
LaBRI Researh Report No. Compiled on April 11, 2001The �nal version of this paper has been published in Disrete Math. 229 (2001), 359{369.ORIENTED GRAPH COLORING�Eri SOPENA1LaBRI, UMR 5800, Universit�e Bordeaux 1, 351 ours de la Lib�eration, 33405 Talene Cedex, Frane.Abstrat. An oriented k-oloring of an oriented graph G (that is a digraph with no yle of length 2) is apartition of its vertex set into k subsets suh that (i) no two adjaent verties belong to the same subset and(ii) all the ars between any two subsets have the same diretion.We survey the main results that have been obtained on oriented graph olorings.Keywords. Graph oloring, Graph homomorphisms, Oriented graphs, Oriented hromati number.1 IntrodutionIf G is a graph or a digraph, we denote by V (G) its vertex set and by E(G) its edge or ar set. Allthe graphs we onsider are simple, that is they have neither multiple edges nor loops, and onneted.Let G and G0 be either two graphs or two digraphs. A homomorphism of G to G0 is a mappingf : V (G) ! V (G0) that preserves the edges or the ars: xy 2 E(G) implies f(x)f(y) 2 E(G0). Theexistene (resp. non-existene) of suh a homomorphism is denoted by G! G0 (resp. G!= G0).A (proper) k-oloring of a graph H is a partition of V (H) into k subsets, alled olor lasses, suhthat no two adjaent verties belong to the same olor lass. Suh a k-oloring an be equivalentlyregarded as a homomorphism of H to the omplete graph Kk on k verties. Therefore, the hromatinumber �(H) of a graph H, de�ned as the smallest k suh that H admits a k-oloring, orrespondsto the smallest k suh that H ! Kk and H != Kk�1.An orientation of a graph H is a digraph obtained from H by giving to every edge one of its twopossible orientations. A digraph G is an oriented graph if it is an orientation of some graph H. Asbefore, homomorphisms of oriented graphs indue the notion of oriented graph oloring as follows. Anoriented k-oloring of an oriented graph G is a partition of V (G) into k olor lasses suh that: (i)no two adjaent verties belong to the same olor lass and (ii) all the ars linking two olor lasseshave the same diretion. We an then de�ne the oriented hromati number of an oriented graph G,denoted by on(G), as the smallest k suh that G has an oriented k-oloring or, equivalently, as theminimum order of an oriented graph G0 suh that G ! G0. This notion an be extended to graphsas follows: the oriented hromati number of a graph H is de�ned as the maximum of the orientedhromati numbers of its orientations. Similarly, the oriented hromati number of a family of graphsor oriented graphs is de�ned as the maximum of the oriented hromati numbers of its members.Observe that onditions (i) and (ii) above imply that any two verties linked by a direted pathof length 1 or 2 must be assigned distint olors in any oriented oloring. We then get for instanethat the oriented hromati number of the direted yle on �ve verties is 5. This property an alsobe expressed by saying that homomorphisms of oriented graphs \preserve" direted paths of length 2(the image of suh a path is still a direted path of length 2). Homomorphisms preserving other typeof on�gurations, namely paths of length k or trees, have been onsidered in [19℄.Homomorphisms of graphs have been extensively studied and, in partiular, many papers havebeen devoted to the omplexity of the so-alled H-oloring deision problem: given a graph H, whatis the omplexity of deiding whether a graph G has a homomorphism to H or not ? Hell and Ne�set�rilsolved this question in the undireted ase [13℄: the H-oloring problem is polynomial if the graph H is1This work has been partly supported by the Barrande grant no 97-137 and the NATO Collaborative Researh grant97-1519. 1



2 Oriented graph oloringbipartite and NP-omplete otherwise. The situation seems to be more ompliated in the direted aseand only partial results have been obtained (see [10, 11℄ for reent results onerning this problem).The partiular ase of oriented olorings have been �rst onsidered by Courelle [9℄ as a tool forenoding graph orientations by means of vertex labels. Sine then, oriented olorings have attratedvery muh attention and the aim of this paper is to survey the main results that have been obtained.The links between oriented olorings and ayli (usual) olorings is disussed in Setion 2. Setion 3deals with oriented olorings of planar graphs while Setion 4 onsiders the ase of graphs with boundeddegree or bounded treewidth. The notion of universal graphs is introdued and disussed in Setion 5.Finally, some other related types of olorings, namely olorings of edge-olored graphs and strongolorings, are respetively onsidered in Setions 6 and 7.2 Oriented and ayli hromati numbersOne of the �rst problems that have been onsidered in the framework of oriented olorings was toharaterize the families of graphs having bounded oriented hromati number. It appears that thesefamilies are exatly the families having bounded ayli hromati number.Reall that a k-oloring of a graph H is ayli if every subgraph of H indued by two olor lassesis ayli. The ayli hromati number of H, denoted by �a(H), is then de�ned as the smallest ksuh that H has an ayli k-oloring. In [20℄, Raspaud and Sopena proved that families of graphswith bounded ayli hromati number have also bounded oriented hromati number:Theorem 1 (Raspaud and Sopena, 1994)If a graph H has ayli hromati number at most k then its oriented hromati number is at mostk � 2k�1.Proof. Let a be an ayli k-oloring of H and ~H be any orientation of H. We denote by ~Hi;j,1 � i < j � k, the subgraph of ~H indued by verties x with a(x) 2 fi; jg (sine a is ayli, ~Hi;j is anoriented forest). We indutively de�ne an oriented 4-oloring i;j of ~Hi;j as follows: pik any vertexx in eah omponent of ~Hi;j and set i;j(x) := (a(x); 0). Then, for every unolored vertex z linked tosome vertex y with i;j(y) = (a(y); �), � 2 f0; 1g, set� i;j(z) := (a(z); �) if yz (resp. zy) is an ar in E( ~Hi;j) and a(y) = i (resp. a(y) = j),� i;j(z) := (a(z); 1 � �) otherwise.This mapping i;j is indeed a homomorphism of ~Hi;j to the direted 4-yle (i; 0) ! (j; 0) ! (i; 1) !(j; 1) ! (i; 0). It is then not diÆult to hek that the mapping  de�ned for every x 2 V ( ~H) by(x) = (a(x); 1;a(x)(x); : : : ; a(x)�1;a(x)(x); a(x);a(x)+1(x); : : : ; a(x);k(x))is an oriented (k � 2k�1)-oloring of ~H. 2From Theorem 1 we get for instane that the families of graphs with bounded degree, boundedtreewidth or bounded genus have bounded oriented hromati number. An upper bound on the aylihromati number in terms of the oriented hromati number has been obtained in [15℄:Theorem 2 (Kostohka et al., 1997)If a graph H has oriented hromati number at most k then its ayli hromati number is at mostkdlog2(dlog2 ke+k=2)e+1.Sketh of proof. Reall that the arboriity of a graph H is the minimum number q suh that theedges of H an be deomposed into q forests. The idea is to prove �rst that every graph with oriented



E. Sopena 3hromati number at most k has arboriity at most dlog2 k + k=2e and then that every graph withoriented hromati number at most k and arboriity at most q has ayli hromati number at mostkdlog2 qe+1. 2Theorem 1 an be generalized to the ase of ayli improper olorings, introdued by Boiron etal. in [4℄. A oloring of a graph is said to be improper if adjaent verties may be assigned the sameolor. More formally, if P1, P2, : : : ; Pk are graph properties, a (P1; P2; : : : ; Pk)-oloring of a graph Gis a partition (V1; V2; : : : ; Vk) of V (G) suh that for every i, 1 � i � k, the subgraph G[Vi℄ induedby the olor lass Vi satis�es the property Pi. Suh an improper oloring is ayli if for every i; j,1 � i < j � k, the subgraph indued by all the edges linking Vi to Vj is ayli. Then we have [4℄:Theorem 3 (Boiron et al., 1999)If P1; P2; : : : ; Pk are graph properties suh that for every i, 1 � i � k, the family of graphs satisfying Pihas oriented hromati number at most �i then every graph having an ayli (P1; P2; : : : ; Pk)-oloringhas oriented hromati number at most 2k�1 �Pki=1 �i.If for every i the property Pi is the property of having no edges (all the �i's are equal to 1), ayli(P1; P2; : : : ; Pk)-olorings are then usual ayli olorings and we get Theorem 1. Ayli improperolorings of planar graphs and of graphs with bounded degree have been onsidered in [4, 5℄.3 Planar graphsA elebrated result of Borodin [3℄ states that every planar graph has ayli hromati number atmost �ve. From Theorem 1 we thus get:Corollary 4Every planar graph has oriented hromati number at most 80.In [21℄, an oriented planar graph with oriented hromati number at least 16 has been onstruted.The gap between the lower and the upper bounds for the oriented hromati number of planar graphsis thus still large and, despite many e�orts, has not been redued up to now.However, the upper bound an be signi�antly lowered when onsidering planar graphs with largegirth [6, 18℄ (reall that the girth of a graph G is the smallest size of a yle in G). More preisely, wehave the following [6℄:Theorem 5 (Borodin et al., 1999)Every planar graph with girth at least 14 (resp. 8,6,5) has oriented hromati number at most 5 (resp.7,11,19).In fat, this result follows from a more general theorem. The maximum average degree mad(H) ofa graph H is de�ned as the maximum of the average degrees ad(H 0) = 2jE(H 0)j=jV (H 0)j taken overall the subgraphs H 0 of H. Then we have [6℄:Theorem 6 (Borodin et al., 1999)Every graph with maximum average degree at most 7/3 (resp. 11/4, 3, 10/3) has oriented hromatinumber at most 5 (resp. 7,11,19).If H is a planar graph with girth at least g then the number of faes in G is at most 2jE(G)j=g. ByEuler's formula we then get that 2jE(G)jjV (G)j � 2gjE(G)j2g+(g�2)jE(G)j and thus mad(H) < 2g=(g � 2). Therefore,Theorem 5 diretly follows from Theorem 6.Reall that the irulant digraph G = G(n; 1; 2; : : : ; k), n > 0, 1 � i < n for every i, isde�ned by V (G) = f0; 1; : : : ; n � 1g and xy 2 E(G) if and only if y = x + i (mod n) for some i,1 � i � k. Theorem 6 has been proved by showing that the orresponding oriented graphs admit a



4 Oriented graph oloring
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Figure 1: An oriented outerplanar graph with oriented hromati number 7homomorphism respetively to G(7; 1; 2; 4), G(11; 1; 3; 4; 5; 9) and G(19; 1; 4; 5; 6; 7; 9; 11; 16; 17). Forthese three irulant tournaments, the i's are exatly the non-zero quadrati residues of n.It is not diÆult to onstrut families of graphs with maximum average degree 4 and unboundedoriented hromati number. When the maximum average degree tends to 4, we have the followingphenomenon [6℄:Theorem 7 (Borodin et al., 1999)Every graph with maximum average degree less than 4(1� 2=(n+1)), n > 25, has oriented hromatinumber at most (n+ 5)� 2n+12 .For every k > 0, there exists a graph of arbitrarily large girth with maximum average degree less than4(1� 1=k) and oriented hromati number at least k.To see that the �rst statement of Theorem 7 is optimal it is suÆient to onsider the oriented graphBn, n > 2, obtained from the undireted omplete graph Kn by replaing eah edge by a diretedpath of length two going through some new vertex. Sine any two of the n verties with degree n� 1are linked by a direted path of length 2, they must be assigned distint olors in any oloring of Bnand thus on(Bn) � n. Moreover, it is easy to hek that the maximum average degree of Bn ismad(Bn) = 2jE(Bn)jjV (Bn)j = 2n(n� 1)n+ n(n�1)2 = 4(1� 2n+ 1):For outerplanar graphs, we have the following [21℄:Theorem 8 (Sopena, 1997)Every outerplanar graph has oriented hromati number at most 7.Proof. We laim that every orientation G of an outerplanar graph has a homomorphism to theirulant tournament T7 = G(7; 1; 2; 4). This tournament satis�es the following property: for everyu1; u2 2 V (T7), u1 6= u2, and every �1; �2 2 f+;�g, there exists some v 2 V (T7) suh that vui 2 E(T7)if and only if �i = +, for i = 1; 2. We then proeed by indution on the order of G. W.l.o.g. we mayassume that G is maximal outerplanar. The result is immediate if jV (G)j � 3. Otherwise there existsa vertex x in G with degree two. Let y1; y2 denote the two neighbours of x, and G0 the outerplanaroriented graph obtained from G by removing x and adding the ar y1y2 if y1 and y2 are not linked inG. The above disussed property of T7 implies that we an extend any homomorphism of G0 to T7 toa homomorphism of G to T7. 2This bound is tight as shown by the oriented outerplanar graph depited in Figure 1: this graphhas 7 verties and any two of them are linked by a direted path of length at most two; its orientedhromati number is thus equal to 7.



E. Sopena 54 Graphs with bounded degree or bounded treewidthAlon, MDiarmid and Reed proved in [1℄ that every graph with maximum degree k has ayli hro-mati number at most O(k4=3). From Theorem 1, we thus get that graphs with maximum degree khave oriented hromati number at most O(k4=3)�2O(k4=3) = 2O(k4=3). This upper bound has been �rstimproved in [21℄, where it was shown that graphs with maximum degree k have oriented hromatinumber at most (2k � 1)� 22k�2. The best known upper bound is the following [15℄:Theorem 9 (Kostohka et al.)Every graph with maximum degree k has oriented hromati number at most 2� k2 � 2k.This result is not far from being optimal sine it was also proved in [15℄ that for eah k > 1, thereexists a graph with maximum degree k and oriented hromati number at least 2k=2. For small valuesof k, we know that the oriented hromati number of every graph with maximum degree two is atmost 5 (this bound is tight sine the direted yle on �ve verties has oriented hromati number 5)and that the oriented hromati number of every graph with maximum degree three is at most 11 [22℄.Reall that a k-tree is a graph obtained from the omplete graph Kk by repeatedly inserting newverties linked to an existing lique of size k. A graph is then said to have treewidth at most k if it is asubgraph of some k-tree. The 1-trees are thus the usual trees while outerplanar graphs have treewidthat most 2. From the above de�nition it an be easily seen that every k-tree is (k+1)-olorable: startingwith a k-oloring of the omplete graph Kk, every newly inserted vertex has exatly k neighbors andan be thus olored using a (k + 1)-th olor. Moreover, this oloring is learly ayli sine all theneighbors of a newly inserted vertex have distint olors. Therefore, every graph with treewidth atmost k has ayli hromati number at most k + 1 and, by Theorem 1, oriented hromati numberat most (k + 1)� 2k.In ase of graphs with treewidth at most 2 or 3, this upper bound an be improved as follows [21℄:Theorem 10 (Sopena, 1997)Every 2-tree has oriented hromati number at most 7. Every 3-tree has oriented hromati numberat most 16.Sketh of proof. Thanks to the property of the tournament T7 = G(7; 1; 2; 4) disussed in the proofof Theorem 8, every 2-tree learly has a homomorphism to T7.Let now T16 be the oriented graph obtained by taking two disjoint opies of T7 (the verties ofthe seond opy are denote 00; 10; : : : ; 60) and two verties w and w0 and adding the ars wi, i0w, iw0,w0i0, for every i = 0; 1; : : : ; 6 and j0i, ji0, for every ij 2 E(T7). The oriented graph T16 satis�es thefollowing property: for every u1; u2; u3 2 V (T16), u1 6= u2 6= u3 6= u1, and every �1; �2; �3 2 f+;�g,there exists some v 2 V (T16) suh that vui 2 E(T16) (resp. uiv 2 E(T16)) if and only if �i = + (resp.�i = �), for i = 1; 2; 3. It is then easy to prove by indution that every 3-tree has a homomorphismto T16. 2The outerplanar graph depited in Figure 1 shows that the bound for 2-trees is tight. A graphwith treewidth 3 and oriented hromati number 16 has been onstruted in [21℄, showing that theseond upper bound is tight too.5 Universal graphs and nie graphsAn oriented graph U is said to be universal for a family of graphs F if every orientation of every graphin F has a homomorphism to U . For instane, the direted yle on three verties is universal for thefamily of trees. Most of the previous results onerning upper bounds on oriented hromati numbershave been obtained by exhibiting some speial universal oriented graphs [6, 18, 20℄.



6 Oriented graph oloringIn partiular, an oriented (non-planar) graph having 80 verties whih is universal for the familyof planar graphs has been onstruted in [20℄. The existene of planar oriented graphs whih areuniversal for families of planar graphs with high girth has been disussed in [7℄. The following hasbeen proved:Theorem 11 (Borodin et al., 1998)There exists no planar oriented graph whih is universal for the family of planar graphs with girth atleast 4.There exists a planar oriented graph on 6 verties whih is universal for the family of planar graphswith girth at least 16.The �rst statement of Theorem 11 is proved by showing that every oriented graph whih is universalfor the family of planar graphs with girth at least 4 and inlusion minimal has minimum degree 6 and,therefore, annot be planar. The seond statement is obtained by proving that every planar graphwith girth at least 16 has a homomorphism to the oriented planar irulant graph G(6; 1; 2).The minimum k suh that there exists a planar oriented graph whih is universal for the family ofplanar graphs with girth at least k is not known up to now. Conerning the girth of universal graphswe have [7℄:Theorem 12 (Borodin et al., 1998)For every k � 3, there exists a (non-planar) oriented graph with girth at least k+1 whih is universalfor the family of planar graphs with girth at least 40k.However, suh a universal graph with high girth annot be planar, as shown by the followingresult [12℄:Theorem 13 (Hell et al., 1998)Every planar graph whih is universal for the family of planar graphs with girth at least k, k � 3,ontains a triangle.Theorem 13 follows from the fat that every suh universal graph must be nie: an oriented graphG is said to be n-nie for some n if for every two (not neessarily distint) verties x and y in G, andevery pattern p (given as a sequene of forward or bakward ars) of length n, there exists a diretedpath with pattern p in G linking x to y. An oriented graph is then nie if it is n-nie for some n.More preisely, we have [18℄:Theorem 14 (Ne�set�ril et al., 1997)For every n � 3, every n-nie oriented graph is universal for the family of planar graphs with girth atleast 5n� 4.Sketh of proof. Let G be a planar graph. W.l.o.g. we assume that G has no vertex with degree1. Denote by V 0 the set of all branhing verties of G (that is verties with degree at least 3). Thegraph G an thus be viewed as a subdivision of a graph G0 with V (G0) = V 0. The graph G0 is planarand has minimal degree at least 3. As there is a vertex in the dual of G0 whih has maximum degree5 we get that some of the faes of G0 have at most 5 inident edges. Now if the girth of G is at least5n � 4 then one of the edges of G0 has to be subdivided by n � 1 points. We thus proved that if Ghas girth at least 5n� 4 then it ontains a path of length n whose all internal verties have degree 2.Now let Tn be any n-nie oriented graph. Using the previous property, it is then easy to prove byindution that every planar graph with girth at least 5n� 4 has a homomorphism to Tn. 2Theorem 15 (Hell et al., 1998)Every graph whih is universal for the family of planar graphs with girth at least g and minimal withrespet to this property is nie.Charaterizations of nie oriented graphs (and, more generally, of nie digraphs) have been dis-ussed in [12℄.



E. Sopena 76 Homomorphisms of edge-olored graphsIn [2℄, Alon and Marshall studied a new notion of the hromati number related to homomorphismsof edge-olored graphs as introdued by Brewster [8℄. An m-edge-olored graph is a graph whose edgesare olored using the set f1; 2; : : : ;mg as set of olors. Homomorphisms of edge-olored graphs arethen required to preserve the edge olors.Alon and Marshall proved the following:Theorem 16 (Alon and Marshall, 1997)For every m > 0, k > 0, there exists an m-edge-olored graph Hm;k on k �mk�1 verties suh thatevery m-edge-olored graph with ayli hromati number at most k has a homomorphism to Hm;k.When n = 2, this result is similar to Theorem 1 although there is no natural relation betweenoriented graphs and 2-edge-olored graphs. These two results have been uni�ed by Ne�set�ril andRaspaud in [16℄ who onsidered the so-alled olored mixed graphs. A mixed graph is a graph whoseverties are linked by edges or by ars (in suh a way that the underlying graph remains simple).An (n;m)-olored mixed graph is a mixed graph whose ars (resp. edges) are olored using theset f1; 2; : : : ; ng (resp. f1; 2; : : : ;mg) as set of olors. By onvention, (n; 0)-olored mixed graphsorrespond to oriented graphs whose ars are n-olored and (0;m)-olored mixed graphs orrespondto m-edge-olored graphs. Homomorphisms of olored mixed graphs are then required to map edgesto edges, ars to ars, and to preserve the olors. Ne�set�ril and Raspaud proved the following [16℄:Theorem 17 (Ne�set�ril and Raspaud, 1998)For every n � 0, m � 0, k > 0, there exists an (n;m)-olored mixed graph Mn;m;k on k� (2n+m)k�1verties suh that every (n;m)-olored mixed graph with ayli hromati number at most k has ahomomorphism to Mn;m;k.By respetively setting n = 1, m = 0 and n = 0 we get Theorems 1 and 16. By adapting aonstrution given in [2℄, it an be shown that there exists (n;m)-olored mixed graphs with aylihromati number at most k having no homomorphism to an (n;m)-olored mixed graph with lessthan (2n + m)k�1 + k � 1 verties. The upper bound given in Theorem 17 is thus in a sense bestpossible.7 Strong olorings and antisymmetri owsNe�set�ril and Raspaud introdued in [17℄ a restrition of the notion of oriented olorings. Let J bean oriented graph whose set of verties V (J) = M is an abelian additive group with q elements. AnM -strong-oriented oloring of an oriented graph G is a homomorphism f : G! J suh that for everytwo ars (not neessarily distint) xy and x0y0 in G, we have f(x) � f(y) 6= �(f(x0) � f(y0)). Thesmallest q suh that G admits anM -strong-oriented oloring, jM j = q, is the strong oriented hromatinumber of G and is denoted by son(G). Clearly, on(G) � son(G) for every graph G.Strong oriented hromati numbers and ayli hromati numbers are related as follows [17℄:Theorem 18 (Ne�set�ril and Raspaud, 1999)If H is a graph with ayli hromati number at most k then every orientation of H has strongoriented hromati number at most 6k.In partiular, every planar graph has strong oriented hromati number at most 65 = 7776.By duality, strong oriented olorings indue the notion of antisymmetri ow. Reall that if Mis an abelian additive group and G an oriented graph, an M -ow is a mapping � : E(G) ! M suhthat for every subset S of V (G), Pe2w+(S) �(e) �Pe2w�(S) �(e) = 0, where w+(S) (resp. w�(S))stands for the set of ars starting inside S (resp. outside S) and ending outside S (resp. inside S).An antisymmetri M -ow is then de�ned as an M -ow suh that (i) no ar is mapped to 0 and (ii)



8 Oriented graph oloringno two ars are mapped to opposite elements. By omparing the orresponding de�nitions, it is easyto observe that an oriented planar graph G has an antisymmetri M -ow if and only if its dual G�has an M -strong oriented oloring.The main result onerning antisymmetri ows is the following [17℄:Theorem 19 (Ne�set�ril and Raspaud, 1999)Every orientation of every 3-edge-onneted graph admits an antisymmetri ow.Several new questions related to antisymmetri ows are disussed in [17℄. In partiular, it isstill unknown whether the so-alled upper AF-number of every 3-edge-onneted graph H, de�ned asthe smallest q suh that every orientation ~H of H has an antisymmetri M ~H -ow with jM ~H j � q, isbounded or not by some onstant.Referenes[1℄ N. Alon, C. MDiarmid and B. Reed. Ayli olorings of graphs, Random Strutures and Algo-rithms 2 (1991), 277{289.[2℄ N. Alon and T.H. Marshall. Homomorphisms of edge-oloured graphs and Coxeter groups, J.Algebrai Combinatoris 8 (1998), 5{13.[3℄ O.V. Borodin. On ayli olorings of planar graphs, Disrete Math. 25 (1979), 211{236.[4℄ P. Boiron, E. Sopena and L. Vignal. Ayli improper olorings of graphs, J. Graph Theory 32(1999), 97{107.[5℄ P. Boiron, E. Sopena and L. Vignal. Ayli improper olorings of graphs with bounded degree,Pro. Dimas/DIMATIA onf. \The future of Disrete Mathematis", Prague, Otober 1997,Dimas Series in Disrete Mathematis and Theoretial Computer Siene 49 (1999), 1{10.[6℄ O.V. Borodin, A.V. Kostohka, J. Ne�set�ril, A. Raspaud and E. Sopena. On the maximum averagedegree and the oriented hromati number of a graph, Disrete Math. 206 (1999), 77{89.[7℄ O.V. Borodin, A.V. Kostohka, J. Ne�set�ril, A. Raspaud and E. Sopena. On universal graphs forplanar oriented graphs of a given girth, Disrete Math. 188 (1998), 73{85.[8℄ R.C. Brewster. The omplexity of olouring symmetri relational systems, Disrete Applied Math.49 (1994), 95{105.[9℄ B. Courelle. The monadi seond order logi of graphs VI: On several representations of graphsby relational strutures, Disrete Applied Math. 54 (1994), 117{149.[10℄ T. Feder and M. Vardi. Monotone monadi SNP and onstraint satisfation, In Pro. of the 25thACM STOC, ACM (1993).[11℄ P. Hell, J. Ne�set�ril and X. Zhu. Duality and polynomial testing of tree homomorphism, Trans.Amer. Math. So. 348 (1996), 1283{1297.[12℄ P. Hell, A.V. Kostohka, A. Raspaud and E. Sopena. On nie graphs, Disrete Math., to appear.[13℄ P. Hell and J. Ne�set�ril. On the omplexity of H-oloring, J. Combinatorial Theory, Series B 48(1990), 92{110.[14℄ A.V. Kostohka, T. Luzak, G. Simonyi and E. Sopena. On the minimum number of edges givingmaximum oriented hromati number, Pro. Dimas/DIMATIA onf. \The future of DisreteMathematis", Prague, Otober 1997, Dimas Series in Disrete Mathematis and TheoretialComputer Siene 49 (1999), 179{182.
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