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e, Fran
eAbstra
t. We prove that there exist oriented planar graphs with oriented 
hromati
 number at least 16. Usinga result of Raspaud and Sopena [Good and semi-strong 
olorings of oriented planar graphs, Inf. Pro
essingLetters 51, 171{174, 1994℄, this gives that the oriented 
hromati
 number of the family of oriented planargraphs lies between 16 and 80.Keywords. 
ombinatorial problems, oriented graph 
olouring, graph homomorphism.1 Introdu
tionWe 
onsider oriented graphs, that is digraphs having no loops and no opposite ar
s. If G is an orientedgraph, we denote by V (G) its set of verti
es and by E(G) its set of ar
s. If xy is an ar
 in E(G), wesay that y is a su

essor of x and that x is a prede
essor of y.An oriented k-
olouring of an oriented graphG is a mapping 
 : V (G) �! f1; 2; : : : ; kg su
h that (i)if xy 2 E(G) then 
(x) 6= 
(y) and (ii) if xy; zt 2 E(G) then 
(x) = 
(t) =) 
(y) 6= 
(z). With everyoriented k-
olouring 
 of G one 
an asso
iate a digraph H
, 
alled the 
olour-graph of 
, with vertexset V (H
) = f
(x); x 2 V (G)g and ar
 set E(H
) = f
(x)
(y); xy 2 E(G)g. Thanks to 
onditions (i)and (ii), H
 is an oriented graph. The oriented k-
olouring 
 
an then be viewed as a homomorphism(that is an ar
-preserving vertex mapping) from G to H
. Similarly, every homomorphism of G to anoriented graph H on k verti
es 
an be viewed as an oriented k-
olouring of G, using the verti
es of Has 
olours. Oriented 
olourings have been introdu
ed in [5℄ and studied by several authors (see [7℄ fora general overview). In parti
ular, various problems related to planar graphs are dis
ussed in [1℄, [2℄and [4℄.The oriented 
hromati
 number ~�(G) of an oriented graph G is de�ned as the smallest k su
hthat G admits an oriented k-
olouring or, equivalently, as the smallest order of an oriented graph Hsu
h that G admits a homomorphism to H. The oriented 
hromati
 number ~�(F) of a family F oforiented graphs is then de�ned as the largest oriented 
hromati
 number among the oriented 
hromati
numbers of its members (~�(F) 
an thus be in�nite). Let us denote by P the family of oriented planargraphs. It has been proved in [6℄ that ~�(P) � 80.From the de�nition of oriented k-
olourings, we get that if xyz is a dire
ted 2-path in G (xy; yz 2E(G)) then 
(x) 6= 
(y) 6= 
(z) 6= 
(x) for every oriented k-
olouring 
 of G. In other words, any twoverti
es that are linked in G by a dire
ted path of length 1 or 2 must be assigned distin
t 
olours.Let G1 be the oriented graph having one vertex and no ar
 and Gi, i � 2, be the oriented graphobtained by taking two disjoint 
opies of Gi�1 and a new vertex xi and adding all the ar
s from theverti
es of the �rst 
opy towards xi and all the ar
s from xi towards the verti
es of the se
ond 
opy(see Figure 1). By 
onstru
tion, and 
onsidering the observation above, we get ~�(Gi) = 2i � 1 forevery i � 1. Note in parti
ular that the graph G3 is outerplanar and that the graph G4 is thus planar,so that ~�(P) � 15. In se
tion 2, we shall prove the following improvement of this lower bound:1
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Figure 1: A sequen
e of oriented graphs Gi, i � 1, with ~�(Gi) = 2i � 1Theorem 1 ~�(P) � 16.Let us say that an oriented graph U is F-universal for some family F of oriented graphs if everyoriented graph F 2 F admits a homomorphism to U . If the family F has oriented 
hromati
 numberat most k, a F -universal oriented graph on k verti
es does not ne
essarily exist. (Consider for instan
ethe family Gk of all oriented graphs on k verti
es; the oriented 
hromati
 number of Gk is 
learly atmost k but there exists no Gk-universal oriented graph on k verti
es sin
e su
h a graph would 
ontainall tournaments on k verti
es as subgraphs). However, if we 
onsider the family P of oriented planargraphs su
h a universal graph exists:Proposition 2 For every k > 0, if ~�(P) � k then there exists a P-universal graph on k verti
es.Proof. Suppose to the 
ontrary that for every oriented graph U on k verti
es there exists someoriented planar graph PU whi
h does not map homomorphi
ally to U . Denote by ` the number oforiented graphs on k verti
es and let Gk = fU1; U2; : : : ; U`g. Consider the oriented graph P obtainedby taking one 
opy of ea
h graph PU1 , PU2 , : : :, PU` and gluing them by identifying one vertex ofea
h of them into a unique vertex. The graph P thus obtained is 
learly planar and therefore thereexists some oriented graph Ui in Gk su
h that P �! Ui. Considering the restri
tion to PUi of su
h ahomomorphism, we get a homomorphism from PUi to Ui whi
h 
ontradi
ts our assumption. 22 Minimal P-universal graphsIn this se
tion we prove Theorem 1 using a series of Lemmas. For every oriented graph G and everyvertex x 2 V (G) we denote by �+G(x) the subgraph of G indu
ed by the su

essors of x and by ��G(x)the subgraph of G indu
ed by the prede
essors of x. For any two oriented graphs G1 and G2, we denoteby G1 \G2 the graph given by V (G1 \G2) = V (G1) \ V (G2) and E(G1 \G2) = E(G1) \E(G2).Let U be a minimal P-universal oriented graph (by minimal, we means here that no propersubgraph of U is P-universal).Lemma 3 There exists an oriented planar graph P � su
h that for every homomorphism ' : P � �! Uand every ar
 uv 2 E(U) there exists an ar
 xy 2 E(P �) su
h that '(x) = u and '(y) = v.Proof. Let uv be any ar
 in E(U). Sin
e U is minimal, there exists an oriented planar graph Puvsu
h that every homomorphism from Puv to U has to use the ar
 uv (otherwise, the ar
 uv 
ould bedeleted from U). We now 
onstru
t the oriented graph P � as follows: take one 
opy of Puv for everyuv 2 E(U) and glue them together by 
hoosing one vertex in ea
h 
opy and identifying them into aunique vertex. The graph P � thus obtained is 
learly planar and every homomorphism from P � to Uindu
es a homomorphism from Puv to U for every uv 2 E(U). Therefore, every su
h homomorphismhas to use all the ar
s of U and we are done. 2Lemma 4 For every vertex u 2 V (U), jV (�+U (x))j � 7 and jV (��U (x))j � 7.



E. Sopena 3Proof. Consider the oriented graph P obtained from P � by adding, for every vertex x 2 V (P �), two
opies of the oriented graph G3 (given in Figure 1) together with ar
s from x towards every vertex ofthe �rst 
opy and ar
s from every vertex of the se
ond 
opy towards x. Sin
e G3 is outerplanar, theoriented graph P thus obtained is planar. Every homomorphism from P to U has to use every ar
,and thus every vertex, of U sin
e P � is a subgraph of P . Considering the fa
t that ~�(G3) = 7 we getthe desired result. 2Lemma 4 shows in parti
ular that if U is an oriented graph on 15 verti
es then U is a tournament andevery vertex u 2 V (U) has exa
tly 7 prede
essors and 7 su

essors.Lemma 5 If U is a tournament on 15 verti
es then for every ar
 uv 2 E(U), for every A 2f�+U (u);��U (u)g, B 2 f�+U (v);��U (v)g, jV (A \B)j � 3. Moreover, if jV (A\B)j = 3 then the subgraphA \B is the dire
ted 
y
le on three verti
es.Proof. Let P4 be the dire
ted path on 4 verti
es. Every oriented 
olouring of P4 has to use at least3 
olours and, if 
 is an oriented 3-
olouring of P4, the 
olour-graph of 
 has to be the dire
ted 
y
leon 3 verti
es.Let now P be the oriented graph obtained from P � by adding, for every ar
 xy 2 E(P �), four
opies of P4, say P 14 , P 24 , P 34 and P 44 with ar
s from x towards every vertex of P i4 if i 2 f1; 2g, ar
sfrom every vertex of P i4 towards x if i 2 f3; 4g, ar
s from y towards every vertex of P i4 if i 2 f1; 3g,and ar
s from every vertex of P i4 towards y if i 2 f2; 4g. The graph P thus obtained is 
learly planarand, sin
e every homomorphism from P to U has to use all the ar
s of U , we get the desired result. 2Lemma 5 shows in parti
ular that if U is a tournament on 15 verti
es then for any two verti
es u andv in V (U), one of the four subgraphs �+U (u)\�+U (v), �+U (u)\��U (v), ��U (u)\�+U (v) and ��U (u)\��U (v)has exa
tly four verti
es while the three others are the dire
ted 
y
le on three verti
es.Lemma 6 If U is a tournament on 15 verti
es then every three verti
es u; v; w 2 V (U) have a 
ommonsu

essor.Proof. We have two 
ases to 
onsider depending on whether u; v; w indu
e a transitive tournamentor a dire
ted 
y
le.Case 1. u; v; w indu
e a transitive tournament.Without loss of generality, we may assume that uv; uw; vw 2 E(U). If �+U (u)\�+U (v) is the dire
ted
y
le on 3 verti
es (Lemma 5) we are done sin
e w 2 V (�+U (u)\�+U(v)) and the su

essor of w in this
y
le is also a su

essor of u and v.Suppose now that �+U (u) \ �+U (v) has 4 verti
es. If w has a su

essor in �+U (u) \ �+U (v) then thissu

essor is again also a su

essor of u and v. If w has no su

essor in �+U (u) \ �+U(v) let us 
ountthe prede
essors of w in U : w has 3 prede
essors in �+U(u) \ �+U(v), 3 prede
essors in ��U (u) \ ��U (w),whi
h, in
luding u and v, gives 8 prede
essors. This 
ontradi
ts Lemma 4.Case 2. u; v; w indu
e a dire
ted 
y
le.Assume to the 
ontrary that u, v and w have no 
ommon su

essor in U . Considering the stru
tureof the graph U (see Figure 2), we will show that we ne
essary get a 
ontradi
tion to Lemma 4.Let us denote by Uuv (resp. Uvw, Uwu) the set V (�+U (u) \ �+U(v)) (resp. V (�+U (v) \ �+U (w)),V (�+U (w) \ �+U (u))). These three sets are 
learly disjoint. By Lemma 5, we know that ea
h of thesesets 
ontains at least 3 verti
es and, by our assumption, that w is a su

essor of Uuv, u is a su

essorof Uvw and v is a su

essor of Uwu.Let us now 
ount the su

essors of u: v is a su

essor of u, as well as the verti
es of Uuv and Uwu.Therefore, Uuv and Uwu ne
essarily 
ontain exa
tly 3 verti
es ea
h, otherwise Lemma 4 would be
ontradi
ted. Considering in a similar way the su

essors of v, or w, we get that the third set Uvwmust also 
ontain exa
tly 3 verti
es. By Lemma 5 we thus get that ea
h of these three sets indu
es
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Figure 2: The stru
ture of the graph Ua dire
ted 
y
le on 3 verti
es. Let then Uuv be the dire
ted 
y
le a1a2a3, Uvw be the dire
ted 
y
leb1b2b3 and Uwu be the dire
ted 
y
le 
1
2
3.Let us denote by t1, t2 and t3 the three remaining verti
es in U . Sin
e u, v and w have already7 su

essors, the verti
es t1, t2 and t3 are ne
essarily prede
essors of u, v and w (otherwise Lemma 4would be 
ontradi
ted).Let us �nally 
onsider the 
ommon su

essors of u and any ai, 1 � i � 3. We know by Lemma 5that there are at least 3 su
h 
ommon su

essors. One of them is ai+1 (mod 3) and the at least twoothers ne
essarily belong to Uwu. Similarly, 
onsidering the 
ommon su

essors of u and any 
i,1 � i � 3, we get that ea
h 
i has at least two su

essors in Uuv. The number of ar
s between Uuvand Uwu is therefore at least 12, a 
ontradi
tion sin
e ea
h of these sets has only 3 verti
es. 2From Lemmas 4, 5 and 6, we get that if U is a tournament on 15 verti
es then every vertex has 7su

essors, every two verti
es have at least 3 
ommon su

essors and every three verti
es have at leastone 
ommon su

essor. The proof of Theorem 1 follows from the fa
t that su
h a tournament 
annotexist, as shown by the following result of Brown and Reid (
onsidering the 
ase n = 1):Theorem 7 ([3℄) There exists no tournament on 8n+ 7 verti
es su
h that every vertex has at least4n+ 3 su

essors, every two verti
es have at least 2n+ 1 
ommon su

essors and every three verti
eshave at least n 
ommon su
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