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Abstract. An oriented k-coloring of an oriented graph G (that is a digraph with no cycle of length 2) is a
partition of its vertex set into k subsets such that (i) no two adjacent vertices belong to the same subset and
(i7) all the arcs between any two subsets have the same direction.

We survey the main results that have been obtained on oriented graph colorings.
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1 Introduction

If G is a graph or a digraph, we denote by V(G) its vertex set and by E(G) its edge or arc set. All
the graphs we consider are simple, that is they have neither multiple edges nor loops, and connected.
Let G and G’ be either two graphs or two digraphs. A homomorphism of G to G’ is a mapping
[ :V(G) = V(G') that preserves the edges or the arcs: zy € F(G) implies f(z)f(y) € E(G'). The
existence (resp. non-existence) of such a homomorphism is denoted by G — G’ (resp. G 4 G').

A (proper) k-coloring of a graph H is a partition of V/(H) into k subsets, called color classes, such
that no two adjacent vertices belong to the same color class. Such a k-coloring can be equivalently
regarded as a homomorphism of H to the complete graph K} on k vertices. Therefore, the chromatic
number x(H) of a graph H, defined as the smallest k such that H admits a k-coloring, corresponds
to the smallest k such that H — Ky and H 5 Kj_q.

An orientation of a graph H is a digraph obtained from H by giving to every edge one of its two
possible orientations. A digraph G is an oriented graph if it is an orientation of some graph H. As
before, homomorphisms of oriented graphs induce the notion of oriented graph coloring as follows. An
oriented k-coloring of an oriented graph G is a partition of V(G) into k color classes such that: (7)
no two adjacent vertices belong to the same color class and (i) all the arcs linking two color classes
have the same direction. We can then define the oriented chromatic number of an oriented graph G,
denoted by ocn(G), as the smallest k such that G has an oriented k-coloring or, equivalently, as the
minimum order of an oriented graph G’ such that G — G’. This notion can be extended to graphs
as follows: the oriented chromatic number of a graph H is defined as the maximum of the oriented
chromatic numbers of its orientations. Similarly, the oriented chromatic number of a family of graphs
or oriented graphs is defined as the maximum of the oriented chromatic numbers of its members.

Observe that conditions () and (i7) above imply that any two vertices linked by a directed path
of length 1 or 2 must be assigned distinct colors in any oriented coloring. We then get for instance
that the oriented chromatic number of the directed cycle on five vertices is 5. This property can also
be expressed by saying that homomorphisms of oriented graphs “preserve” directed paths of length 2
(the image of such a path is still a directed path of length 2). Homomorphisms preserving other type
of configurations, namely paths of length k or trees, have been considered in [19].

Homomorphisms of graphs have been extensively studied and, in particular, many papers have
been devoted to the complexity of the so-called H -coloring decision problem: given a graph H, what
is the complexity of deciding whether a graph G has a homomorphism to H or not ? Hell and Neset#il
solved this question in the undirected case [13]: the H-coloring problem is polynomial if the graph H is
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bipartite and NP-complete otherwise. The situation seems to be more complicated in the directed case
and only partial results have been obtained (see [10, 11] for recent results concerning this problem).

The particular case of oriented colorings have been first considered by Courcelle [9] as a tool for
encoding graph orientations by means of vertex labels. Since then, oriented colorings have attracted
very much attention and the aim of this paper is to survey the main results that have been obtained.
The links between oriented colorings and acyclic (usual) colorings is discussed in Section 2. Section 3
deals with oriented colorings of planar graphs while Section 4 considers the case of graphs with bounded
degree or bounded treewidth. The notion of universal graphs is introduced and discussed in Section 5.
Finally, some other related types of colorings, namely colorings of edge-colored graphs and strong
colorings, are respectively considered in Sections 6 and 7.

2 Oriented and acyclic chromatic numbers

One of the first problems that have been considered in the framework of oriented colorings was to
characterize the families of graphs having bounded oriented chromatic number. It appears that these
families are exactly the families having bounded acyclic chromatic number.

Recall that a k-coloring of a graph H is acyclic if every subgraph of H induced by two color classes
is acyclic. The acyclic chromatic number of H, denoted by x,(H), is then defined as the smallest k
such that H has an acyclic k-coloring. In [20], Raspaud and Sopena proved that families of graphs
with bounded acyclic chromatic number have also bounded oriented chromatic number:

Theorem 1 (Raspaud and Sopena, 1994)
If a graph H has acyclic chromatic number at most k then its oriented chromatic number is at most
k x 2k=1,

Proof. Let a be an acyclic k-coloring of H and H be any orientation of H. We denote by ﬁi,j,
1 <i < j <k, the subgraph of H induced by vertices z with a(z) € {i,5} (since a is acyclic, ﬁ” is an
oriented forest). We inductively define an oriented 4-coloring ¢; ; of ﬁi,j as follows: pick any vertex
z in each component of ﬁ” and set ¢; j(z) := (a(z),0). Then, for every uncolored vertex z linked to
some vertex y with ¢; j(y) = (a(y), @), a € {0,1}, set

o ¢;(2z):=(a(z),a) if yz (resp. zy) is an arc in E(ﬁi,j) and a(y) =1 (resp. a(y) = j),
e ¢;(z):=(a(z),1 — a) otherwise.

This mapping ¢; ; is indeed a homomorphism of ﬁi,j to the directed 4-cycle (i,0) — (5,0) — (i,1) —

(7,1) = (7,0). It is then not difficult to check that the mapping ¢ defined for every z € V(H) by
C(:E) = (0,(1‘), C1,a(z) (iL‘), -+ Ca(z)—1,a(x) (:E), Ca(z),a(x)+1 (:E), < Co(x)k (:E))

is an oriented (k x 2¥~1)-coloring of H. |

From Theorem 1 we get for instance that the families of graphs with bounded degree, bounded
treewidth or bounded genus have bounded oriented chromatic number. An upper bound on the acyclic
chromatic number in terms of the oriented chromatic number has been obtained in [15]:

Theorem 2 (Kostochka et al., 1997)

If a graph H has oriented chromatic number at most k then its acyclic chromatic number is at most
L Noga([logy k1+k/2)]+1

Sketch of proof. Recall that the arboricity of a graph H is the minimum number ¢ such that the
edges of H can be decomposed into ¢ forests. The idea is to prove first that every graph with oriented
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chromatic number at most k has arboricity at most [log, k + k/2] and then that every graph with

oriented chromatic number at most & and arboricity at most ¢ has acyclic chromatic number at most
L logy ql+1 g

Theorem 1 can be generalized to the case of acyclic improper colorings, introduced by Boiron et
al. in [4]. A coloring of a graph is said to be improper if adjacent vertices may be assigned the same
color. More formally, if Py, P,, ..., P, are graph properties, a (P;, Ps, ..., Pg)-coloring of a graph G
is a partition (Vi,Va,..., Vi) of V(G) such that for every i, 1 < i < k, the subgraph G[V;] induced
by the color class V; satisfies the property P;. Such an improper coloring is acyclic if for every 1, 7,
1 <i < j <k, the subgraph induced by all the edges linking V; to V; is acyclic. Then we have [4]:

Theorem 3 (Boiron et al., 1999)

If P, Py, ..., Py are graph properties such that for every i, 1 < i <k, the family of graphs satisfying P;
has oriented chromatic number at most «; then every graph having an acyclic (Py, Py, ..., Py)-coloring
has oriented chromatic number at most 281 x Zle Q.

If for every i the property P; is the property of having no edges (all the «;’s are equal to 1), acyclic
(Py, Py, ..., Pg)-colorings are then usual acyclic colorings and we get Theorem 1. Acyclic improper
colorings of planar graphs and of graphs with bounded degree have been considered in [4, 5].

3 Planar graphs

A celebrated result of Borodin [3] states that every planar graph has acyclic chromatic number at
most five. From Theorem 1 we thus get:

Corollary 4
Every planar graph has oriented chromatic number at most 80.

In [21], an oriented planar graph with oriented chromatic number at least 16 has been constructed.
The gap between the lower and the upper bounds for the oriented chromatic number of planar graphs
is thus still large and, despite many efforts, has not been reduced up to now.

However, the upper bound can be significantly lowered when considering planar graphs with large
girth [6, 18] (recall that the girth of a graph G is the smallest size of a cycle in G). More precisely, we
have the following [6]:

Theorem 5 (Borodin et al., 1999)
Every planar graph with girth at least 14 (resp. 8,6,5) has oriented chromatic number at most § (resp.
7,11,19).

In fact, this result follows from a more general theorem. The mazimum average degree mad(H) of
a graph H is defined as the maximum of the average degrees ad(H') = 2|E(H')|/|V (H')| taken over
all the subgraphs H' of H. Then we have [6]:

Theorem 6 (Borodin et al., 1999)
Every graph with mazimum average degree at most 7/3 (resp. 11/4, 3, 10/3) has oriented chromatic
number at most 5 (resp. 7,11,19).

If H is a planar graph with girth at least g then the number of faces in G is at most 2|E(G)|/g. By
; 2|E(G)] 29|E(G)]
Euler’s forml'lla we then get that Tprar < 29+(372)|E(G)‘ and thus mad(H) < 2g/(g — 2). Therefore,
Theorem 5 directly follows from Theorem 6.

Recall that the circulant digraph G = G(n;c1,¢2,...,¢c), n > 0, 1 < ¢; < n for every i, is
defined by V(G) = {0,1,...,n — 1} and zy € E(G) if and only if y =  + ¢; (mod n) for some i,
1 <4 < k. Theorem 6 has been proved by showing that the corresponding oriented graphs admit a
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Figure 1: An oriented outerplanar graph with oriented chromatic number 7

homomorphism respectively to G(7;1,2,4), G(11;1,3,4,5,9) and G(19;1,4,5,6,7,9,11,16,17). For
these three circulant tournaments, the ¢;’s are exactly the non-zero quadratic residues of n.

It is not difficult to construct families of graphs with maximum average degree 4 and unbounded
oriented chromatic number. When the maximum average degree tends to 4, we have the following
phenomenon [6]:

Theorem 7 (Borodin et al., 1999)

Every graph with mazimum average degree less than 4(1 —2/(n+ 1)), n > 25, has oriented chromatic
n+1

number at most (n+5) x 272 .
For every k > 0, there exists a graph of arbitrarily large girth with mazimum average degree less than
4(1 — 1/k) and oriented chromatic number at least k.

To see that the first statement of Theorem 7 is optimal it is sufficient to consider the oriented graph
By, n > 2, obtained from the undirected complete graph K, by replacing each edge by a directed
path of length two going through some new vertex. Since any two of the n vertices with degree n — 1
are linked by a directed path of length 2, they must be assigned distinct colors in any coloring of B,
and thus ocn(B,) > n. Moreover, it is easy to check that the maximum average degree of B, is

_ 2|E(By)| _ 2n(n-—1) 41— 2
V(B _n+@_ n+1

mad(By,)

).

For outerplanar graphs, we have the following [21]:

Theorem 8 (Sopena, 1997)
Every outerplanar graph has oriented chromatic number at most 7.

Proof. We claim that every orientation G of an outerplanar graph has a homomorphism to the
circulant tournament 77 = G(7;1,2,4). This tournament satisfies the following property: for every
ur,ug € V(T7), uy # ug, and every aq, a2 € {4, —}, there exists some v € V(T%) such that vu; € E(Tr)
if and only if o; = +, for 1 = 1,2. We then proceed by induction on the order of G. W.l.o.g. we may
assume that G is maximal outerplanar. The result is immediate if |V (G)| < 3. Otherwise there exists
a vertex z in G with degree two. Let yi,ys denote the two neighbours of x, and G’ the outerplanar
oriented graph obtained from G by removing x and adding the arc yy2 if y; and yo are not linked in
G. The above discussed property of T7 implies that we can extend any homomorphism of G’ to Ty to
a homomorphism of G to T7%. O

This bound is tight as shown by the oriented outerplanar graph depicted in Figure 1: this graph
has 7 vertices and any two of them are linked by a directed path of length at most two; its oriented
chromatic number is thus equal to 7.
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4 Graphs with bounded degree or bounded treewidth

Alon, McDiarmid and Reed proved in [1] that every graph with maximum degree k& has acyclic chro-
matic number at most O(k4/ 3). From Theorem 1, we thus get that graphs with maximum degree k
have oriented chromatic number at most O(k*/3) x 20(k**) — 90(k**) " This upper bound has been first
improved in [21], where it was shown that graphs with maximum degree k have oriented chromatic

number at most (2k — 1) x 22¥72, The best known upper bound is the following [15]:

Theorem 9 (Kostochka et al.)
Every graph with mazimum degree k has oriented chromatic number at most 2 x k2 x 2F.

This result is not far from being optimal since it was also proved in [15] that for each k& > 1, there
exists a graph with maximum degree k and oriented chromatic number at least 2¥/2. For small values
of k, we know that the oriented chromatic number of every graph with maximum degree two is at
most 5 (this bound is tight since the directed cycle on five vertices has oriented chromatic number 5)
and that the oriented chromatic number of every graph with maximum degree three is at most 11 [22].

Recall that a k-tree is a graph obtained from the complete graph Kj by repeatedly inserting new
vertices linked to an existing clique of size k. A graph is then said to have treewidth at most k if it is a
subgraph of some k-tree. The 1-trees are thus the usual trees while outerplanar graphs have treewidth
at most 2. From the above definition it can be easily seen that every k-tree is (k+1)-colorable: starting
with a k-coloring of the complete graph Kj, every newly inserted vertex has exactly k£ neighbors and
can be thus colored using a (k + 1)-th color. Moreover, this coloring is clearly acyclic since all the
neighbors of a newly inserted vertex have distinct colors. Therefore, every graph with treewidth at
most k has acyclic chromatic number at most k£ 4+ 1 and, by Theorem 1, oriented chromatic number
at most (k + 1) x 2%,

In case of graphs with treewidth at most 2 or 3, this upper bound can be improved as follows [21]:

Theorem 10 (Sopena, 1997)
Every 2-tree has oriented chromatic number at most 7. Every 3-tree has oriented chromatic number
at most 16.

Sketch of proof. Thanks to the property of the tournament 77 = G(7;1,2,4) discussed in the proof
of Theorem 8, every 2-tree clearly has a homomorphism to T%.

Let now Tig be the oriented graph obtained by taking two disjoint copies of T7 (the vertices of
the second copy are denote 0/,1’,...,6') and two vertices w and w' and adding the arcs wi, i'w, iw’,
w'i’, for every i = 0,1,...,6 and j'i, ji’, for every ij € E(T7). The oriented graph Tg satisfies the
following property: for every uy,us,us € V(Tig), uy # ug # us # uy, and every oy, ag, a3 € {+,—},
there exists some v € V(Tyg) such that vu; € E(Tig) (resp. u;v € E(Tyg)) if and only if o; = + (resp.
a; = —), for i = 1,2,3. It is then easy to prove by induction that every 3-tree has a homomorphism
to Tig. O

The outerplanar graph depicted in Figure 1 shows that the bound for 2-trees is tight. A graph
with treewidth 3 and oriented chromatic number 16 has been constructed in [21], showing that the
second upper bound is tight too.

5 Universal graphs and nice graphs

An oriented graph U is said to be universal for a family of graphs F if every orientation of every graph
in F has a homomorphism to U. For instance, the directed cycle on three vertices is universal for the
family of trees. Most of the previous results concerning upper bounds on oriented chromatic numbers
have been obtained by exhibiting some special universal oriented graphs [6, 18, 20].
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In particular, an oriented (non-planar) graph having 80 vertices which is universal for the family
of planar graphs has been constructed in [20]. The existence of planar oriented graphs which are
universal for families of planar graphs with high girth has been discussed in [7]. The following has
been proved:

Theorem 11 (Borodin et al., 1998)

There exists no planar oriented graph which is universal for the family of planar graphs with girth at
least 4.

There exists a planar oriented graph on 6 vertices which is universal for the family of planar graphs
with girth at least 16.

The first statement of Theorem 11 is proved by showing that every oriented graph which is universal
for the family of planar graphs with girth at least 4 and inclusion minimal has minimum degree 6 and,
therefore, cannot be planar. The second statement is obtained by proving that every planar graph
with girth at least 16 has a homomorphism to the oriented planar circulant graph G(6;1,2).

The minimum & such that there exists a planar oriented graph which is universal for the family of
planar graphs with girth at least k£ is not known up to now. Concerning the girth of universal graphs
we have [7]:

Theorem 12 (Borodin et al., 1998)
For every k > 3, there exists a (non-planar) oriented graph with girth at least k+ 1 which is universal
for the family of planar graphs with girth at least 40k.

However, such a universal graph with high girth cannot be planar, as shown by the following
result [12]:

Theorem 13 (Hell et al., 1998)
Every planar graph which is universal for the family of planar graphs with girth at least k, k > 3,
contains a triangle.

Theorem 13 follows from the fact that every such universal graph must be nice: an oriented graph
G is said to be n-nice for some n if for every two (not necessarily distinct) vertices z and y in G, and
every pattern p (given as a sequence of forward or backward arcs) of length n, there exists a directed
path with pattern p in G linking = to y. An oriented graph is then nice if it is n-nice for some n.
More precisely, we have [18]:

Theorem 14 (Nesetiil et al., 1997)
For every n > 3, every n-nice oriented graph is universal for the family of planar graphs with girth at
least 5bn — 4.

Sketch of proof. Let G be a planar graph. W.l.o.g. we assume that G' has no vertex with degree
1. Denote by V' the set of all branching vertices of G (that is vertices with degree at least 3). The
graph G can thus be viewed as a subdivision of a graph G’ with V(G’) = V'. The graph G’ is planar
and has minimal degree at least 3. As there is a vertex in the dual of G’ which has maximum degree
5 we get that some of the faces of G’ have at most 5 incident edges. Now if the girth of G is at least
5n — 4 then one of the edges of G’ has to be subdivided by n — 1 points. We thus proved that if G
has girth at least 5n — 4 then it contains a path of length n whose all internal vertices have degree 2.

Now let 7T}, be any n-nice oriented graph. Using the previous property, it is then easy to prove by
induction that every planar graph with girth at least 5n — 4 has a homomorphism to T;,. a

Theorem 15 (Hell et al., 1998)
Every graph which is universal for the family of planar graphs with girth at least g and minimal with
respect to this property is nice.

Characterizations of nice oriented graphs (and, more generally, of nice digraphs) have been dis-
cussed in [12].
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6 Homomorphisms of edge-colored graphs

In [2], Alon and Marshall studied a new notion of the chromatic number related to homomorphisms
of edge-colored graphs as introduced by Brewster [8]. An m-edge-colored graph is a graph whose edges
are colored using the set {1,2,...,m} as set of colors. Homomorphisms of edge-colored graphs are
then required to preserve the edge colors.

Alon and Marshall proved the following;:

Theorem 16 (Alon and Marshall, 1997)
For every m > 0, k > 0, there exists an m-edge-colored graph H,, ;. on k X m vertices such that
every m-edge-colored graph with acyclic chromatic number at most k has a homomorphism to Hy, .

k—1

When n = 2, this result is similar to Theorem 1 although there is no natural relation between
oriented graphs and 2-edge-colored graphs. These two results have been unified by Nesetiil and
Raspaud in [16] who considered the so-called colored mixed graphs. A mized graph is a graph whose
vertices are linked by edges or by arcs (in such a way that the underlying graph remains simple).
An (n,m)-colored mixed graph is a mixed graph whose arcs (resp. edges) are colored using the
set {1,2,...,n} (resp. {1,2,...,m}) as set of colors. By convention, (n,0)-colored mixed graphs
correspond to oriented graphs whose arcs are n-colored and (0, m)-colored mixed graphs correspond
to m-edge-colored graphs. Homomorphisms of colored mixed graphs are then required to map edges
to edges, arcs to arcs, and to preserve the colors. Nesetfil and Raspaud proved the following [16]:

Theorem 17 (Nesetiil and Raspaud, 1998)

For every n >0, m >0, k > 0, there exists an (n,m)-colored mized graph My, m 1 on k x (2n+m)* 1
vertices such that every (n,m)-colored mized graph with acyclic chromatic number at most k has a
homomorphism to My, p, j.

By respectively setting n = 1, m = 0 and n = 0 we get Theorems 1 and 16. By adapting a
construction given in [2], it can be shown that there exists (n,m)-colored mixed graphs with acyclic
chromatic number at most k& having no homomorphism to an (n,m)-colored mixed graph with less
than (2n 4+ m)*~! + k — 1 vertices. The upper bound given in Theorem 17 is thus in a sense best
possible.

7 Strong colorings and antisymmetric flows

Nesetfil and Raspaud introduced in [17] a restriction of the notion of oriented colorings. Let J be
an oriented graph whose set of vertices V' (J) = M is an abelian additive group with ¢ elements. An
M -strong-oriented coloring of an oriented graph G is a homomorphism f : G — J such that for every
two arcs (not necessarily disctinct) zy and z'y’ in G, we have f(z) — f(y) # —(f(z") — f(v)). The
smallest ¢ such that G admits an M-strong-oriented coloring, | M| = g, is the strong oriented chromatic
number of G and is denoted by socn(G). Clearly, oen(G) < soen(G) for every graph G.

Strong oriented chromatic numbers and acyclic chromatic numbers are related as follows [17]:

Theorem 18 (Nesetiil and Raspaud, 1999)
If H is a graph with acyclic chromatic number at most k then every orientation of H has strong
oriented chromatic number at most 6.

In particular, every planar graph has strong oriented chromatic number at most 6° = 7776.

By duality, strong oriented colorings induce the notion of antisymmetric flow. Recall that if M
is an abelian additive group and G an oriented graph, an M-flow is a mapping ® : E(G) — M such
that for every subset S of V(G), Yccwt(s) () — Xecw(s) (e) = 0, where wT(8) (resp. w(S))
stands for the set of arcs starting inside S (resp. outside S) and ending outside S (resp. inside S).
An antisymmetric M-flow is then defined as an M-flow such that (i) no arc is mapped to 0 and (%)
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no two arcs are mapped to opposite elements. By comparing the corresponding definitions, it is easy
to observe that an oriented planar graph G has an antisymmetric M-flow if and only if its dual G*
has an M-strong oriented coloring.

The main result concerning antisymmetric flows is the following [17]:

Theorem 19 (Nesetfil and Raspaud, 1999)
Every orientation of every 3-edge-connected graph admits an antisymmetric flow.

Several new questions related to antisymmetric flows are discussed in [17]. In particular, it is
still unknown whether the so-called upper A F-number of every 3-edge-connected graph H, defined as
the smallest ¢ such that every orientation H of H has an antisymmetric M gz-flow with [Mz| < ¢, is
bounded or not by some constant.
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