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Abstract

An arc-coloured path in a digraph is rainbow if its arcs have distinct colours. A
vertex-coloured path is vertex rainbow if its internal vertices have distinct colours. A
totally-coloured path is total rainbow if its arcs and internal vertices have distinct
colours. An arc-coloured (resp. vertex-coloured, totally-coloured) digraph D is
rainbow connected (resp. rainbow vertex-connected, total rainbow connected) if
any two vertices of D are connected by a rainbow (resp. vertex rainbow, total
rainbow) path. The rainbow connection number (resp. rainbow vertex-connection
number, total rainbow connection number) of a digraph D is the smallest number
of colours needed to make D rainbow connected (resp. rainbow vertex-connected,
total rainbow connected).

In this paper, we study the rainbow connection, rainbow vertex-connection and
total rainbow connection numbers of digraphs. We give some properties of these
parameters and establish relations between them. The rainbow connection number
and the rainbow vertex-connection number of a digraph D are both upper bounded
by the order of D, while its total rainbow connection number is upper bounded by
twice of its order. In particular, we prove that a digraph of order n has rainbow
connection number n if and only if it is Hamiltonian and has three vertices with
eccentricity n — 1, that it has rainbow vertex-connection number n if and only if it
has a Hamiltonian cycle C' and three vertices with eccentricity n—1 such that no two
of them are consecutive on C, and that it has total rainbow connection number 2n
if and only if it has rainbow vertex-connection number n.



1 Introduction

We consider finite and simple graphs only, and refer to [5] for terminology and notation
not defined here.

In an edge-coloured graph GG, a path is said to be rainbow if it does not use two edges
with the same colour. Then the graph G is said to be rainbow connected if any two vertices
are connected by a rainbow path. The rainbow connection number of G, denoted by rc(G),
is the smallest possible number of colours in a rainbow connected colouring of G.

The concept of rainbow connection in graphs was introduced by Chartrand, Johns,
McKeon and Zhang in [§]. Since then, the rainbow connection number has attracted much
attention. The rainbow connection number of some special graph classes was determined
in [6, 12, 13] and the rainbow connection number of graphs with fixed minimum degree was
considered in [0, 14} 2T 22]. Also, different other parameters similar to rainbow connection
were introduced. Krivelevich and Yuster [I4] introduced the concept of rainbow vertex-
connection. Liu, Mestre and Sousa [20] proposed the concept of total rainbow connection.
A vertex-coloured path is vertex rainbow if its internal vertices have distinct colours. A
vertex-coloured graph G is rainbow vertex-connected if any two vertices are connected
by a vertex rainbow path. In a totally-coloured graph G a path is total rainbow if its
edges and internal vertices have distinct colours. A totally-coloured graph G is total
rainbow connected if any two vertices are connected by a total rainbow path. The rainbow
vertex-connection number (resp. total rainbow connection number) of a connected graph
G, denoted by rve(G) (resp. tre(G)), is the smallest number of colors needed to make G
rainbow vertex-connected (resp. total rainbow connected).

The computational complexity of rainbow connectivity, rainbow vertex-connectivity
and total rainbow connectivity was studied in [4} (7,9}, 10, 15]. It was shown that computing
the rainbow connection number, the rainbow vertex-connection number and the total
rainbow connection number of an arbitrary graph is NP-hard. Moreover, it was proved
that it is already NP-complete to decide whether rc(G) = 2, or rve(G) = 2, or tre(G) = 3.
See [18] or [19] for a survey about these different parameters.

The notions of rainbow connection and strong rainbow connection readily extend to
digraphs, using arc-colouring instead of edge-colourings and directed paths (simply called
paths in this paper) instead of paths. Note that in order to have bounded rainbow
connection number, a digraph must be strongly connected.

Let D be a digraph. A k-vertex-colouring, a t-arc-colouring and a p-total-colouring
of D is a mapping ¢ : V(D) — {1,...,k}, o : A(D) = {1,...,t}, f : V(D)UA(D) —
{1,...,p}, respectively. A wvertex-coloured digraph, an arc-coloured digraph, a totally-
coloured digraph, is then a pair (D, c), (D, ), (D, f), respectively, where D is a digraph
and c is a vertex-colouring, ¢ is an arc-colouring, and f is a total-colouring of D, respec-



tively.

A path P in (D, ) is rainbow if no two arcs of P are coloured with the same colour.
If any two vertices in an arc-coloured digraph (D, ¢) are connected by a rainbow path,
then (D, ¢) is said to be rainbow connected (or, equivalently, ¢ is a rainbow arc-colouring
of G).

A path P in a vertex-coloured digraph (D, c) is vertexr rainbow if its internal vertices
have distinct colours. A vertex-coloured digraph (D, ¢) is rainbow vertex-connected (or,
equivalently, ¢ is a rainbow vertex-colouring of D) if any two vertices in (D, ¢) are connected
by a rainbow path.

A path P in a totally-coloured digraph (D, f) is total rainbow if its edges and internal
vertices have distinct colours. A totally-coloured digraph (D, f) is total rainbow connected
(or, equivalently, f is a rainbow total-colouring of D) if any two vertices in (D, f) are
connected by a rainbow path.

The rainbow connection number (rainbow vertez-connection number, total rainbow con-
nection number) of a strong digraph D, is the minimum number of colours in a rainbow
colouring (a rainbow vertex-colouring, a rainbow total-colouring). The rainbow connec-
tion number, the rainbow vertex-connection number, the total rainbow connection number
are denoted by T¢(D), iv¢(D) and %(D), respectively.

The study of rainbow connection in oriented graphs (that is, antisymmetric digraphs)
was initiated by Dorbec, Schiermeyer and the authors in [I1] and then studied by Alva-
Samos and Montellano-Ballesteros in [Il, 2, 3]. Lei, Li, Liu and Shi [16] introduced the
rainbow vertex-connection of digraphs. The total rainbow connection was studied in [17].
The strong version of rainbow connection was considered in [I}, 6] 17, 23].

In [T1] it has been observed that the rainbow connection number of a digraph is upper
bounded by its order and a characterization of all oriented graphs with rainbow connection
number equal to their order has been given. However, this characterization does not lead
to a polynomial time algorithm for the corresponding decision problem. In this paper
we propose a new characterization of digraphs with rainbow connection number equal to
their order. The obtained characterization shows that the problem of deciding whether a
digraph of order n has rainbow connection number n can be solved in polynomial time.
In contrast, Ananth, Nasre and Sarpatwar in [4] proved that the problem of deciding
whether a digraph has rainbow connection number 2 is NP-complete.

Whereas it is easily observed that a graph G of order n > 2 has rainbow vertex-
connection number at most n — 2, the rainbow vertex-connection number of a digraph can
be equal to its order. We prove that a digraph D of order n has rainbow vertex-connection
number n if and only if it has a Hamiltonian cycle C' and three vertices with eccentricity
n — 1 such that no two of them are consecutive vertices of C'. For a digraph D of order
n, the total rainbow connection number is at most 2n (see Section B]). We prove that a
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digraph D of order n has total rainbow connection number 2n if and only if it has rainbow
vertex-connection number n.

This paper is organized as follows. After some preliminaries given in the next section,
we give in Section [3] some basic results about the rainbow vertex-connection number and
the total rainbow connection number of digraphs and some relations between these two
parameters. In Section (] we give some sufficient conditions for a digraph of order n to
have rainbow connection number less than n, rainbow vertex-connection number less than
n and total rainbow connection number less than 2n. Finally, in Section [, we propose
a characterization of all digraphs of order n with rainbow connection number n, with
rainbow vertex-connection number n, and with total rainbow connection 2n, respectively.

2 Preliminaries

For a given digraph D, we denote by V(D) and A(D) its set of vertices and set of arcs,
respectively. Given an arc xy in D, we say that y is an out-neighbour of x, while x is an
in-neighbour of y. Moreover, we call x the tail of xy and y the head of xy. We denote
by N}, (x) the set of out-neighbours of x in D, and by N, () the set of in-neighbours of
x in D. The out-degree degh(x) of z in D is the cardinality of its out-neighbourhood,
that is degf(z) = |N} ()], and the in-degree degn(x) of x in D is the cardinality of its
in-neighbourhood, that is deg,(z) = |N, (2)|.

Given two digraphs D; and D,, not necessarily vertex disjoint, we denote by Dy U Dy
the digraph with vertex set V(D; U Dy) = V(Dy) U V(Ds) and arc set A(D; U Dy) =
A(Dq) U A(Dy).

A path of length k£ > 1 in a digraph D is a sequence xj...xy of vertices such that
;i € A(D) for every i, 0 < i < k — 1. Such a path P, going from z( to zy, is referred
to as an zoxg-path. For every 4,7, 0 < ¢ < j <k, we say that x; precedes x; in P. Any
vertex in V/(P)\ {zo, z;} is an internal vertez of P. For every i,j,0 <1i < j <k, Plx;, x}]
denotes the subpath of P induced by the vertices z;,...,z;. A path P is elementary if
no vertex appears twice in P. An elementary path induced by a path @) is the unique
elementary path P obtained from ) by repeatedly deleting cycles, that is replacing a
sequence of the form u; ... ugxvy ... vexwy ... Wy by Uy ... ugxwy ... w,, as many times as
necessary.

A digraph D is strongly connected (strong for short) if there exists an zy-path in D
for every two vertices x and y. A strong component of a digraph D is a maximal strong
induced subdigraph of D.

The distance from a vertex z to a vertex y in a digraph D, denoted by distp(x,y), is
the length of a shortest zy-path in D (if there is no such path, we let distp(x,y) = o0).

4



The diameter of D, denoted by diam(D), is the maximum distance between any two
vertices in D. Two vertices at distance diam(D) are antipodal vertices. The eccentricity
of a vertex z in D, denoted by eccp(z), is the maximum distance from z to any other
vertex of D.

A cycle of length k£ > 1 in a digraph D is a sequence zy . ..xpxo of vertices such that
w1 € A(D) for every i, 0 < i < k (subscripts are taken modulo k). Since cycles are
denoted similarly all along the paper, it is taken for granted that subscripts are always
taken modulo the length of the cycle. By C[z;, z;] we denote the z;x;-path contained in
C (that is, Clz;, xj] = x;%i41 ... x;) and |Cla;, z;]| stands for the length of this path.

Recall that a Hamiltonian path in a digraph D is a path P in D such that V(P) =
V(D), and that a Hamiltonian cycle in D is a cycle C' in D such that V(C) = V(D). A
Hamiltonian digraph is then a digraph containing a Hamiltonian cycle.

Lemma 2.1 If D is a digraph and P is a Hamiltonian path in D, then the vertices of
any strong component of D induce a subpath of P.

Proof. Suppose to the contrary that D; is a strong component of D such that P[V(D)]
is not connected, which implies, in particular, 2 < |V(Dy)| < |[V(D)|. Let P =vy...v,, p
be the smallest index such that v,_; € V(D;) and v, ¢ V(D;), and ¢ be the smallest index
such that ¢ > p, v,-1 ¢ V(Dy) and v, € V(Dy) (since P[V(Dy)] is not connected, such
indices p and ¢ necessarily exist). Thus the internal vertices of the path P’ = v,_1v,...v,
are not in D;. Consider the digraph D; U P’. Since D is a strong digraph, it follows that
D; U P’ is also strong, contradicting the assumption that D, is a strong component. [

Lemma 2.2 Let D be a Hamiltonian digraph of order n with diam(D) = n — 1. For
every two vertices u and v of D with distp(u,v) =n —1, vu € A(D) and vu belongs to
each Hamiltonian cycle of D.

Proof. Suppose to the contrary that either vu ¢ A(D) or there is a Hamiltonian cycle C
not containing vu. In both cases, this implies that the vertices v and u are not consecutive
along the cycle C, and thus distp(u,v) < |Clu,v]| < n — 1, a contradiction. O

Corollary 2.3 If D is a Hamiltonian digraph, uw and v two wvertices of D with
distp(u,v) =n — 1, then vu € A(D) and the digraph D — vu is not Hamiltonian.

In [I1], a property called Head-Tail-Property was introduced and used for characteriz-
ing oriented digraphs with rainbow connection number equal to their order. We will also
use this definition and the following proposition in this paper.



Figure 1: The vertex x; has the Head-Tail-Property with respect to the cycle C.

Definition 2.4 (Head-Tail-Property) Let C' = xq...x, 179 be a cycle in a digraph
D. A vertex z; € V(C) has the Head-Tail-Property with respect to C if, when going
along the cycle C' from z; to x;_1, we meet the head of each chord before its tail (see
Figure [Tl for an example). In particular, if D is itself a cycle, then every vertex of D has
the Head-Tail-Property with respect to D.

Proposition 2.5 (Dorbec, Schiermeyer, Sidorowicz and Sopena [11]) Let D be a
digraph and C' = xq...x, 129 be a Hamiltonian cycle of D. If a vertex x;, 0 <i <mn—1,
has the Head-Tail-Property with respect to C, then distp(z;, z;—1) =n — 1.

3 Some basic results

Recall that the converse D¢ of a digraph D is obtained by reversing all the arcs of D,
that is, V/(D¢) = V(D) and A(D°) = {vu | uv € A(D)}. Clearly, every rainbow vertex-
colouring, rainbow arc-colouring or rainbow total-colouring of D is a rainbow vertex-
colouring, rainbow arc-colouring or rainbow total-colouring of D¢, respectively.

Observation 3.1 For every strong digraph D, T¢(D°) = T¢(D), iv¢(D°) = tv¢(D) and
— —
tre(D¢) = tre(D).

Note that in a rainbow connected digraph D, there must be a path with at least
diam(D) colours between antipodal vertices. In [I1], it was proved that the rainbow
connection number of every strong digraph is upper bounded by its order. Similarly, in
a rainbow vertex-connected digraph D, there must be a path with at least diam(D) — 1
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colours and the vertex-colouring that assigns different colours to each vertex of D is clearly
a rainbow vertex-colouring. We thus have the following proposition.

Proposition 3.2 For every strong digraph D,

diam(D) < 7¢(D) <n and diam(D) —1 < iv¢(D) < n.

Observe that these upper bounds are tight since T¢(C,) = n and Iv&(C,) = n for the
cycle C, of order n. In [I7], it was proved that m(D) = 0 if and only if D is a symmetric
complete digraph, and that tvé¢(D) = 1 if and only if diam(D) = 2.

The next proposition deals with strong digraphs whose underlying undirected graph
is not 2-connected.

Proposition 3.3 If S is the set of cut vertices of a rainbow vertez-coloured digraph D,
then all vertices of S are assigned distinct colours.

Proof. Let u, v’ be any two distinct vertices of S, Dy,..., D, and Dj,..., D, be the
connected components (not necessarily strong) of D —u and D — «/, respectively. Let D;
be a component that does not contain u’, and D; be a component that does not contain .
Thus each path that joins a vertex of D; to a vertex of D’ must contain both vertices
u and u’. Therefore, in any rainbow vertex-colouring of D, vertices u and u' must get
different colours. 0

Using Proposition B.3] we can easily construct a digraph with rainbow vertex-
connection number 2. Indeed, let K', K? and K? be three vertex-disjoint symmetric
complete digraphs of order at least 2. Let v; € V(K?), vy, vh € V(K?) and v3 € V(K?).
Let D be the strong digraph obtained by identifying v; with vy, and vs with v}. In any
rainbow vertex-colouring ¢ of D, vertices vy and v}, must be coloured differently, while all
other vertices can get either the colour ¢(vy) or ¢(v}). Thus Tvé(D) = 2.

By Proposition [B.3] each digraph with rainbow vertex-connection number 2 has at
most two cut vertices. However, 2-connected digraphs might also have rainbow vertex-
connection number 2.

Proposition 3.4 If D is a strong bipartite digraph with diam(D) = 3, then tv&(D) = 2.

Proof. Let (V1,V3) be a vertex partition of V(D). Let us colour the vertices of V; with
colour 1 and the vertices of V5 with colour 2. Each path of length 1 or 2 is clearly rainbow.
Each path of length 3 has two internal vertices whose colours are obviously 1 and 2. Since
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diam(D) = 3, the proposed colouring is a rainbow vertex-colouring of D and the result
follows. OJ

However, deciding whether a strong digraph has rainbow vertex-connection number 2
seems not so easy and we thus propose the following problem.

Problem 1 Characterize strong digraphs with rainbow vertex-connection number 2.

The rainbow connection number and the rainbow vertex-connection number of a di-
graph D are lower bounded by diam(D) and diam(D) — 1, respectively. However there
is no upper bound on these two parameters which is a function of diam(D). To see
that, let C1,...,C5 be s vertex-disjoint directed 3-cycles with V(C%) = {x;,y;, 2;} and
A(CY) = {zyi, yizi, ziwi } for every i, 1 < i < s. Let D be the digraph obtained by iden-
tification all vertices z;, 1 < i < s. We clearly have diam(D) = 4. On the other hand,
all arcs y;2;, 1 <1 < s must get distinct colours in any rainbow colouring of D since any
two such arcs, say y,z, and y2p, belong to any path from y, to z,. This gives R(D) > s.
Now, let K be the symmetric complete digraph of order n and let V(K;) = {vy,...,vs}.
Let D’ be the digraph obtained from K, by adding s new vertices wy,...ws together
with arcs v;w; and w;v; for every i, 1 < i < s. We clearly have diam(D) = 3 and, by
Proposition B3, tv¢(D) > s since {vy,...,v,} is a set of s cut vertices in I

The next theorem shows that the rainbow vertex-connection number of 2-connected
digraphs cannot be bounded by a the function of the diameter.

Theorem 3.5 For every integers d and k, 4 < d < k, there exists a 2-connected strong
oriented graph Dgy, with diam(Dyy) = d and ﬁ/%(Dd,k) > k.

Proof. We first consider the case 5 < d < k and let t = d — 5. Let Dy be the oriented
graph with vertex set

V(Dax) =A{x1,- . 26}t U {y1,..., 6} U {z%,...,z%“} U {z2,..., 2k},
and set of arcs

A<Dd7k) = {xlz%,z%zf, cee 72%+ty1} U {'xiziv'ziyi | 2 S i S k}

Hence, each vertex z;, 2 < ¢ < k, is joined to y; by a 2-path x;z;y;, the vertex x; is joined
to y; by a (t + 2)-path 121 ...z Ty, and any two vertices z; and y;, 1 <1i,j < k, i # j,
are linked by the arc y;x;.



We first claim that diam(Dyy) =t + 5 = d. Indeed, the unique shortest path from
x1 toy;, 2<j <k, isaizi ...z yixszy;, of length ¢ + 5, and thus eccp, , (1) = ¢ + 5.
Moreover, any two vertices x; and x;, 1 <14,j < k, i # j, are linked by a path of length 3
if © > 1, or of length ¢ + 3 if 7 = 1. Similarly, any two vertices y; and y;, 1 < 4,57 <k,
1 # j, are linked by a path of length 3 if j > 1, or of length ¢ 4+ 3 if j = 1. Any other two
vertices are linked by a path of length at most ¢ + 2.

Observe now that the t + 2 vertices z1,..., 2z, z;j lie on every xy;-path. Moreover,
any two vertices z; and z;, 2 < ¢ < j < k, clearly lie on every z;y;-path. Therefore,
the k +t vertices z},...,21 ", 2,..., 2, must be assigned distinct colours in any rainbow

vertex-colouring of Dy, which implies rW(DdJC) >k+t>k.

We finally consider the case d = 4. Let Dy, k > 4, be the oriented graph with vertex
set

V<D4’k):{371,...,l’k} U {y17---7yk} U {Zl,...,Zk},

and set of arcs
A(Dyg) =Awizi,ziyi | 1 <i <k} U {zzjpmy | 1 <45 <k, i #j}.

We clearly have diam(D, ;) = 4. Moreover, since every two vertices z; and z;, i # j, lie on
every x;y;-path, the k vertices z1, ..., 2z, must be assigned distinct colours in any rainbow
vertex-colouring of D, j, which implies rﬁ(DM) > k. O

Theorem provides examples of 2-connected oriented graphs with large rainbow
vertex-connection number and given diameter at least 4. The situation for diameter 3 is
less clear and we propose the following problem.

Problem 2 Does there exist a constant t such that, for every 2-connected strong oriented
graph (or digraph) D with diam(D) = 3, m(D) <t?

In a rainbow total-coloring, any pair of vertices is joined by a total rainbow path.
Since each total rainbow path is also rainbow and vertex rainbow, both the rainbow
connection number and the rainbow vertex-connection number are upper bounded by the
total rainbow connection number.

Proposition 3.6 For every strong digraph D,
tr¢(D) > max{T¢(D), ve(D)}.

On the other hand, an upper bound on the total rainbow connection number of a
strong digraph is the following.



Lemma 3.7 For every strong digraph D of order n,
tr¢(D) < n + min{te¢(D), iv¢(D)}.

Proof. Suppose first that min{Té¢(D),v¢(D)} = T¢(D) = k. Let ¢ be a rainbow k-arc-
colouring of D and ¢ be a n-vertex-colouring of D such that no two vertices are assigned
the same colour. Consider the total-colouring f of D given by f(v) = ¢(v) for every vertex
vand f(uv) = p(uv) for every arc uv. Obviously every elementary path in (D, f) is vertex
rainbow. Since ¢ is a rainbow colouring, there exists a total rainbow path between any
two vertices and thus f is a total rainbow colouring of D, which implies trc(D) < n + k.

Suppose now that min{t¢(D), v¢(D)} = iv¢(D) = t and let V(D) = {vy,...v,}. Let
¢ be a rainbow t-vertex-colouring of D, ¢ be the n-arc-colouring of D given by ¢(z;x;) = i
for every arc x;x;, and f be the total-colouring of D defined as above. Again, every

elementary path in (G, f) is total rainbow, and thus t?):(D) <n-+t. O

From Proposition and Lemma B.7, we get the following result.
Corollary 3.8 Let D be a strong digraph with n vertices. Then
max{T¢(D), W(D)} < tre(D) < 2n.

For many strong digraphs D, ﬁ(D) + rﬁ(D) colours are enough to make D total
rainbow connected. The next theorem gives an example of a strong digraph that needs
more colours for any total rainbow colouring.

Theorem 3.9 There exists a strong digraph D with t?c)(D) > 1¢(D) + v¢(D).
Proof. Let T}, k > 7, be the tournament with vertex set
V(Ty) ={x1,. sz}t U {y1,- -, Uk},
and arc set A(Ty,) = A} U A2 U A U A}, with
Ay ={r; |1<i<j <k},

A ={yy; | 1<i<j <k},
AY ={ya; | 1<i,j <k, i#j}, and
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Therefore, both sets X = {x,...,2x} and Y = {y1,...,yx} induce a transitive sub-
tournament of T}, and all arcs between X and Y are directed from Y to X except for the
perfect matching {z;y; | 1 <i < k}.

Observe that disty, (z;,y;) = 3 for i > j and any two other vertices are at distance
either 1 or 2 from each other. Thus diam(7}) = 3. If we colour each vertex of X with
colour 1 and each vertex of Y with colour 2, then we clearly obtain a rainbow 2-vertex-
colouring of T}, which implies I'_V%(T k) = 2.

Consider now the 4-arc-colouring ¢ given by (i) ¢(e) = 1 for every e € AL U A2,
(i) p(e) = 2 for every e € A3, and (iil) ¢(z1y;) = 3 and p(z;y;) = 4 for every i, 2 < i < k
(arcs in A}). For every two vertices a and b in T}, with ab ¢ A(T}), there exists a rainbow
ab-path P, in (T}, ¢) given as follows:

o if (a,b) = (z;,2;), 1 <i<j <k, then P, = z,y;z;,

o if (a,b) = (y;,v:), 1 <i<j <k, then P, = y;z;y;,

o if (a,b) = (y1, 1), then P, = y1y271,

o if (a,b) = (yi, ), 2 <i <k, then P,; = y;x;_1x;,

o if (a,b) = (z1,y,), 2 < j <k, then P,, = z111y;,

o if (a,b) = (z4,y;), 2 <14,j <k, i# j, then P, = z;y;x101Y;.

Thus (T}, ¢) is rainbow connected, which implies T¢(7}) < 4.

We now claim that the total rainbow connection number of T} is at least 7. Let f be
a total rainbow colouring of T} using trc(7y) = ¢ colours. Suppose first that there are
two arcs z;y; and x;y;, ¢ < j, with f(x;y;) = f(z;y;). By our assumption there exists a
total-rainbow z;y;-path P. Since both arcs x;y; and x;y; have the same colour, P contains
at most one of them. However, each such path has at least four arcs, so that we need at
least 7 colours to colour P. On the other hand, if no two arcs from X to Y are assigned
the same colour, then t > k > 7

Therefore, for every k > 7, trc(Tk) > T¢(Ty) + 1v¢(T). O

Lei, Liu, hﬁ,gnant and Shi [T7] asked whether there exists an infinite family of digraphs
D such that tr¢(D) is unbounded, while max{T¢(D),v¢(D)} is bounded.

Problem 3 For any integer d, does there exist an infinite family of digraphs with @(D)—

(t¢(D) + tv&(D)) > d?

Finally, the following proposition directly follows from the definitions.

11



Proposition 3.10 If D' is a strong spanning subdigraph of a digraph D, then

(D) < (D), (D) < iv¢(D'), and tr¢(D) < tre(D').

4 Digraphs with non-maximum connection numbers

In this section, we give several sufficient conditigys for a digraph D of order n to satisfy
the inequalities T¢(D) < n, iv¢(D) < n and tr¢(D) < 2n. We first define two useful
properties of pairs of distinct vertices in a strong digraph.

Definition 4.1 (Vertex-Rainbow-In-Property) Let D be a strong digraph. Two dis-
tinct vertices u,v € V(D) have the Vertex-Rainbow-In-Property if

(i) for any two vertices a,b € V(D) \ {u,v}, there is an ab-path that does not contain
both u and v,

(ii) for any vertex a € V(D)\{u, v}, there is an au-path not containing v and an av-path
not containing u.

Definition 4.2 (Vertex-Rainbow-Out-Property) Let D be a strong digraph. Two
distinct vertices u,v € V(D) have the Vertex-Rainbow-Out-Property if

(i) for any two vertices a,b € V(D) \ {u,v}, there is an ab-path that does not contain
both u and v,

(ii) for any vertex b € V(D) \ {u, v}, there is a ub-path not containing v and a vb-path
not containing u.

Note here that two vertices u and v have the Vertex-Rainbow-In-Property (resp. the
Vertex-Rainbow-Out-Property) in D if and only if u and v have the Vertex-Rainbow-Out-
Property (resp. the Vertex-Rainbow-In-Property) in the converse D¢ of D.

The two following lemmas prove that each of these properties provides a sufficient
condition for a strong digraph D to satisfy the inequalities T¢(D) < n, iv¢(D) < n and

tr¢(D) < 2n.

Lemma 4.3 If D is a strong digraph of order n which contains two vﬂfices having the
Vertez-Rainbow-In-Property, then ivé(D) < n — 1, 1¢(D) < n — 1 and tr¢(D) < 2n — 2.
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Proof. Let V(D) = {x1,x9,...2,} and suppose that =, and z,, 1 < p < ¢ < n, have
the Vertex-Rainbow-In-Property. Let ¢ be the (n — 1)-vertex-colouring of D defined by
c(z;) =i for every i, 1 <i < q, c(z,) = p, and c(x;) =i — 1 for every i, ¢ < i < n, so
that both vertices x, and z, are assigned the colour p and all other vertices are assigned
distinct colours. Since z, and z, have the Vertex-Rainbow-In-Property, ¢ is a rainbow
(n — 1)-vertex-colouring of D, and thus tvé¢(D) < n — 1.

Let now ¢ be the (n — 1)-arc-colouring of D defined by ¢p(x;z;) = c(x;) for every
arc z;x; in A(D). Observe that the only colour that can appear more than once on an
elementary path P is p. In such a case, both z,, and z, are internal vertices of P, or P is
an z,zp,-path with x, € {z,,z,}. However, since x, and z, have the Vertex-Rainbow-In-
Property, there is an z,x,-path not containing x, or not containing z, so that this path
is rainbow. Therefore, (D, ) is rainbow connected and thus ¢(D) < n — 1.

Finally, the (2n—2)-total-colouring f of D defined by f(z;) = ¢(x;) for every z; € V(D)
and f(z;x;) = n—1+p(z;z;) for every z;x; € A(D) is obviously a rainbow total-colouring
of D, so that t?):(D) <2n-—2. O

Lemma 4.4 If D s a strong digraph of order n which contains two veﬁgces having the
Vertez- Rainbow- Out-Property, then ivé(D) < n—1, T¢(D) < n—1 and tr¢(D) < 2n— 2.

Proof. This directly follows from Observation 3] and Lemma since any two vertices
having the Vertex-Rainbow-Out-Property in D have the Vertex-Rainbow-In-Property in
De. OJ

We now provide a sufficient condition for a Hamiltonian digraph to contain two vertices
having the Vertex-Rainbow-In-Property.

Lemma 4.5 Let D be a Hamiltonian digraph of order n, C = xgxy...x, 120 a Hamil-
tonian cycle of D, and xp, x4, 0 < p,q < n — 1, two vertices with x, # x, (we may have

=q+1orq=p+1). If there is an x,x,11-path not containing x,+1 and there is an
ZTqTpy1-path not containing x,11, then the vertices vy and x44q have the Vertex-Rainbow-
In-Property (subscripts are taken modulo n).

Proof. Let P, be an z,7r,41-path not containing x,,; and F, be an x,x,:1-path not
containing x,.;. We first prove that for any two vertices .,y ¢ {Tp41,%q41}, there
exists an x,7,-path that does not contain both z,,; and z,y;. We may assume that
either z,, 2, € Clr,40, 7, and x, precedes 4, or x4,z € ClTy42, 7, and x, precedes z,,
since otherwise the z,x;-subpath of C' does not contain both z,1; and 4. In the former
case, the path Clz,, 2, U P, U Clxp1125) does not contain z,41. In the latter case, the
path C[z,, xp] U P, U Clx,12) does not contain x, .
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We now prove that for any =, ¢ {41,241}, there is an x,x,.1-path not contain-
ing x,11 and an z,x,41-path not containing z,1. If z, € Clzyie, x,], then Clx,, 441]
is an x,x,41-path not containing ,41, and Clz,, x4 U P, is an z,2,.1-path not contain-
ing z,11. On the other hand, if z, € Cr4y, ], then Clz,, xp11] and Clz,, x,) U P, are
the required paths. O

In [I1], it was proved that an oriented graph whose rainbow connection number equals
its order must be Hamiltonian. We will prove that this result can be extended to all
digraphs, and that it also holds for the rainbow vertex-connection number. Moreover, we
will prove that the total rainbow connection number of a non-Hamiltonian strong digraph
of order n is at most 2n — 2.

We first prove these results for digraphs with diameter n — 1.

Lemma 4.6 Let D be a non-Hamiltonian s_t7;0ng digraph of order n. If diam(D) =n—1,
then tv¢(D) <n —1, T¢(D) < n —1, and tre(D) < 2n — 2.

Proof. Let D be a non-Hamiltonian strong digraph with diam(D) = n — 1. Let v; and
v, be two antipodal vertices and P = vjvs, ... v, be a vyv,-path of length n — 1. Since P
is a shortest path, all arcs of D that are not in P are of the form v;v; with 1 < j <@ < n.
Furthermore, v,v1 ¢ A(G) since D is non-Hamiltonian. Let @ be a shortest v,v;-path
and v,v; be the first arc in Q.

Suppose first that there is a vertex vy such that vy ¢ @, vgr1 € Q and k #n — 1. We
claim that the vertices v and v, have the Vertex-Rainbow-Out-Property. We first prove
that for any two vertices v,, vy € V(D) \{vk, v, }, there is a v,up-path that does not contain
both v and v,. Observe that if v, precedes v, in P, then Plv,,vp] does not contain v,.
Otherwise, we consider two cases, k < a < n and 1 < a < k. In the former case, there
is a v,up-path not containing vg. Indeed, if 1 < b < k — 1, then Plu,, v,] U Q U Pluy, vp)
is the required path, and if £k + 1 < b < a, then Plv,, v,] U Q[vy,, vgi1] U Plugyr, vp) is the
required path. In the latter case, we necessarily have 1 < b < a, and thus Plv,, vg1] U
Q[Vg+1,v1] U Py, vp) (or Plvg, vgs1] U Q[vgs1,v1] if v, = v1) does not contain v,.

Now, let v, € V(D) \ {vk, v, }. f 1 <b <k —1, then QU Plvy,v] is a v,vp-path not
containing vy, and vgvk1 U Q[vky1,v1] U Plug, vp] is a vgvp-path not containing v,,. Thus
the vertices vy, and v,, have the Vertex-Rainbow-Out-Property and, thanks to Lemma [£.4]
we get (D) <n—1, ¢(D) <n—1 and tr—(>:(D) <2n—2.

Suppose now that there is no vertex vy such that v, € @, vpy € Q and k # n — 1.
This implies that ) contains all vertices vy, ..., v; (recall that v,v; is the first arc in Q).
In this case, we claim that the vertices v; and v, have the Vertex-Rainbow-Out-Property.
Let vg, vy, € V(D) \ {v1,v,}. If v, precedes vy, then Plu,,vp] contains neither v; nor w,.

14
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Figure 2: (a) A pair of opposite chords (we may have x; = x, or z,, = z,). (b) A pair of
almost opposite chords (we may have z, = x, or &, = x,_1).

Otherwise, the v,vp-path Plvg, v,] U Q[vn, v2] U Plvg, vp] does not contain v;. Moreover,
Plvy,vp] is a v1vp-path that does not contain v,,. If 2 < b < i — 1, then Qlv,, vy] is a v, vy
path not containing v;. Otherwise, v,v; U P[v;, vp] is a v,vp-path not containing v;. Thus
the vertices v; and v,, have the Vertex-Rainbow-Out-Property and, thanks to Lemma [4.4],
again we get tv¢(D) <n—1, ¢(D) <n —1 and t_ré(D) <2n—2. O

It remains to consider the case of strong digraphs of order n with diameter at most
n — 2. We will thus consider the case of digraphs having a Hamiltonian cycle with some
“special” chords. Let C' = xg...x, 170 be a cycle of length n. A chord of C' is an arc
pty, 0 < p,qg <n—1, with x, # x,41. A pair of chords (z,x,,x,2s) is a pair of opposite
chords if x4, x, € Clx,, x,] and z,, z, € Clzs, ;] (see Figure @l (a)), and a pair of almost
opposite chords if s = p+ 1 and z, € Clzy, x,_1] (see Figure 2 (b)). A pair of chords
(xpzq, T,T5) is & pair of crossing chords it x5 € Clrpie, v4—1] and z, € Clry1, Tp—1] (see
Figure[3)). A triple of chords (x,z4, ,25, x,2,) is a triple of crossing chords it (zpz,, x,x)
is a pair of crossing chords, x; € Clzs, z,-1] and z, € C[2,49, xp11] (see Figure [).

Lemma 4.7 If D is a Hamiltonian digraph of order n and C' a Hamz'ltoﬂan cycle of D
having a pair of opposite chords, then ﬁ(D) <n-1, Q(D) <n—1 andtre(D) < 2n—2.

Proof. Let C = zg...2,_170, and (x,24, 2,25) be a pair of opposite chords of C'. Since
2, xsUC [T, Tpy1] is an x,xp1-path not containing 1 and x,2,UC x4, ,41] 1S an z,2,41-
path not containing x,,1, we get by Lemma .5 that the vertices x,,1 and x,,1 have the
Vertex-Rainbow-In-Property. The result then follows by Lemma 3l 0
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Lg+1

Figure 3: A pair of crossing chords (we may have x4 = 2,49, Or Ty = T,_1, OF T, = Tyy1,
Or Ty = Tp_1).

Figure 4: A triple of crossing chords (we may have z, = x, or x, = T,+1).
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Lemma 4.8 If D is a Hamiltonian digraph of order n and C' a Hamiltonian cycle of
D having a pair of almost opposite chords, then ﬁ/%(D) <n-1, ﬁ(D) <n-—1 and
—

tre(D) < 2n — 2.

Proof. Let C' = xg...2,-1%¢, and (z,z,, z,2s) be a pair of almost opposite chords of C,
so that z; = x,4;. Since the path z,x, U C[z,, z,4+1] does not contain x,, and x,z is an
x,Ts-path not containing x, 1, we get by Lemma [£.5] that the vertices x,,; and z, = 2,44
have the Vertex-Rainbow-In-Property. The result then follows by Lemma [£3] 0

Lemma 4.9 If D is a Hamiltonian digraph of order n and C' a Hamiltogian cycle of D
having a triple of crossing chords, then ﬁ(D) <n-—1, ﬁ(D) <n—1 andtrc(D) < 2n—2.

Proof. Let C = zg... 2,170, and (2,24, ,25, 21x,) be a triple of crossing chords of C.
We claim that the vertices x,41 and z,.; have the Vertex-Rainbow-In-Property. Observe
first that z,x,UC[z,, x,41] is an 2,2, 1-path not containing x,.1. Next z,z,UC[z,, 2] U
22, UC [Ty, Tpy1] I8 an 2,2, 1-path not containing x, 1 (we put Clzs, ;] = 0 while z; = x4
and Clxy, Tp+1] = 0 while z, = 2,41). Thus, we get by Lemma [L.7] that the vertices ;4
and z,4; have the Vertex-Rainbow-In-Property and the result follows by Lemma 4.3l O

We are now able to extend Lemma to strong digraphs of order n with diameter at
most n — 2.

Lemma 4.10 If D is a strong digraph of order n with diam(D) < n — 2, then rW(D) <
n—1,1[D)<n-1 and‘a}:(D) <2n-—2.

Proof. Let T be a BFS-tree of D with root r and L be the set of leaves of T'. For every
vertex v, we denote by B, the branch of v, that is, the unique rv-path in T'. We say that a
vertex u precedes v in T, denoted u =<7 v, if u € V(B,). (In the literature, u is sometimes
called an ancestor of v in T.)

Suppose first that ¢; and /5 are two leaves of T" such that there is an ¢yr-path P, in D
not containing ¢, and an ¢yr-path P, in D not containing ¢;. We claim that the vertices
¢, and ¢y have the Vertex-Rainbow-Out-Property. To see that, let a,b € V(D) \ {{1, (2}
and @ be any ab-path in D. If () does not contain both vertices ¢, and ¢, we are done.
Suppose now that () contains both vertices ¢/; and f5. We can assume without loss of
generality that ¢; precedes {5 in Q. In that case, the ab-path Qla, ¢1] U Py, U By, does not
contain £5.

Furthermore, the paths Py, U B, and P, U By, do not contain ¢, and ¢y, respectively,
and thus ¢; and ¢y have the Vertex-Rainbow-Out-Property. By Lemma [4.4] we get that
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the inequalities Tv¢(D) < n — 1, T¢(D) < n — 1 and tTé(D) < 2n — 2 hold and we are
done.

Suppose now that for any two leaves ¢1,fy € L, either every ¢;r-path contains ¢y or
every (or-path contains ¢. For every leaf ¢ € L, we denote by P, a shortest ¢r-path
in D. Let <;, be the partial order on L defined in the following way: for every ¢1,¢s € L,
0y <y s if and only if ¢y € Pp,. By our assumption, either ¢; < ¢y or {5 < ¢4 for any
two leaves (1, {5, and thus <j is a linear ordering of L.

Let L = {t,..., ¢} with {; <, ¢ for every i,j, 1 <1i < j < s. Note that for every 4,
1 <i < s, P, contains all vertices f;11,...,{s, in that order. Moreover, P, C P, for
every 7,7, 1 <1< 7 <s. Wethenlet P = F,.

We consider two cases.

1. V(Be, U...UB,)\V(P) #0.

Since all leaves are in P, there exists a vertex © € V(By, U...U By,) \ V(P) such
that x has an out-neighbour z’ with 2’ € V(P). We choose the vertex = in such
a way that distp(r,z) is maximum. Since every leaf ¢; with & <r ¢; is in P, the
maximality of distp(r, x) implies that every vertex y with x <7 y is in P.

We claim that the vertices ¢; and = have the Vertex-Rainbow-Out-Property. To see
that, let a,b € V(D) \ {¢1,z}.

Let @@ be any ab-path. If ) does not contain both ¢; and z, we are done. So
assume that () contains both vertices ¢; and x. Suppose first that ¢; precedes x
in Q. If © <7 b, then b belongs to P, and thus Q|a, ¢1] U P[¢1,b] does not contain x.
Otherwise, B, does not contain z, and thus Q|a, ¢;] U P U By, does not contain x.
Suppose now that x precedes ¢ in Q. Since the out-neighbour z’ of x is in P and
¢y is the first vertex of P, P[z/,r] does not contain ¢;. Furthermore, B also does
not contain ¢;, and thus Qla, z] U xz’ U Plx’,r] U B, does not contain ¢;. Hence, in
all cases, we can find an ab-path that does not contain both vertices ¢; and =x.

Now we need to show that there exists an ¢;b-path not containing x and an xb-path
not containing ¢;. If z ¢ By, then P U By is an ¢1b-path not containing z. If x € By,
which implies x <7 b and thus b € P, then P[¢1,b] is an ¢1b-path not containing z.
Finally, 2’ U P[2’,r] U B, is an zb-path not containing ;.

Therefore, the vertices ¢; and x have the Vertex-Rainbow-Out-Property and the
theorem follows from Lemma [£.4]

2. V(By, U...UB,,) C V(P).

We consider two subcases, depending on whether the path P contains an internal
vertex of By, or not.
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(a) P contains an internal vertex of By, .

We consider two subcases.

i.

11.

There exists an arc xx' in By, with x ¢ V(P), ' € V(P) and x' # ¢;.

In that case, we claim that the vertices x and ¢; have the Vertex-Rainbow-
Out-Property. Let a,b € V(D) \ {x,¢1}. We first prove that there exists
an ab-path not containing both x and /;.

Suppose first that a and b are internal vertices of By,. If a =<¢ b, then
By, [a, b] does not contain ¢;. Otherwise, we have three possible cases: z <r
b=ra,b=rx=3ra,orb=ra=rz Inthefirst case, By, [a, (;]UP[(,z'|U
By[2’,b] does not contain z. In the second case, By,[a, (1] U P[l1,r] U By
does not contain z. In the last case, By, |a,2'] U P[z',r] U B, does not
contain /.

Suppose now that none of @ and b is an internal vertex of By,, which implies
a,b € V(P). If a precedes b in P, then Pla,b] contains neither « nor ¢;. If
b precedes a in P, then Pla,r] U B, does not contain /.

Suppose finally that exactly one of the vertices a and b is an internal vertex
of By,. If bis an internal vertex of By, , then Pla, r]UB, does not contain ¢;.
If a is an internal vertex of By, we consider two cases. If v <p a <p fy,
then By, |a,f;] U P[{y,b] does not contain z. If r <p a <p z, then an
ab-path not containing ¢, is By, [a, 2’| U Pl2’,b] if 2’ precedes b in P, or
By, la, 2’| U Pla’,r] U By if b precedes =’ in P.

Therefore, in each case, there exists an ab-path not containing both x
and /.

We now prove that condition (ii) of the Vertex-Rainbow-Out-Property is
also satisfied. Suppose first that b belongs to By,. If v <7 b < ¢, then
By, [x,b] is an zb-path not containing ¢;, and P[¢y, 2’| U By, [2/, 0] is an £;b-
path not containing z. If r <7 b < z, then xa’UP[z’, r|U By is an xb-path
not containing ¢, and P U B, is an ¢;b-path not containing x. Suppose
finally that b belongs to P\ By,. In that case, P[{1,b] is an ¢;b-path not
containing x, and zz’ U P[z/,r] U By, is an xb-path not containing ¢;.
Therefore, the vertices z and ¢; have the Vertex-Rainbow-Out-Property,
and the theorem follows from Lemma 4l

For each arc xx' in By, with x ¢ V(P), if any, 2’ ¢ V(P) \ {{1}.

In that case, for every vertex x € By, \ P, no vertex y with x <7 y and
y # {1 isin P. We thus have By, = rx1@s ... 2py1Y2 - . . Yl1, with z; € V(P)
for every i, 1 < ¢ < p, and y; ¢ V(P) for every j, 1 < j < ¢q. Observe
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Tpy  Tpi+1 Tpi4+ps  Lpr+..+pa—1+1 Ty Y1 Yg 0

Figure 5: The subpaths Py, ..., P, induced by vertices x1, ..., x,.

that since P contains an internal vertex of By,, we necessarily have p > 1.
Moreover, we also have ¢ > 1, since otherwise the path P would contain
all vertices of D, which would imply diam(D) = n — 1, contradicting the
assumption diam(D) < n — 2.

We first claim that for every i, 1 < i < p — 1, if x; precedes ;1 in P,
then x;z;41 € A(P). Indeed, if z;2;,1 ¢ A(P), then replacing the subpath
Plz;, z;41] of P by the arc z;z;y; gives an ¢;r-path shorter than P, a

contradiction. This implies that the vertices x4, ..., z, induce o subpaths
Py,...,P, of P, o > 1, of respective order py,...,p, > 1, with P, =
1. . Tpyy ooy Po=Tpi4eipy 1 - .- Zp. Note that for every 7,5, 1 <i < j <

a, each vertex of P; precedes each vertex of P, in P (see Figure [).

Consider now the spanning subdigraph D’ of D which contains all the arcs
of P and By,, that is, V(D) = V(D) and A(D") = A(P) U A(By,). Note
that since D’ is the union of an ¢;r-path and an r¢;-path, D’ is a strong
digraph.

Let v be the out-neighbour of z,, in D’ with z, v € A(P) (observe that
T, # Tp+1 and it may happen that v = r, or that p; = p). We claim
that the vertices v and y; have the Vertex-Rainbow-In-Property in D’
To see that, let a,b € V(D') \ {v,y1} and @ be any ab-path in D’. If
@ does not contain both v and y; we are done. Otherwise, we consider
two cases. Suppose first that v precedes y; in Q. Since dp,(v) =1, Q also
contains z,,, and thus Q = a... 2, v...y;...b. We then obtain an ab-path
not containing v by replacing in @) the subpath Q[z,,,v1] by By, [2p,, v1].
Suppose now that y; precedes v in Q). Since dp, (y1) = 1, @ also contains z,,
and thus Q = a...zpy;...v...b. In that case, we obtain an ab-path not
containing y; by replacing in @ the subpath Q[z,,v] by Plx,,v] (recall
that either z, = x,, or z, precedes z,, in P). Let now )’ be any av-path
and Q" be any ay;-path. If Q' contains y;, then it also contains z,, so that
we get an av-path not containing y; by replacing Q)'[z,,v] by P|z,,v]. On
the other hand, if ()" contains v, then it also contains x,,, so that we get
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an ay;-path not containing v by replacing Q"[z,,, y1] by By, [%p,, v1].
Therefore, the vertices v and y; have the Vertex-Rainbow-In-Property
in D’. By Lemma 3, we get tv¢(D') < n—1, ¢(D') < n —1 and
t?é(D’ ) < 2n — 2. The theorem then follows from Proposition B.I0l

(b) P does not contain any internal vertex of By, .

Observe first that since diam(D) < n — 2 and P is a shortest ¢;r-path, By,
contains at least one internal vertex. Similarly, since diam(D) < n —2 and By,
is a shortest rf;-path, P contains at least one internal vertex.

Let P = xy2y... 2, with x; = ¢; and x; = r, and By, = x%41 ... 221 We
thus have V/(P)NV (By,) = {x1, 2} and V(P)UV (B, ) = V(D), which implies
that C'= PU By, = 2125 ..., is a Hamiltonian cycle of D.

If C' has either a pair of opposite chords, a pair of almost opposite chords, or
a triple of crossing chords, then the result directly follows from Lemma 4.7,
Lemma .8, or Lemma (9] respectively. Thus we may assume that none of
these situations occurs.

We first claim that C' has two chords z;x; and x,z,, such that
(i) z;,x, € V(P), and
(ii) x; and zj are internal vertices of By,, and j < k.

Observe first that since By, is a shortest r¢i-path, every arc z,z, € A(D) \
A(By,) with x,,z, € V(By,) is such that eithera =l and t <b <mn,ort <b <
a < n. Similarly, since P is a shortest ¢;r-path, every arc x,x, € A(D) \ A(P)
with z,, 2, € V(P) is such that 1 < b < a < t. Furthermore, since both P
and By, have internal vertices, x;xq1 ¢ A(D) and zz, ¢ A(D).

Consider the vertices x; and x,,. Since distp(z1,x,) < diam(D) < n— 2, there
must be a chord z;x; with z; € {z1,..., 2,1} and z; € {xy11,... 2, }. Let z;2;
be such a chord which minimizes distp(z¢, ;).

Consider now the vertices z; and z;1;. Again, since distp(zi1, ) <
diam(D) < n — 2, there must be a chord zyz, with 2, € {z11,...,2,} and
xy € {x9,...,x4}. Let xxz, be such a chord which minimizes distp(zy, z1).
Clearly, the chords z;z; and xjx, satisfy condition (i) and x;, z; are internal
vertices of By,. We now prove that j < k. Suppose to the contrary that j > &
and let z, be any vertex with k < a < j. Since z; and z;, have been chosen in
such a way that distp(z¢, z;) and distp(zx, 1) are minimal, and since both P
and By, are shortest paths, it follows that x, has the Head-Tail-Property with
respect to C. This implies that the path C[z,,1,x,] is a shortest z,.1x,-path,
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so that distp (2441, 24) = n—1, contradicting the assumption diam(D) < n—2.
Thus j < k and condition (ii) is satisfied.

Since we assumed that C' has neither a pair of opposite chords nor a pair of
almost opposite chords, we necessarily have ¢ > i + 2. Therefore, (z;x;, zxx)
is a pair of crossing chords of C'.

Consider now any vertex z, € C|x;i9,2¢]. Since distp(x,, 2, 1) < n — 2,
x, cannot have the Head-Tail-Property with respect to C', that is, there is a
chord z,z, of C' such that x, precedes x, on the path C[z,, z,-1]. Let x,z,
be a chord of C which contradicts the Head-Tail-Property of every vertex in
{zo,...,xi—a} C V(C|wise, x¢]) with respect to C, and suppose that x,z, is
chosen in such a way that a is maximal.

Since By, is a shortest rf;-path, at most one of the vertices z,,x, belongs
to By,. Moreover, the minimality of distp(zy, ;) implies z, € C[z;, Ty—q].

If x, € Clxj, x)41], then (x,z4, z12,) is a pair of opposite or almost oppo-
site chords of C, contradicting our assumption. If z, € C[zj42,2;41], then
(e, T 5, THT,) is a triple of crossing chords if x, € Clxy, xj_1], or (z;x;, Tpx4)
is a pair of opposite or almost opposite chords if x, € C[z;, x,—2], again con-
tradicting our assumption. Thus we may assume z, € C[z;42, T¢_1].

The minimality of distp(xy, z1) then implies x, € Clxy, zx].
To finish the proof, we will show that the vertices z,4; and x;41 have the
Vertex-Rainbow-In-Property. We first prove the following claim.

Claim 1 There exists an x,x;y1-path in D that does not contain xp;.

Proof. Consider the vertex z,. Since distp(xy, 24-1) < n — 2, z, cannot have
the Head-Tail-Property with respect to C'. Let z, 2, be a chord that con-
tradicts the Head-Tail-Property of every vertex in {x,, ..., 2,5} C Clzit2, 7]
with respect to C', and suppose that x,, z,, has been chosen in such a way that
[ is maximal.

Since the chord z,z, has been chosen in such a way that o is maximal, we
necessarily have x,, € Clry, x,q]. If 24 € Clay, 12, Tpi1], then (xpzq, ,,24,)
is a pair of opposite or almost opposite chords of C', contradicting our as-
sumption. Thus, z, € Clry42,24-p-1]. If 2, € Clxpio, ], then the path
2pTq U Clay, tp, | Uy 2 UClTy, ig1] is an z,2,41-path not containing x, ;.
If ¢1 =i+ 1, then the path x,2, U C[z,, z,,] U,z does not contain x,;.
Therefore, we may assume x, € C[Tiy2, Tq—1].
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Consider now the vertex z,,. Again, since distp(zq,, g -1) < n — 2, x, can-
not have the Head-Tail-Property with respect to C. Let z,,24, be a chord
that contradicts the Head-Tail-Property of every vertex in {z,,,..., 24~} C
Clwita, 74| with respect to C, and suppose that x,,z,, has been chosen in such
a way that v is maximal.

Since the chord ), z,, has been chosen in such a way that 3 is maximal, we nec-
essarily have x,, € Clzg,, x4 1]. If 24, € Clap,19, T4, +1], then (zp,4,, Tp, 4, )
is a pair of opposite or almost opposite chords, contradicting our assump-
tion. If zq, € Clay, 12, To,11], then (2,24, Tp, Tq,, Tp,Tq,) is a triple of crossing
chords, again contradicting our assumption. Thus, x,, € Clrpia, Tg—q—1]. If
Tqy € Cl2pia, x;], then the path

Tpg U Cl2g, Tp | U T, Tgy U ClTgy, Tpo] U Ty Tgy U O, 1]
is an x,7;1-path not containing z,1. If ¢ = ¢ + 1, then the path
TpTg U Clzg, Tp, | U 2p, g U Clgy, Tp,] U Ty T,

does not contain x,4;.

Thus x4, € C[zi+2, T4 -1]. Since again x,, cannot have the Head-Tail-Property
with respect to C, we can iterate this process. Since there is a finite number
of vertices in C[z;42, x|, the process eventually ends up with an z,z;;-path
of the form either

Tpg U Clag, Tp ] U U (TpaTgo U ClTgqs Tpaya]) U g, 2.,
1<a<z—1

or

Tpty U Clag, 2p | U U (TpaTgo U ClTga, Tparn]) U Tq. 34, U Clzg,, Tita],
1<a<Lz—1

for some z > 2. O

Finally, observe that the path z;z; U Clz;, z;] U zpx, U Clay, 2piq] does not
contain x;41. Therefore, by Lemma [£.5] the vertices z,.; and x;;1 have the
Vertex-Rainbow-In-Property. The result then follows from Lemma (3]

This completes the proof. O

Lemmas 6] and .10 directly imply the following.
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Corollary 4.11 Let D be a strong digraph of order n. If ﬁ%(D) = n, ﬁ(D) =n, or
t?é(D) = 2n, then D is Hamiltonian and diam(D) =n — 1.

Recall that a digraph D is minimally strongly connected if D is strong and, for every
arc uwv in D, the digraph D — uv is not strong. In [I1], it was proved that a minimally
strongly connected oriented graph D of order n has rainbow connection number n if and
only if D is a cycle (their proof readily extends to the case of digraphs). Observe that
a Hamiltonian digraph D is minimally strongly connected if and only if D is a cycle.
Therefore, a similar result holds for the rainbow vertex-connection number and the total
rainbow connection number.

Theorem 4.12 Let D be a mz’m’m_a)lly strongly connected digraph of order n. If D is not
a cycle, then iv¢(D) < n —1 and tr¢(D) < 2n — 1.

5 Digraphs with maximum connection numbers

In this section, we characterize digraphs of order n with rainbow connection number n,
rainbow vertex-connection number n, and total rainbow connection number 2n, respec-
tively.

Theorem 5.1 If D is a strong digraph of order n, then ﬁ(D) = n if and only if D 1is
Hamiltonian and has at least three vertices with eccentricity n — 1.

Proof. (<) Let C = z¢...2,_179 be a Hamiltonian cycle of D and z;, z;, z; be three
vertices with eccentricity n — 1. Suppose that there is an arc-colouring ¢ of D using less
than n colours such that (D, ¢) is rainbow connected.

Since distp(x;, ;1) = n — 1, Cla;, x;_1] is the only x;z;_;-path in D. Thus ¢ must
assign distinct colours to the arcs of C[x;, x;_1]. Since ¢ uses less than n colours, the arc
x;—1x; must get a colour which also appears on the path C[z;, x;_;]. Furthermore, since
distp(z;,xj-1) = n — 1, Clxj,x;_1] is the only x;z;_1-path in D. Thus ¢ must assign
distinct colours to the arcs of C[z;,x;_1]. Since ¢ is rainbow on both C[z;,z;_;] and
Clxj, xi-1], we get o(x;_12;) = @(z;_12;). Since distp(xy, vp—1) = n — 1, Clzg, Tp—1] is
the only xjx)_i-path in D. However, Clxy, zx_1] contains both arcs z;_z; and z,;_1;,
which implies, since p(z;,-12;) = p(x;-1%;), that (D, ¢) is not rainbow connected, contrary
to our assumption.

(=) Suppose now that T¢(D) = n. Corollary EITimplies that D has a Hamiltonian cycle
C =uxzg...2, 120 and that eccp(x;) = n — 1 for some vertex x;, 0 < i < n — 1. Consider
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the digraph D' = D — z;_jx;. Suppose first that D’ is strong. By Corollary 23] D’ is
not Hamiltonian and thus, using Corollary E-IT] and Proposition BI0, we get T¢(D) <
T¢(D') < n — 1, a contradiction.

Hence the digraph D’ is not strong. Suppose first that D’ has two strong components
Dy and D,. By Lemma 2.1 we may assume that D; is induced by vertices z;,...,x;_;
and that D is induced by vertices x;, ..., 2;_; (it may happen that i =j—1or j =i—1).
We claim that the vertices x; and z; have the Vertex-Rainbow-In-Property in D. Since
Dy is strong, xj_1,x; € V(Dy), and z; ¢ V(Dy), there is an x;_;z;-path not containing z;.
Similarly, since Dy is strong, z;_1,z; € V(D,), and x; ¢ V(D,), there is an z;_z;-path
not containing x;. Thus, by Lemma[4.5] the vertices z; and z; have the Vertex-Rainbow-
In-Property in D, which implies T¢(D) < n— 1, contradicting the assumption ¢ (D) = n.

Therefore, D’ has at least three strong components, say D1, Ds, ..., Dy, k > 3. Let
x;, = ;. We then have

Dy = D'[V(Clzizi,—1])], D2 = D'[V(Claiy, iy—1])], ..., Dy = D'[V(Clay,, xiy1])],

for some iy, d9,... 0k, @ =i < iy < --- < i < iy (in cyclic order). Since C[z;, x;_1] is a
shortest x;z;_i-path in D, it follows that distp(zs,,2i.,,~1) = |C[Zi., Zi,,,-1]| for every
a, 1 <a <k-—1,and that distp(z;,, z,-1) = |Clzs,, Tiy—1]|-

Therefore, distp(z;,,x;, 1) =n — 1 for every o, 1 < o < k. Since k > 3, D contains
at least three vertices with eccentricity n — 1. O

Theorem 5.2 If D is a strong digraph of order n > 6, then m(D) = n if and only if
D has a Hamiltonian cycle C' and three vertices with eccentricity n — 1 such that no two
of them are consecutive on C.

Proof. (<) Let C' = x¢... 2,120 be a Hamiltonian cycle of D and x;, x;, ), be vertices
with eccentricity n — 1 such that |Clz;,z;]| > 2, |Clzj, zx]| > 2 and |Clzy, z)| > 2.
Suppose that there exists a vertex-colouring ¢ of D using less than n colours such that
(D, ¢) is rainbow vertex-connected.

Since distp(x;, ;1) = n — 1, C[x;, x;_1] is the only z;x;_1-path in D. Thus, ¢ must
assign distinct colours to all internal vertices of Clz;, z;_1]. Since ¢ uses less than n
colours, either ¢(x;) = c(z;_1) or one of the colours c(z;), c(x;_1) appears on C|x;, x;_1].
Similarly, since distp(z;,z;—1) = n — 1, Clxj, z;_1] is the only x;x;_4-path in D, and ¢
must assign distinct colours to all internal vertices of Clx;, z;_1]. Since x; and z;_; are
both internal vertices of C[z;, x;_1], we get c(x;) # c(x;—1). Since c uses less than n
colours, we necessarily have either c¢(x;) € {c(z;),c(x;j—1)} or c¢(x;—1) € {c(x)), e(xj_1)}.
Using similar arguments, since C|xy, xx_1] is the only xz,_i-path in D, we get that ¢ must
assign distinct colours to all internal vertices of Clxy, 4x_1]. However, z;_y, ;, x;_1, z; are
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internal vertices of C'lxy, x5x_1], which contradicts the condition ¢(z;) € {c(z;), c(xj_1)} or
c(wi1) € {e(x;), c(zj—1)}-

(=) Suppose now that tv¢(D) = n. Corollary EIT] implies that D has a Hamiltonian
cycle C' = zg... 2,179 and that eccp(z;) = n — 1 for some vertex z;, 0 < i < n — 1.
Consider the digraph D' = D — x;_1x;. As in the proof of Theorem [B.I D’ cannot be
strong, since otherwise we would get v¢(D) < tv¢(D') < n — 1.

Similarly as in the proof of Theorem [5.1] if D’ has two strong components D; =
D'V(Clzi,zj—])] and Dy = D'[V(C[zj,z;—1])], then we can prove that the vertices
x; and z; have the Vertex-Rainbow-In-Property in D, so that, by Lemma .3 we get
iv¢(D) < n — 1, a contradiction.

Therefore, D’ has at least three strong components, say Dy, Da, ..., Dy, k > 3. Let
x;, = ;. We then have

Dy = D'V(Clzixi,—1])], D2 = D'[V(Claiy, xig—1])], ... Dr = D'V (Clay, xiy1])],

for some iq,149,. .., 0k, @ =01 < i < -+ < i, < i1 (in cyclic order). Since C[z;, x; 1] is a
shortest x;x;_i-path in D, it follows that distp(w;,, %, ,—1) = |Clzi., i, —1]| for every a,
1 <a < k-1, and that distp(x;,, zs,—1) = |Clxi,, i,—1]|. Therefore, distp(x;,,zi,—1) =
n — 1 for every a, 1 < a < k, which implies eccp(z,) = n — 1 for every such vertex z,.

If £ > 6, then the set {x;,,...z;} contains three non-consecutive vertices. If k = 5,
then at least one strong component contains at least two vertices, since n > 6. Thus,
again, the set {z;,,...x;,} contains three non-consecutive vertices.

Suppose now that k = 4. If the set {x;,,z,, i, x;,} does not contain three non-
consecutive vertices, then, without loss of generality, we may assume that either

(i> |V<D1)‘ > 17 |V<D2)‘ = 17 |V<D3)| = 17 |V<D4)| = 17 or
(ii) [V(D1)] > 1,[V(Da)| = 1, [V(Ds)| > 1, [V(Dy)| = 1.

Consider the vertex-colouring ¢ : V(D) — {1,...n—1} given by ¢(x;,) = ¢(z;,) and all
other vertices are coloured differently. We claim that (D, ¢) is rainbow vertex-connected.
To see that, let a,b be any two vertices of D.

In Case (i), if a,b € V(D;), then each path containing only vertices of V(D) is
rainbow, and thus, since D; is strong, there exists a rainbow ab-path. If a,b ¢ V(D,),
then either a € {x;,,z;, } or b € {z;,, x;, }, so that no elementary ab-path contains both z;,
and z;, as internal vertices. If a € V(D;) and b ¢ V (D), then x;, cannot be an internal
vertex of an elementary ab-path. If b € V(D;) and a ¢ V(D;), then x;, cannot be an
internal vertex of an elementary ab-path. Therefore, there always exists an ab-path not
containing both vertices x;, and z;, as internal vertices, which is thus a rainbow ab-path.
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In Case (ii), if a,b € V(D;) or a,b € V(Dj3), then there exists a rainbow ab-path going
through vertices of Dy or D3, respectively. If either a € {x;,,x;,} or b € {x;,,z;,}, then
no elementary ab-path contains both z;, and z;, as internal vertices, and thus every such
path is rainbow. If a € Dy and b € Dy, or b € Dy and a € Ds, then the path Cla,b] is
rainbow.

Suppose finally that £ = 3. If the set {z;,,x;,,z;;} contains two vertices that are
consecutive on C', then, without loss of generality, we may assume that either

(i) [V(Dy)] > LIV(Do)| = L, [V(Ds)| = Lor
(i) V(D) > 1, [V(Dy)] = 1,|V(Ds)| > 1.

In Case (i), we claim that the vertex-colouring ¢ : V(D) — {1,...n — 1} given by
c(x;,) = c¢(x;,) and all other vertices are coloured differently is such that (D, ¢) is rainbow
vertex-connected. Since D, is strong and contains neither z;, nor z;,, each elementary
ab-path is rainbow whenever a,b € V(Dy). If |[{a,b} N {x;,, z;,}| > 1, then no elementary
ab-path contains both x;, and z;, as internal vertices, and thus every such path is rainbow.

In Case (ii), we claim that the vertex-colouring ¢ : V(D) — {1,...n — 1} given by
c(x;,) = c¢(x;,) and all other vertices are coloured differently is such that (D, ¢) is rainbow
vertex-connected. If a,b € V(Dy) or a,b € V(Ds), then there exists a rainbow ab-path
going through vertices of Dy or Djs, respectively. If a € Dy and b € D3, or b € Dy and
a € Ds, then the path Cl[a,b] is rainbow. Otherwise, z;, is either the first or the last
vertex of the ab-path, which implies that every elementary ab-path is rainbow. 0

Theorem 5.3 If D is a strong digraph of order n > 6, then %(D) = 2n if and only if
(D) = n.

Proof. (<) Let C' =2 ...z,-120 be a Hamiltonian cycle of D and x;, x;, ), be vertices
with eccentricity n — 1 such that |Clx;, z;]| > 2, |Clxj, zx]| > 2, |Clzg, 2;]| > 2. Suppose
that there exists a total-colouring f using less than 2n colours such that (D, f) is total
rainbow connected.

Since distp(x;, ;1) = n — 1, Clx;, x;,_41] is the only z;x;_i-path in D. Thus, f must
assign distinct colours to all internal vertices and arcs of C'[z;, z;_1]. Since f uses less than
2n colours, either one of the equalities f(x;) = f(zi—1), f(z:) = f(wiiz;) or f(xi—y) =
f(z;_12;) holds, or one of the colours f(x;), f(z;—1) or f(z;_17;) appears on C[x;, x;_1].
Since distp(xj, ;-1) = n—1, C[z;, xj_1] is the only z;x,;_1-path in D. Thus, f must assign
distinct colours to all internal vertices and arcs of Clx;, z;_;]. Since both z; and x;_; are
internal vertices of Clz;,x;_1], we get f(x;) # f(wiz1), f(x:) # f(xiixi), and f(z;—q) #
f(xi—1x;). Therefore, we necessarily have either f(x;) € {f(x;), f(z;-1), f(xj—12;)}, or
f(i) € {f(@g), f(wj-1), f(2j1))}, or flaioazi) € {f(x)), f(xj-1), fzjmizy)}.
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Using similar arguments, since Cxy, zx_1] is the only xpxi_q-path in D, we get that
f must assign distinct colours to all internal vertices and arcs of Clzy,xg_1]. However,
Ti_1,%;,Tj_1,x; are internal vertices of Clzy,zx_1], so that z;_1,x;, xj_1,;, x;i—1z; and
xj_12; must be assigned distinct colours, contradicting the condition obtained above.

(=) Suppose now that t_ré(D) = 2n. If v¢&(D) < n — 1, then t_ré(D) < 2n —1 by
Lemma 3.7, and thus ivé(D) = n. O

References

[1] J. Alva-Samos and J. J. Montellano-Ballesteros. Rainbow connection in some di-
graphs. Graphs Combin. 32 (6) (2016), 2199-2209.

[2] J. Alva-Samos and J. J. Montellano-Ballesteros. A Note on the Rainbow Connectivity
of Tournaments. Preprint (2015), available at http://arxiv.org/abs/1504.07140.

[3] J. Alva-Samos and J. J. Montellano-Ballesteros. Rainbow Connectivity of Cacti and
of Some Infinity Digraphs. Discuss. Math. Graph Theory 37 (2017) 301-313.

[4] P. Ananth, M. Nasre and K. K. Sarpatwar. Rainbow Connectivity: Hardness and
Tractability. In: 31st Int’l Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS 2011), Leibniz International Proceedings in
Informatics, 241-251.

[5] J. A. Bondy and U.S.R. Murty. Graph Theory. Graduate Texts in Mathematics, vol.
244, Springer, London, 2011.

[6] Y. Caro, A. Lev, Y. Roditty, Zs. Tuza and R. Yuster. On rainbow connection. Elec-
tron. J. Combin. 15 (2008), #R57.

[7] S. Chakraborty, E. Fischer, A. Matsliah and R. Yuster. Hardness and algorithms for
rainbow connectivity. J. Comb. Optim. 21 (2011), 330-347.

[8] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang. Rainbow connection in
graphs. Math. Bohem. 133 (2008), 85-98.

[9] L. Chen, B. Huo and Y. Ma. Hardness results for total rainbow connection of graphs.
Discuss. Math. Graph Theory, 36 (2016) 355-362.

[10] L. Chen, X. Li and Y. Shi. The complexity of determining the rainbow vertex-
connection of graphs. Theoret. Comput. Sci. 412, (2011) 4531-4535

28


http://arxiv.org/abs/1504.07140

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

P. Dorbec, 1. Schiermeyer, E. Sidorowicz and E. Sopena. Rainbow Connection in
Oriented Graphs. Discrete Appl. Math. 179 (2014), 69-78.

J. Ekstein, P. Holub, T. Kaiser, M. Koch, S. Matos Camacho, Z. Ryjacek and
I. Schiermeyer. The rainbow connection number of 2-connected graphs. Discrete
Math. 313(19) (2013), 1884-1892.

A. Kemnitz and I. Schiermeyer. Graphs with rainbow connection number two. Dis-
cuss. Math. Graph Theory 31(2) (2011), 313-320.

M. Krivelevich and R. Yuster. The rainbow connection of a graph is (at most) recip-
rocal to its minimum degree. J. Graph Theory 63(3) (2009), 185-191.

V. B. Le and Zs. Tuza. Finding optimal rainbow connection is hard. Technical Report
CS-03-09, Universitat Rostock, (2009).

H. Lei, S. Li, H. Liu and Y. Shi. Rainbow vertex connection of digraphs. J. Comb.
Optim. (2017) https://doi.org/10.1007/s10878-017-0156-7

H. Lei, H. Liu, C. Magnant and Y. Shi. Total rainbow connection of digraphs. Discrete
Appl. Math. (2017) https://doi.org/10.1016/j.dam.2017.10.016

X. Li, Y. Shi and Y. Sun. Rainbow Connections of Graphs: A survey. Graphs Combin.
29 (2013), 1-38.

X. Li and Y. Sun. Rainbow Connections of Graphs. Springer Briefs in Mathematics,
Springer (2012).

H. Liu, A. Mestre and T. Sousa. Total rainbow k-connection in graphs. Discrete Appl.
Math. 174 (2014), 92-101.

I. Schiermeyer. Rainbow connection in graphs with minimum degree three. IWOCA
2009, Lect. Notes Comput. Sci. 5874 (2009), 432-437.

I. Schiermeyer. Rainbow connection and minimum degree. Discrete Appl. Math.
161(12) (2013), 1784-1787.

E. Sidorowicz and E. Sopena. Strong Rainbow Connection in Digraphs. Preprint
(2016).

29



	Introduction
	Preliminaries
	Some basic results
	Digraphs with non-maximum connection numbers
	Digraphs with maximum connection numbers

