Lemma 4.9, respectively. Thus we may assume that none of
these situations occurs.

We first claim that C has two chords xixj and xkxℓ, such that

(i) xi, xℓ ∈ V (P ), and

(ii) xj and xk are internal vertices of Bℓ1 , and j ≤ k.

Observe first that since Bℓ1 is a shortest rℓ1-path, every arc xaxb ∈ A(D) \
A(Bℓ1) with xa, xb ∈ V (Bℓ1) is such that either a = 1 and t ≤ b ≤ n, or t ≤ b <
a ≤ n. Similarly, since P is a shortest ℓ1r-path, every arc xaxb ∈ A(D) \A(P )
with xa, xb ∈ V (P ) is such that 1 ≤ b < a ≤ t. Furthermore, since both P
and Bℓ1 have internal vertices, xtx1 /∈ A(D) and x1xt /∈ A(D).

Consider the vertices x1 and xn. Since distD(x1, xn) ≤ diam(D) ≤ n− 2, there
must be a chord xixj with xi ∈ {x1, . . . , xt−1} and xj ∈ {xt+1, . . . xn}. Let xixj

be such a chord which minimizes distD(xt, xj).

Consider now the vertices xt and xt+1. Again, since distD(xt+1, xt) ≤
diam(D) ≤ n − 2, there must be a chord xkxℓ with xk ∈ {xt+1, . . . , xn} and
xℓ ∈ {x2, . . . , xt}. Let xkxℓ be such a chord which minimizes distD(xk, x1).

Clearly, the chords xixj and xkxℓ satisfy condition (i) and xj, xk are internal
vertices of Bℓ1 . We now prove that j ≤ k. Suppose to the contrary that j > k
and let xa be any vertex with k ≤ a < j. Since xj and xk have been chosen in
such a way that distD(xt, xj) and distD(xk, x1) are minimal, and since both P
and Bℓ1 are shortest paths, it follows that xa has the Head-Tail-Property with
respect to C. This implies that the path C[xa+1, xa] is a shortest xa+1xa-path,
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so that distD(xa+1, xa) = n−1, contradicting the assumption diam(D) ≤ n−2.
Thus j ≤ k and condition (ii) is satisfied.

Since we assumed that C has neither a pair of opposite chords nor a pair of
almost opposite chords, we necessarily have ℓ ≥ i + 2. Therefore, (xixj, xkxℓ)
is a pair of crossing chords of C.

Consider now any vertex xa ∈ C[xi+2, xℓ]. Since distD(xa, xa−1) ≤ n − 2,
xa cannot have the Head-Tail-Property with respect to C, that is, there is a
chord xpxq of C such that xp precedes xq on the path C[xa, xa−1]. Let xpxq

be a chord of C which contradicts the Head-Tail-Property of every vertex in
{xℓ, . . . , xℓ−α} ⊆ V (C[xi+2, xℓ]) with respect to C, and suppose that xpxq is
chosen in such a way that α is maximal.

Since Bℓ1 is a shortest rℓ1-path, at most one of the vertices xp, xq belongs
to Bℓ1 . Moreover, the minimality of distD(xt, xj) implies xq ∈ C[xj, xℓ−α].

If xq ∈ C[xj , xk+1], then (xpxq, xkxℓ) is a pair of opposite or almost oppo-
site chords of C, contradicting our assumption. If xq ∈ C[xk+2, xi+1], then
(xkxℓ, xixj, xpxq) is a triple of crossing chords if xp ∈ C[xℓ, xj−1], or (xixj, xpxq)
is a pair of opposite or almost opposite chords if xp ∈ C[xj, xq−2], again con-
tradicting our assumption. Thus we may assume xq ∈ C[xi+2, xℓ−1].

The minimality of distD(xk, x1) then implies xp ∈ C[xℓ, xk].

To finish the proof, we will show that the vertices xp+1 and xi+1 have the
Vertex-Rainbow-In-Property. We first prove the following claim.

Claim 1 There exists an xpxi+1-path in D that does not contain xp+1.

Proof. Consider the vertex xq. Since distD(xq, xq−1) ≤ n− 2, xq cannot have
the Head-Tail-Property with respect to C. Let xp1xq1 be a chord that con-
tradicts the Head-Tail-Property of every vertex in {xq, . . . , xq−β} ⊆ C[xi+2, xq]
with respect to C, and suppose that xp1xq1 has been chosen in such a way that
β is maximal.

Since the chord xpxq has been chosen in such a way that α is maximal, we
necessarily have xp1 ∈ C[xq, xℓ−1]. If xq1 ∈ C[xp1+2, xp+1], then (xpxq, xp1xq1)
is a pair of opposite or almost opposite chords of C, contradicting our as-
sumption. Thus, xq1 ∈ C[xp+2, xq−β−1]. If xq1 ∈ C[xp+2, xi], then the path
xpxq ∪ C[xq, xp1 ] ∪ xp1xq1 ∪ C[xq1 , xi+1] is an xpxi+1-path not containing xp+1.
If q1 = i + 1, then the path xpxq ∪ C[xq, xp1 ] ∪ xp1xq1 does not contain xp+1.
Therefore, we may assume xq1 ∈ C[xi+2, xq−1].
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Consider now the vertex xq1 . Again, since distD(xq1 , xq1−1) ≤ n − 2, xq1 can-
not have the Head-Tail-Property with respect to C. Let xp2xq2 be a chord
that contradicts the Head-Tail-Property of every vertex in {xq1 , . . . , xq1−γ} ⊆
C[xi+2, xq1 ] with respect to C, and suppose that xp2xq2 has been chosen in such
a way that γ is maximal.

Since the chord xp1xq1 has been chosen in such a way that β is maximal, we nec-
essarily have xp2 ∈ C[xq1 , xq−1]. If xq2 ∈ C[xp2+2, xxp1

+1], then (xp1xq1 , xp2xq2)
is a pair of opposite or almost opposite chords, contradicting our assump-
tion. If xq2 ∈ C[xp1+2, xxp+1], then (xpxq, xp1xq1 , xp2xq2) is a triple of crossing
chords, again contradicting our assumption. Thus, xq2 ∈ C[xp+2, xq1−γ−1]. If
xq2 ∈ C[xp+2, xi], then the path

xpxq ∪ C[xq, xp1 ] ∪ xp1xq1 ∪ C[xq1 , xp2 ] ∪ xp2xq2 ∪ C[xq2 , xi+1]

is an xpxi+1-path not containing xp+1. If q1 = i+ 1, then the path

xpxq ∪ C[xq, xp1 ] ∪ xp1xq1 ∪ C[xq1 , xp2 ] ∪ xp2xq2

does not contain xp+1.

Thus xq2 ∈ C[xi+2, xq1−1]. Since again xq2 cannot have the Head-Tail-Property
with respect to C, we can iterate this process. Since there is a finite number
of vertices in C[xi+2, xℓ], the process eventually ends up with an xpxi+1-path
of the form either

xpxq ∪ C[xq, xp1 ] ∪
⋃

1≤α≤z−1

(xpαxqα ∪ C[xqα , xpα+1
]) ∪ xqzxqz ,

or

xpxq ∪ C[xq, xp1 ] ∪
⋃

1≤α≤z−1

(xpαxqα ∪ C[xqα , xpα+1
]) ∪ xqzxqz ∪ C[xqz , xi+1],

for some z ≥ 2. �

Finally, observe that the path xixj ∪ C[xj, xk] ∪ xkxℓ ∪ C[xℓ, xp+1] does not
contain xi+1. Therefore, by Lemma 4.5, the vertices xp+1 and xi+1 have the
Vertex-Rainbow-In-Property. The result then follows from Lemma 4.3.

This completes the proof. �

Lemmas 4.6 and 4.10 directly imply the following.
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Corollary 4.11 Let D be a strong digraph of order n. If −→rvc(D) = n, −→rc(D) = n, or
−→
trc(D) = 2n, then D is Hamiltonian and diam(D) = n− 1.

Recall that a digraph D is minimally strongly connected if D is strong and, for every
arc uv in D, the digraph D − uv is not strong. In [11], it was proved that a minimally
strongly connected oriented graph D of order n has rainbow connection number n if and
only if D is a cycle (their proof readily extends to the case of digraphs). Observe that
a Hamiltonian digraph D is minimally strongly connected if and only if D is a cycle.
Therefore, a similar result holds for the rainbow vertex-connection number and the total
rainbow connection number.

Theorem 4.12 Let D be a minimally strongly connected digraph of order n. If D is not
a cycle, then −→rvc(D) ≤ n− 1 and

−→
trc(D) ≤ 2n− 1.

5 Digraphs with maximum connection numbers

In this section, we characterize digraphs of order n with rainbow connection number n,
rainbow vertex-connection number n, and total rainbow connection number 2n, respec-
tively.

Theorem 5.1 If D is a strong digraph of order n, then −→rc(D) = n if and only if D is
Hamiltonian and has at least three vertices with eccentricity n− 1.

Proof. (⇐) Let C = x0 . . . xn−1x0 be a Hamiltonian cycle of D and xi, xj , xk be three
vertices with eccentricity n− 1. Suppose that there is an arc-colouring ϕ of D using less
than n colours such that (D,ϕ) is rainbow connected.

Since distD(xi, xi−1) = n − 1, C[xi, xi−1] is the only xixi−1-path in D. Thus ϕ must
assign distinct colours to the arcs of C[xi, xi−1]. Since ϕ uses less than n colours, the arc
xi−1xi must get a colour which also appears on the path C[xi, xi−1]. Furthermore, since
distD(xj, xj−1) = n − 1, C[xj, xj−1] is the only xjxj−1-path in D. Thus ϕ must assign
distinct colours to the arcs of C[xj, xj−1]. Since ϕ is rainbow on both C[xi, xi−1] and
C[xj, xj−1], we get ϕ(xi−1xi) = ϕ(xj−1xj). Since distD(xk, xk−1) = n − 1, C[xk, xk−1] is
the only xkxk−1-path in D. However, C[xk, xk−1] contains both arcs xi−1xi and xj−1xj,
which implies, since ϕ(xi−1xi) = ϕ(xj−1xj), that (D,ϕ) is not rainbow connected, contrary
to our assumption.

(⇒) Suppose now that −→rc(D) = n. Corollary 4.11 implies that D has a Hamiltonian cycle
C = x0 . . . xn−1x0 and that eccD(xi) = n− 1 for some vertex xi, 0 ≤ i ≤ n− 1. Consider
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the digraph D′ = D − xi−1xi. Suppose first that D′ is strong. By Corollary 2.3, D′ is
not Hamiltonian and thus, using Corollary 4.11 and Proposition 3.10, we get −→rc(D) ≤
−→rc(D′) ≤ n− 1, a contradiction.

Hence the digraph D′ is not strong. Suppose first that D′ has two strong components
D1 and D2. By Lemma 2.1, we may assume that D1 is induced by vertices xi, . . . , xj−1

and that D2 is induced by vertices xj, . . . , xi−1 (it may happen that i = j−1 or j = i−1).
We claim that the vertices xi and xj have the Vertex-Rainbow-In-Property in D. Since
D1 is strong, xj−1, xi ∈ V (D1), and xj /∈ V (D1), there is an xj−1xi-path not containing xj.
Similarly, since D2 is strong, xi−1, xj ∈ V (D2), and xi /∈ V (D2), there is an xi−1xj-path
not containing xi. Thus, by Lemma 4.5, the vertices xi and xj have the Vertex-Rainbow-
In-Property in D, which implies −→rc(D) ≤ n−1, contradicting the assumption −→rc(D) = n.

Therefore, D′ has at least three strong components, say D1, D2, . . . , Dk, k ≥ 3. Let
xi1 = xi. We then have

D1 = D′[V (C[xi1xi2−1])], D2 = D′[V (C[xi2 , xi3−1])], . . . , Dk = D′[V (C[xik , xi1−1])],

for some i1, i2, . . . , ik, i = i1 < i2 < · · · < ik < i1 (in cyclic order). Since C[xi, xi−1] is a
shortest xixi−1-path in D, it follows that distD(xiα , xiα+1−1) = |C[xiα , xiα+1−1]| for every
α, 1 ≤ α ≤ k − 1, and that distD(xik , xi1−1) = |C[xik , xi1−1]|.

Therefore, distD(xiα , xiα−1) = n− 1 for every α, 1 ≤ α ≤ k. Since k ≥ 3, D contains
at least three vertices with eccentricity n− 1. �

Theorem 5.2 If D is a strong digraph of order n ≥ 6, then −→rvc(D) = n if and only if
D has a Hamiltonian cycle C and three vertices with eccentricity n− 1 such that no two
of them are consecutive on C.

Proof. (⇐) Let C = x0 . . . xn−1x0 be a Hamiltonian cycle of D and xi, xj , xk be vertices
with eccentricity n − 1 such that |C[xi, xj ]| ≥ 2, |C[xj, xk]| ≥ 2 and |C[xk, xi]| ≥ 2.
Suppose that there exists a vertex-colouring c of D using less than n colours such that
(D, c) is rainbow vertex-connected.

Since distD(xi, xi−1) = n − 1, C[xi, xi−1] is the only xixi−1-path in D. Thus, c must
assign distinct colours to all internal vertices of C[xi, xi−1]. Since c uses less than n
colours, either c(xi) = c(xi−1) or one of the colours c(xi), c(xi−1) appears on C[xi, xi−1].
Similarly, since distD(xj, xj−1) = n − 1, C[xj, xj−1] is the only xjxj−1-path in D, and c
must assign distinct colours to all internal vertices of C[xj, xj−1]. Since xi and xi−1 are
both internal vertices of C[xj, xj−1], we get c(xi) 6= c(xi−1). Since c uses less than n
colours, we necessarily have either c(xi) ∈ {c(xj), c(xj−1)} or c(xi−1) ∈ {c(xj), c(xj−1)}.
Using similar arguments, since C[xk, xk−1] is the only xkxk−1-path inD, we get that cmust
assign distinct colours to all internal vertices of C[xk, xk−1]. However, xi−1, xi, xj−1, xj are
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internal vertices of C[xk, xk−1], which contradicts the condition c(xi) ∈ {c(xj), c(xj−1)} or
c(xi−1) ∈ {c(xj), c(xj−1)}.

(⇒) Suppose now that −→rvc(D) = n. Corollary 4.11 implies that D has a Hamiltonian
cycle C = x0 . . . xn−1x0 and that eccD(xi) = n − 1 for some vertex xi, 0 ≤ i ≤ n − 1.
Consider the digraph D′ = D − xi−1xi. As in the proof of Theorem 5.1, D′ cannot be
strong, since otherwise we would get −→rvc(D) ≤ −→rvc(D′) ≤ n− 1.

Similarly as in the proof of Theorem 5.1, if D′ has two strong components D1 =
D′[V (C[xi, xj−1])] and D2 = D′[V (C[xj, xi−1])], then we can prove that the vertices
xi and xj have the Vertex-Rainbow-In-Property in D, so that, by Lemma 4.3, we get
−→rvc(D) ≤ n− 1, a contradiction.

Therefore, D′ has at least three strong components, say D1, D2, . . . , Dk, k ≥ 3. Let
xi1 = xi. We then have

D1 = D′[V (C[xi1xi2−1])], D2 = D′[V (C[xi2 , xi3−1])], . . . , Dk = D′[V (C[xik , xi1−1])],

for some i1, i2, . . . , ik, i = i1 < i2 < · · · < ik < i1 (in cyclic order). Since C[xi, xi−1] is a
shortest xixi−1-path in D, it follows that distD(xiα , xiα+1−1) = |C[xiα , xiα+1−1]| for every α,
1 ≤ α ≤ k − 1, and that distD(xik , xi1−1) = |C[xik , xi1−1]|. Therefore, distD(xiα , xiα−1) =
n− 1 for every α, 1 ≤ α ≤ k, which implies eccD(xα) = n− 1 for every such vertex xα.

If k ≥ 6, then the set {xi1 , . . . xi6} contains three non-consecutive vertices. If k = 5,
then at least one strong component contains at least two vertices, since n ≥ 6. Thus,
again, the set {xi1 , . . . xi5} contains three non-consecutive vertices.

Suppose now that k = 4. If the set {xi1 , xi2 , xi3 , xi4} does not contain three non-
consecutive vertices, then, without loss of generality, we may assume that either

(i) |V (D1)| > 1, |V (D2)| = 1, |V (D3)| = 1, |V (D4)| = 1, or

(ii) |V (D1)| > 1, |V (D2)| = 1, |V (D3)| > 1, |V (D4)| = 1.

Consider the vertex-colouring c : V (D) → {1, . . . n−1} given by c(xi2) = c(xi4) and all
other vertices are coloured differently. We claim that (D, c) is rainbow vertex-connected.
To see that, let a, b be any two vertices of D.

In Case (i), if a, b ∈ V (D1), then each path containing only vertices of V (D1) is
rainbow, and thus, since D1 is strong, there exists a rainbow ab-path. If a, b /∈ V (D1),
then either a ∈ {xi2 , xi4} or b ∈ {xi2 , xi4}, so that no elementary ab-path contains both xi2

and xi4 as internal vertices. If a ∈ V (D1) and b /∈ V (D1), then xi4 cannot be an internal
vertex of an elementary ab-path. If b ∈ V (D1) and a /∈ V (D1), then xi2 cannot be an
internal vertex of an elementary ab-path. Therefore, there always exists an ab-path not
containing both vertices xi2 and xi4 as internal vertices, which is thus a rainbow ab-path.
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In Case (ii), if a, b ∈ V (D1) or a, b ∈ V (D3), then there exists a rainbow ab-path going
through vertices of D1 or D3, respectively. If either a ∈ {xi2 , xi4} or b ∈ {xi2 , xi4}, then
no elementary ab-path contains both xi2 and xi4 as internal vertices, and thus every such
path is rainbow. If a ∈ D1 and b ∈ D2, or b ∈ D1 and a ∈ D2, then the path C[a, b] is
rainbow.

Suppose finally that k = 3. If the set {xi1 , xi2 , xi3} contains two vertices that are
consecutive on C, then, without loss of generality, we may assume that either

(i) |V (D1)| > 1, |V (D2)| = 1, |V (D3)| = 1 or

(ii) |V (D1)| > 1, |V (D2)| = 1, |V (D3)| > 1.

In Case (i), we claim that the vertex-colouring c : V (D) → {1, . . . n − 1} given by
c(xi2) = c(xi3) and all other vertices are coloured differently is such that (D, c) is rainbow
vertex-connected. Since D1 is strong and contains neither xi2 nor xi3 , each elementary
ab-path is rainbow whenever a, b ∈ V (D1). If |{a, b} ∩ {xi2 , xi3}| ≥ 1, then no elementary
ab-path contains both xi2 and xi3 as internal vertices, and thus every such path is rainbow.

In Case (ii), we claim that the vertex-colouring c : V (D) → {1, . . . n − 1} given by
c(xi1) = c(xi2) and all other vertices are coloured differently is such that (D, c) is rainbow
vertex-connected. If a, b ∈ V (D1) or a, b ∈ V (D3), then there exists a rainbow ab-path
going through vertices of D1 or D3, respectively. If a ∈ D1 and b ∈ D3, or b ∈ D1 and
a ∈ D3, then the path C[a, b] is rainbow. Otherwise, xi2 is either the first or the last
vertex of the ab-path, which implies that every elementary ab-path is rainbow. �

Theorem 5.3 If D is a strong digraph of order n ≥ 6, then
−→
trc(D) = 2n if and only if

−→rvc(D) = n.

Proof. (⇐) Let C = x0 . . . xn−1x0 be a Hamiltonian cycle of D and xi, xj , xk be vertices
with eccentricity n − 1 such that |C[xi, xj]| ≥ 2, |C[xj , xk]| ≥ 2, |C[xk, xi]| ≥ 2. Suppose
that there exists a total-colouring f using less than 2n colours such that (D, f) is total
rainbow connected.

Since distD(xi, xi−1) = n − 1, C[xi, xi−1] is the only xixi−1-path in D. Thus, f must
assign distinct colours to all internal vertices and arcs of C[xi, xi−1]. Since f uses less than
2n colours, either one of the equalities f(xi) = f(xi−1), f(xi) = f(xi−1xi) or f(xi−1) =
f(xi−1xi) holds, or one of the colours f(xi), f(xi−1) or f(xi−1xi) appears on C[xi, xi−1].
Since distD(xj, xj−1) = n−1, C[xj, xj−1] is the only xjxj−1-path inD. Thus, f must assign
distinct colours to all internal vertices and arcs of C[xj, xj−1]. Since both xi and xi−1 are
internal vertices of C[xj , xj−1], we get f(xi) 6= f(xi−1), f(xi) 6= f(xi−1xi), and f(xi−1) 6=
f(xi−1xi). Therefore, we necessarily have either f(xi) ∈ {f(xj), f(xj−1), f(xj−1xj)}, or
f(xi−1) ∈ {f(xj), f(xj−1), f(xj−1xj)}, or f(xi−1xi) ∈ {f(xj), f(xj−1), f(xj−1xj)}.
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Using similar arguments, since C[xk, xk−1] is the only xkxk−1-path in D, we get that
f must assign distinct colours to all internal vertices and arcs of C[xk, xk−1]. However,
xi−1, xi, xj−1, xj are internal vertices of C[xk, xk−1], so that xi−1, xi, xj−1, xj , xi−1xi and
xj−1xj must be assigned distinct colours, contradicting the condition obtained above.

(⇒) Suppose now that
−→
trc(D) = 2n. If −→rvc(D) ≤ n − 1, then

−→
trc(D) ≤ 2n − 1 by

Lemma 3.7, and thus −→rvc(D) = n. �
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