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Abstract. We prove that there exist oriented planar graphs with oriented chromatic number at least 16. Using
a result of Raspaud and Sopena [Good and semi-strong colorings of oriented planar graphs, Inf. Processing
Letters 51, 171-174, 1994], this gives that the oriented chromatic number of the family of oriented planar
graphs lies between 16 and 80.
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1 Introduction

We consider oriented graphs, that is digraphs having no loops and no opposite arcs. If G is an oriented
graph, we denote by V(G) its set of vertices and by E(G) its set of arcs. If zy is an arc in E(G), we
say that y is a successor of x and that x is a predecessor of y.

An oriented k-colouring of an oriented graph G is a mapping ¢ : V(G) — {1,2,..., k} such that (4)
if zy € E(G) then c(z) # c(y) and (1) if zy, 2zt € E(G) then c(z) = c(t) = c(y) # c(z). With every
oriented k-colouring ¢ of G one can associate a digraph H,, called the colour-graph of ¢, with vertex
set V(H.) = {c(z), z € V(G)} and arc set E(H.) = {c¢(x)c(y), xy € E(G)}. Thanks to conditions (%)
and (i1), H. is an oriented graph. The oriented k-colouring ¢ can then be viewed as a homomorphism
(that is an arc-preserving vertex mapping) from G to H.. Similarly, every homomorphism of G to an
oriented graph H on k vertices can be viewed as an oriented k-colouring of G, using the vertices of H
as colours. Oriented colourings have been introduced in [5] and studied by several authors (see [7] for
a general overview). In particular, various problems related to planar graphs are discussed in [1], [2]
and [4].

The oriented chromatic number X(G) of an oriented graph G is defined as the smallest k such
that G admits an oriented k-colouring or, equivalently, as the smallest order of an oriented graph H
such that G admits a homomorphism to H. The oriented chromatic number x(F) of a family F of
oriented graphs is then defined as the largest oriented chromatic number among the oriented chromatic
numbers of its members (¥(F) can thus be infinite). Let us denote by P the family of oriented planar
graphs. It has been proved in [6] that y(P) < 80.

From the definition of oriented k-colourings, we get that if zyz is a directed 2-path in G (zy,yz €
E(Q@)) then c(x) # c(y) # c¢(z) # ¢(x) for every oriented k-colouring ¢ of G. In other words, any two
vertices that are linked in G' by a directed path of length 1 or 2 must be assigned distinct colours.
Let G be the oriented graph having one vertex and no arc and G;, i > 2, be the oriented graph
obtained by taking two disjoint copies of G;_1 and a new vertex z; and adding all the arcs from the
vertices of the first copy towards z; and all the arcs from z; towards the vertices of the second copy
(see Figure 1). By construction, and considering the observation above, we get Y(G;) = 2¢ — 1 for
every 1 > 1. Note in particular that the graph G3 is outerplanar and that the graph G4 is thus planar,
so that x(P) > 15. In section 2, we shall prove the following improvement of this lower bound:
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Figure 1: A sequence of oriented graphs Gj, i > 1, with ¥(G;) =2/ — 1

Theorem 1 ¥(P) > 16.

Let us say that an oriented graph U is F-universal for some family F of oriented graphs if every
oriented graph F' € F admits a homomorphism to U. If the family F has oriented chromatic number
at most k, a F-universal oriented graph on k vertices does not necessarily exist. (Consider for instance
the family G of all oriented graphs on k vertices; the oriented chromatic number of G is clearly at
most k but there exists no Gi-universal oriented graph on k vertices since such a graph would contain
all tournaments on k vertices as subgraphs). However, if we consider the family P of oriented planar
graphs such a universal graph exists:

Proposition 2 For every k > 0, if X(P) < k then there exists a P-universal graph on k vertices.

Proof. Suppose to the contrary that for every oriented graph U on k vertices there exists some
oriented planar graph Py which does not map homomorphically to U. Denote by ¢ the number of
oriented graphs on k vertices and let G, = {Uy,Us,...,Us}. Consider the oriented graph P obtained
by taking one copy of each graph Py, Pr,, ..., Py, and gluing them by identifying one vertex of
each of them into a unique vertex. The graph P thus obtained is clearly planar and therefore there
exists some oriented graph U; in G such that P — U;. Considering the restriction to Py, of such a
homomorphism, we get a homomorphism from P, to U; which contradicts our assumption. a

2 Minimal P-universal graphs

In this section we prove Theorem 1 using a series of Lemmas. For every oriented graph G and every
vertex z € V(G) we denote by I'5(z) the subgraph of G induced by the successors of z and by T';(x)
the subgraph of GG induced by the predecessors of x. For any two oriented graphs G; and Go, we denote
by G1 NG5 the graph given by V(G1 N GQ) = V(Gl) N V(Gg) and E(G1 N GQ) = E(Gl) N E(Gg)

Let U be a minimal P-universal oriented graph (by minimal, we means here that no proper
subgraph of U is P-universal).

Lemma 3 There exists an oriented planar graph P* such that for every homomorphism o : P* — U
and every arc uv € E(U) there ezists an arc xy € E(P*) such that o(z) = u and ¢(y) = v.

Proof. Let uv be any arc in E(U). Since U is minimal, there exists an oriented planar graph P,
such that every homomorphism from P,, to U has to use the arc uv (otherwise, the arc uv could be
deleted from U). We now construct the oriented graph P* as follows: take one copy of P, for every
uwv € E(U) and glue them together by choosing one vertex in each copy and identifying them into a
unique vertex. The graph P* thus obtained is clearly planar and every homomorphism from P* to U
induces a homomorphism from P,, to U for every uv € E(U). Therefore, every such homomorphism
has to use all the arcs of U and we are done. a

Lemma 4 For every vertez u € V(U), |V (T (z))] > 7 and |V (T; ()] > 7.



E. SOPENA 3

Proof. Consider the oriented graph P obtained from P* by adding, for every vertex z € V(P*), two
copies of the oriented graph G3 (given in Figure 1) together with arcs from z towards every vertex of
the first copy and arcs from every vertex of the second copy towards x. Since G5 is outerplanar, the
oriented graph P thus obtained is planar. Every homomorphism from P to U has to use every arc,
and thus every vertex, of U since P* is a subgraph of P. Considering the fact that ¥(G3) =7 we get
the desired result. a

Lemma 4 shows in particular that if U is an oriented graph on 15 vertices then U is a tournament and
every vertex u € V(U) has exactly 7 predecessors and 7 successors.

Lemma 5 If U is a tournament on 15 wvertices then for every arc wv € E(U), for every A €
{Tf(u), T (u)}, B € {TF (), Ty (v)}, V(AN B)| > 3. Moreover, if [V(AN B)| =3 then the subgraph
AN B is the directed cycle on three vertices.

Proof. Let P; be the directed path on 4 vertices. Every oriented colouring of P4 has to use at least
3 colours and, if ¢ is an oriented 3-colouring of Py, the colour-graph of ¢ has to be the directed cycle
on 3 vertices.

Let now P be the oriented graph obtained from P* by adding, for every arc zy € E(P*), four
copies of Py, say P{, P}, P} and P} with arcs from z towards every vertex of P} if i € {1,2}, arcs
from every vertex of P} towards z if i € {3,4}, arcs from y towards every vertex of P} if i € {1,3},
and arcs from every vertex of P} towards y if i € {2,4}. The graph P thus obtained is clearly planar
and, since every homomorphism from P to U has to use all the arcs of U, we get the desired result. O

Lemma 5 shows in particular that if U is a tournament on 15 vertices then for any two vertices « and
v in V(U), one of the four subgraphs T'f;(u) NT{;(v), Tf(u) N (v), T (u) NTH (v) and Ty (u) N Ty (v)
has exactly four vertices while the three others are the directed cycle on three vertices.

Lemma 6 IfU is a tournament on 15 vertices then every three vertices u,v,w € V(U) have a common
SUCCESSOT.

Proof. We have two cases to consider depending on whether u, v, w induce a transitive tournament
or a directed cycle.
Case 1. u,v,w induce a transitive tournament.

Without loss of generality, we may assume that uv, uw,vw € E(U). If T'f;(u) T (v) is the directed
cycle on 3 vertices (Lemma 5) we are done since w € V (I'f;(u) NT';(v)) and the successor of w in this
cycle is also a successor of u and v.

Suppose now that I';;(u) N I'F;(v) has 4 vertices. If w has a successor in I'f;(u) N T (v) then this
successor is again also a successor of v and v. If w has no successor in Fﬁ(u) N Fﬁ(v) let us count
the predecessors of w in U: w has 3 predecessors in I'f;(u) N I'f;(v), 3 predecessors in I'y;(u) N ' (w),
which, including v and v, gives 8 predecessors. This contradicts Lemma 4.

Case 2. u,v,w induce a directed cycle.

Assume to the contrary that u, v and w have no common successor in U. Considering the structure
of the graph U (see Figure 2), we will show that we necessary get a contradiction to Lemma, 4.

Let us denote by Uy, (resp. Uyy, Uyy) the set V(T (u) N TH(v)) (resp. V(I (v) N T (w)),
V(T (w) NT{(u))). These three sets are clearly disjoint. By Lemma 5, we know that each of these
sets contains at least 3 vertices and, by our assumption, that w is a successor of Uy, u is a successor
of U,y and v is a successor of Uy,,.

Let us now count the successors of u: v is a successor of u, as well as the vertices of Uy, and Uy,,.
Therefore, U,, and U,, necessarily contain exactly 3 vertices each, otherwise Lemma 4 would be
contradicted. Considering in a similar way the successors of v, or w, we get that the third set Uy,
must also contain exactly 3 vertices. By Lemma 5 we thus get that each of these three sets induces
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Figure 2: The structure of the graph U

a directed cycle on 3 vertices. Let then U,, be the directed cycle ajasas, Uy, be the directed cycle
b1bobs and U, be the directed cycle ¢;cocs.

Let us denote by t1, to and t3 the three remaining vertices in U. Since u, v and w have already
7 successors, the vertices t1, to and t3 are necessarily predecessors of u, v and w (otherwise Lemma 4
would be contradicted).

Let us finally consider the common successors of u and any a;, 1 <1 < 3. We know by Lemma 5
that there are at least 3 such common successors. One of them is a; 11 (moa 3) and the at least two
others necessarily belong to U,,. Similarly, considering the common successors of u and any c;,
1 <4 <3, we get that each ¢; has at least two successors in U,,. The number of arcs between U,
and Uy, is therefore at least 12, a contradiction since each of these sets has only 3 vertices. O

From Lemmas 4, 5 and 6, we get that if U is a tournament on 15 vertices then every vertex has 7
successors, every two vertices have at least 3 common successors and every three vertices have at least
one common successor. The proof of Theorem 1 follows from the fact that such a tournament cannot
exist, as shown by the following result of Brown and Reid (considering the case n = 1):

Theorem 7 ([3]) There exists no tournament on 8n + 7 vertices such that every vertez has at least
4dn + 3 successors, every two vertices have at least 2n + 1 common successors and every three vertices
have at least n common successors.
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