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e.Abstra
t. An oriented k-
oloring of an oriented graph G (that is a digraph with no 
y
le of length 2) is apartition of its vertex set into k subsets su
h that (i) no two adja
ent verti
es belong to the same subset and(ii) all the ar
s between any two subsets have the same dire
tion.We survey the main results that have been obtained on oriented graph 
olorings.Keywords. Graph 
oloring, Graph homomorphisms, Oriented graphs, Oriented 
hromati
 number.1 Introdu
tionIf G is a graph or a digraph, we denote by V (G) its vertex set and by E(G) its edge or ar
 set. Allthe graphs we 
onsider are simple, that is they have neither multiple edges nor loops, and 
onne
ted.Let G and G0 be either two graphs or two digraphs. A homomorphism of G to G0 is a mappingf : V (G) ! V (G0) that preserves the edges or the ar
s: xy 2 E(G) implies f(x)f(y) 2 E(G0). Theexisten
e (resp. non-existen
e) of su
h a homomorphism is denoted by G! G0 (resp. G!= G0).A (proper) k-
oloring of a graph H is a partition of V (H) into k subsets, 
alled 
olor 
lasses, su
hthat no two adja
ent verti
es belong to the same 
olor 
lass. Su
h a k-
oloring 
an be equivalentlyregarded as a homomorphism of H to the 
omplete graph Kk on k verti
es. Therefore, the 
hromati
number �(H) of a graph H, de�ned as the smallest k su
h that H admits a k-
oloring, 
orrespondsto the smallest k su
h that H ! Kk and H != Kk�1.An orientation of a graph H is a digraph obtained from H by giving to every edge one of its twopossible orientations. A digraph G is an oriented graph if it is an orientation of some graph H. Asbefore, homomorphisms of oriented graphs indu
e the notion of oriented graph 
oloring as follows. Anoriented k-
oloring of an oriented graph G is a partition of V (G) into k 
olor 
lasses su
h that: (i)no two adja
ent verti
es belong to the same 
olor 
lass and (ii) all the ar
s linking two 
olor 
lasseshave the same dire
tion. We 
an then de�ne the oriented 
hromati
 number of an oriented graph G,denoted by o
n(G), as the smallest k su
h that G has an oriented k-
oloring or, equivalently, as theminimum order of an oriented graph G0 su
h that G ! G0. This notion 
an be extended to graphsas follows: the oriented 
hromati
 number of a graph H is de�ned as the maximum of the oriented
hromati
 numbers of its orientations. Similarly, the oriented 
hromati
 number of a family of graphsor oriented graphs is de�ned as the maximum of the oriented 
hromati
 numbers of its members.Observe that 
onditions (i) and (ii) above imply that any two verti
es linked by a dire
ted pathof length 1 or 2 must be assigned distin
t 
olors in any oriented 
oloring. We then get for instan
ethat the oriented 
hromati
 number of the dire
ted 
y
le on �ve verti
es is 5. This property 
an alsobe expressed by saying that homomorphisms of oriented graphs \preserve" dire
ted paths of length 2(the image of su
h a path is still a dire
ted path of length 2). Homomorphisms preserving other typeof 
on�gurations, namely paths of length k or trees, have been 
onsidered in [19℄.Homomorphisms of graphs have been extensively studied and, in parti
ular, many papers havebeen devoted to the 
omplexity of the so-
alled H-
oloring de
ision problem: given a graph H, whatis the 
omplexity of de
iding whether a graph G has a homomorphism to H or not ? Hell and Ne�set�rilsolved this question in the undire
ted 
ase [13℄: the H-
oloring problem is polynomial if the graph H is1This work has been partly supported by the Barrande grant no 97-137 and the NATO Collaborative Resear
h grant97-1519. 1



2 Oriented graph 
oloringbipartite and NP-
omplete otherwise. The situation seems to be more 
ompli
ated in the dire
ted 
aseand only partial results have been obtained (see [10, 11℄ for re
ent results 
on
erning this problem).The parti
ular 
ase of oriented 
olorings have been �rst 
onsidered by Cour
elle [9℄ as a tool foren
oding graph orientations by means of vertex labels. Sin
e then, oriented 
olorings have attra
tedvery mu
h attention and the aim of this paper is to survey the main results that have been obtained.The links between oriented 
olorings and a
y
li
 (usual) 
olorings is dis
ussed in Se
tion 2. Se
tion 3deals with oriented 
olorings of planar graphs while Se
tion 4 
onsiders the 
ase of graphs with boundeddegree or bounded treewidth. The notion of universal graphs is introdu
ed and dis
ussed in Se
tion 5.Finally, some other related types of 
olorings, namely 
olorings of edge-
olored graphs and strong
olorings, are respe
tively 
onsidered in Se
tions 6 and 7.2 Oriented and a
y
li
 
hromati
 numbersOne of the �rst problems that have been 
onsidered in the framework of oriented 
olorings was to
hara
terize the families of graphs having bounded oriented 
hromati
 number. It appears that thesefamilies are exa
tly the families having bounded a
y
li
 
hromati
 number.Re
all that a k-
oloring of a graph H is a
y
li
 if every subgraph of H indu
ed by two 
olor 
lassesis a
y
li
. The a
y
li
 
hromati
 number of H, denoted by �a(H), is then de�ned as the smallest ksu
h that H has an a
y
li
 k-
oloring. In [20℄, Raspaud and Sopena proved that families of graphswith bounded a
y
li
 
hromati
 number have also bounded oriented 
hromati
 number:Theorem 1 (Raspaud and Sopena, 1994)If a graph H has a
y
li
 
hromati
 number at most k then its oriented 
hromati
 number is at mostk � 2k�1.Proof. Let a be an a
y
li
 k-
oloring of H and ~H be any orientation of H. We denote by ~Hi;j,1 � i < j � k, the subgraph of ~H indu
ed by verti
es x with a(x) 2 fi; jg (sin
e a is a
y
li
, ~Hi;j is anoriented forest). We indu
tively de�ne an oriented 4-
oloring 
i;j of ~Hi;j as follows: pi
k any vertexx in ea
h 
omponent of ~Hi;j and set 
i;j(x) := (a(x); 0). Then, for every un
olored vertex z linked tosome vertex y with 
i;j(y) = (a(y); �), � 2 f0; 1g, set� 
i;j(z) := (a(z); �) if yz (resp. zy) is an ar
 in E( ~Hi;j) and a(y) = i (resp. a(y) = j),� 
i;j(z) := (a(z); 1 � �) otherwise.This mapping 
i;j is indeed a homomorphism of ~Hi;j to the dire
ted 4-
y
le (i; 0) ! (j; 0) ! (i; 1) !(j; 1) ! (i; 0). It is then not diÆ
ult to 
he
k that the mapping 
 de�ned for every x 2 V ( ~H) by
(x) = (a(x); 
1;a(x)(x); : : : ; 
a(x)�1;a(x)(x); 
a(x);a(x)+1(x); : : : ; 
a(x);k(x))is an oriented (k � 2k�1)-
oloring of ~H. 2From Theorem 1 we get for instan
e that the families of graphs with bounded degree, boundedtreewidth or bounded genus have bounded oriented 
hromati
 number. An upper bound on the a
y
li

hromati
 number in terms of the oriented 
hromati
 number has been obtained in [15℄:Theorem 2 (Kosto
hka et al., 1997)If a graph H has oriented 
hromati
 number at most k then its a
y
li
 
hromati
 number is at mostkdlog2(dlog2 ke+k=2)e+1.Sket
h of proof. Re
all that the arbori
ity of a graph H is the minimum number q su
h that theedges of H 
an be de
omposed into q forests. The idea is to prove �rst that every graph with oriented



E. Sopena 3
hromati
 number at most k has arbori
ity at most dlog2 k + k=2e and then that every graph withoriented 
hromati
 number at most k and arbori
ity at most q has a
y
li
 
hromati
 number at mostkdlog2 qe+1. 2Theorem 1 
an be generalized to the 
ase of a
y
li
 improper 
olorings, introdu
ed by Boiron etal. in [4℄. A 
oloring of a graph is said to be improper if adja
ent verti
es may be assigned the same
olor. More formally, if P1, P2, : : : ; Pk are graph properties, a (P1; P2; : : : ; Pk)-
oloring of a graph Gis a partition (V1; V2; : : : ; Vk) of V (G) su
h that for every i, 1 � i � k, the subgraph G[Vi℄ indu
edby the 
olor 
lass Vi satis�es the property Pi. Su
h an improper 
oloring is a
y
li
 if for every i; j,1 � i < j � k, the subgraph indu
ed by all the edges linking Vi to Vj is a
y
li
. Then we have [4℄:Theorem 3 (Boiron et al., 1999)If P1; P2; : : : ; Pk are graph properties su
h that for every i, 1 � i � k, the family of graphs satisfying Pihas oriented 
hromati
 number at most �i then every graph having an a
y
li
 (P1; P2; : : : ; Pk)-
oloringhas oriented 
hromati
 number at most 2k�1 �Pki=1 �i.If for every i the property Pi is the property of having no edges (all the �i's are equal to 1), a
y
li
(P1; P2; : : : ; Pk)-
olorings are then usual a
y
li
 
olorings and we get Theorem 1. A
y
li
 improper
olorings of planar graphs and of graphs with bounded degree have been 
onsidered in [4, 5℄.3 Planar graphsA 
elebrated result of Borodin [3℄ states that every planar graph has a
y
li
 
hromati
 number atmost �ve. From Theorem 1 we thus get:Corollary 4Every planar graph has oriented 
hromati
 number at most 80.In [21℄, an oriented planar graph with oriented 
hromati
 number at least 16 has been 
onstru
ted.The gap between the lower and the upper bounds for the oriented 
hromati
 number of planar graphsis thus still large and, despite many e�orts, has not been redu
ed up to now.However, the upper bound 
an be signi�
antly lowered when 
onsidering planar graphs with largegirth [6, 18℄ (re
all that the girth of a graph G is the smallest size of a 
y
le in G). More pre
isely, wehave the following [6℄:Theorem 5 (Borodin et al., 1999)Every planar graph with girth at least 14 (resp. 8,6,5) has oriented 
hromati
 number at most 5 (resp.7,11,19).In fa
t, this result follows from a more general theorem. The maximum average degree mad(H) ofa graph H is de�ned as the maximum of the average degrees ad(H 0) = 2jE(H 0)j=jV (H 0)j taken overall the subgraphs H 0 of H. Then we have [6℄:Theorem 6 (Borodin et al., 1999)Every graph with maximum average degree at most 7/3 (resp. 11/4, 3, 10/3) has oriented 
hromati
number at most 5 (resp. 7,11,19).If H is a planar graph with girth at least g then the number of fa
es in G is at most 2jE(G)j=g. ByEuler's formula we then get that 2jE(G)jjV (G)j � 2gjE(G)j2g+(g�2)jE(G)j and thus mad(H) < 2g=(g � 2). Therefore,Theorem 5 dire
tly follows from Theorem 6.Re
all that the 
ir
ulant digraph G = G(n; 
1; 
2; : : : ; 
k), n > 0, 1 � 
i < n for every i, isde�ned by V (G) = f0; 1; : : : ; n � 1g and xy 2 E(G) if and only if y = x + 
i (mod n) for some i,1 � i � k. Theorem 6 has been proved by showing that the 
orresponding oriented graphs admit a



4 Oriented graph 
oloring
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Figure 1: An oriented outerplanar graph with oriented 
hromati
 number 7homomorphism respe
tively to G(7; 1; 2; 4), G(11; 1; 3; 4; 5; 9) and G(19; 1; 4; 5; 6; 7; 9; 11; 16; 17). Forthese three 
ir
ulant tournaments, the 
i's are exa
tly the non-zero quadrati
 residues of n.It is not diÆ
ult to 
onstru
t families of graphs with maximum average degree 4 and unboundedoriented 
hromati
 number. When the maximum average degree tends to 4, we have the followingphenomenon [6℄:Theorem 7 (Borodin et al., 1999)Every graph with maximum average degree less than 4(1� 2=(n+1)), n > 25, has oriented 
hromati
number at most (n+ 5)� 2n+12 .For every k > 0, there exists a graph of arbitrarily large girth with maximum average degree less than4(1� 1=k) and oriented 
hromati
 number at least k.To see that the �rst statement of Theorem 7 is optimal it is suÆ
ient to 
onsider the oriented graphBn, n > 2, obtained from the undire
ted 
omplete graph Kn by repla
ing ea
h edge by a dire
tedpath of length two going through some new vertex. Sin
e any two of the n verti
es with degree n� 1are linked by a dire
ted path of length 2, they must be assigned distin
t 
olors in any 
oloring of Bnand thus o
n(Bn) � n. Moreover, it is easy to 
he
k that the maximum average degree of Bn ismad(Bn) = 2jE(Bn)jjV (Bn)j = 2n(n� 1)n+ n(n�1)2 = 4(1� 2n+ 1):For outerplanar graphs, we have the following [21℄:Theorem 8 (Sopena, 1997)Every outerplanar graph has oriented 
hromati
 number at most 7.Proof. We 
laim that every orientation G of an outerplanar graph has a homomorphism to the
ir
ulant tournament T7 = G(7; 1; 2; 4). This tournament satis�es the following property: for everyu1; u2 2 V (T7), u1 6= u2, and every �1; �2 2 f+;�g, there exists some v 2 V (T7) su
h that vui 2 E(T7)if and only if �i = +, for i = 1; 2. We then pro
eed by indu
tion on the order of G. W.l.o.g. we mayassume that G is maximal outerplanar. The result is immediate if jV (G)j � 3. Otherwise there existsa vertex x in G with degree two. Let y1; y2 denote the two neighbours of x, and G0 the outerplanaroriented graph obtained from G by removing x and adding the ar
 y1y2 if y1 and y2 are not linked inG. The above dis
ussed property of T7 implies that we 
an extend any homomorphism of G0 to T7 toa homomorphism of G to T7. 2This bound is tight as shown by the oriented outerplanar graph depi
ted in Figure 1: this graphhas 7 verti
es and any two of them are linked by a dire
ted path of length at most two; its oriented
hromati
 number is thus equal to 7.



E. Sopena 54 Graphs with bounded degree or bounded treewidthAlon, M
Diarmid and Reed proved in [1℄ that every graph with maximum degree k has a
y
li
 
hro-mati
 number at most O(k4=3). From Theorem 1, we thus get that graphs with maximum degree khave oriented 
hromati
 number at most O(k4=3)�2O(k4=3) = 2O(k4=3). This upper bound has been �rstimproved in [21℄, where it was shown that graphs with maximum degree k have oriented 
hromati
number at most (2k � 1)� 22k�2. The best known upper bound is the following [15℄:Theorem 9 (Kosto
hka et al.)Every graph with maximum degree k has oriented 
hromati
 number at most 2� k2 � 2k.This result is not far from being optimal sin
e it was also proved in [15℄ that for ea
h k > 1, thereexists a graph with maximum degree k and oriented 
hromati
 number at least 2k=2. For small valuesof k, we know that the oriented 
hromati
 number of every graph with maximum degree two is atmost 5 (this bound is tight sin
e the dire
ted 
y
le on �ve verti
es has oriented 
hromati
 number 5)and that the oriented 
hromati
 number of every graph with maximum degree three is at most 11 [22℄.Re
all that a k-tree is a graph obtained from the 
omplete graph Kk by repeatedly inserting newverti
es linked to an existing 
lique of size k. A graph is then said to have treewidth at most k if it is asubgraph of some k-tree. The 1-trees are thus the usual trees while outerplanar graphs have treewidthat most 2. From the above de�nition it 
an be easily seen that every k-tree is (k+1)-
olorable: startingwith a k-
oloring of the 
omplete graph Kk, every newly inserted vertex has exa
tly k neighbors and
an be thus 
olored using a (k + 1)-th 
olor. Moreover, this 
oloring is 
learly a
y
li
 sin
e all theneighbors of a newly inserted vertex have distin
t 
olors. Therefore, every graph with treewidth atmost k has a
y
li
 
hromati
 number at most k + 1 and, by Theorem 1, oriented 
hromati
 numberat most (k + 1)� 2k.In 
ase of graphs with treewidth at most 2 or 3, this upper bound 
an be improved as follows [21℄:Theorem 10 (Sopena, 1997)Every 2-tree has oriented 
hromati
 number at most 7. Every 3-tree has oriented 
hromati
 numberat most 16.Sket
h of proof. Thanks to the property of the tournament T7 = G(7; 1; 2; 4) dis
ussed in the proofof Theorem 8, every 2-tree 
learly has a homomorphism to T7.Let now T16 be the oriented graph obtained by taking two disjoint 
opies of T7 (the verti
es ofthe se
ond 
opy are denote 00; 10; : : : ; 60) and two verti
es w and w0 and adding the ar
s wi, i0w, iw0,w0i0, for every i = 0; 1; : : : ; 6 and j0i, ji0, for every ij 2 E(T7). The oriented graph T16 satis�es thefollowing property: for every u1; u2; u3 2 V (T16), u1 6= u2 6= u3 6= u1, and every �1; �2; �3 2 f+;�g,there exists some v 2 V (T16) su
h that vui 2 E(T16) (resp. uiv 2 E(T16)) if and only if �i = + (resp.�i = �), for i = 1; 2; 3. It is then easy to prove by indu
tion that every 3-tree has a homomorphismto T16. 2The outerplanar graph depi
ted in Figure 1 shows that the bound for 2-trees is tight. A graphwith treewidth 3 and oriented 
hromati
 number 16 has been 
onstru
ted in [21℄, showing that these
ond upper bound is tight too.5 Universal graphs and ni
e graphsAn oriented graph U is said to be universal for a family of graphs F if every orientation of every graphin F has a homomorphism to U . For instan
e, the dire
ted 
y
le on three verti
es is universal for thefamily of trees. Most of the previous results 
on
erning upper bounds on oriented 
hromati
 numbershave been obtained by exhibiting some spe
ial universal oriented graphs [6, 18, 20℄.



6 Oriented graph 
oloringIn parti
ular, an oriented (non-planar) graph having 80 verti
es whi
h is universal for the familyof planar graphs has been 
onstru
ted in [20℄. The existen
e of planar oriented graphs whi
h areuniversal for families of planar graphs with high girth has been dis
ussed in [7℄. The following hasbeen proved:Theorem 11 (Borodin et al., 1998)There exists no planar oriented graph whi
h is universal for the family of planar graphs with girth atleast 4.There exists a planar oriented graph on 6 verti
es whi
h is universal for the family of planar graphswith girth at least 16.The �rst statement of Theorem 11 is proved by showing that every oriented graph whi
h is universalfor the family of planar graphs with girth at least 4 and in
lusion minimal has minimum degree 6 and,therefore, 
annot be planar. The se
ond statement is obtained by proving that every planar graphwith girth at least 16 has a homomorphism to the oriented planar 
ir
ulant graph G(6; 1; 2).The minimum k su
h that there exists a planar oriented graph whi
h is universal for the family ofplanar graphs with girth at least k is not known up to now. Con
erning the girth of universal graphswe have [7℄:Theorem 12 (Borodin et al., 1998)For every k � 3, there exists a (non-planar) oriented graph with girth at least k+1 whi
h is universalfor the family of planar graphs with girth at least 40k.However, su
h a universal graph with high girth 
annot be planar, as shown by the followingresult [12℄:Theorem 13 (Hell et al., 1998)Every planar graph whi
h is universal for the family of planar graphs with girth at least k, k � 3,
ontains a triangle.Theorem 13 follows from the fa
t that every su
h universal graph must be ni
e: an oriented graphG is said to be n-ni
e for some n if for every two (not ne
essarily distin
t) verti
es x and y in G, andevery pattern p (given as a sequen
e of forward or ba
kward ar
s) of length n, there exists a dire
tedpath with pattern p in G linking x to y. An oriented graph is then ni
e if it is n-ni
e for some n.More pre
isely, we have [18℄:Theorem 14 (Ne�set�ril et al., 1997)For every n � 3, every n-ni
e oriented graph is universal for the family of planar graphs with girth atleast 5n� 4.Sket
h of proof. Let G be a planar graph. W.l.o.g. we assume that G has no vertex with degree1. Denote by V 0 the set of all bran
hing verti
es of G (that is verti
es with degree at least 3). Thegraph G 
an thus be viewed as a subdivision of a graph G0 with V (G0) = V 0. The graph G0 is planarand has minimal degree at least 3. As there is a vertex in the dual of G0 whi
h has maximum degree5 we get that some of the fa
es of G0 have at most 5 in
ident edges. Now if the girth of G is at least5n � 4 then one of the edges of G0 has to be subdivided by n � 1 points. We thus proved that if Ghas girth at least 5n� 4 then it 
ontains a path of length n whose all internal verti
es have degree 2.Now let Tn be any n-ni
e oriented graph. Using the previous property, it is then easy to prove byindu
tion that every planar graph with girth at least 5n� 4 has a homomorphism to Tn. 2Theorem 15 (Hell et al., 1998)Every graph whi
h is universal for the family of planar graphs with girth at least g and minimal withrespe
t to this property is ni
e.Chara
terizations of ni
e oriented graphs (and, more generally, of ni
e digraphs) have been dis-
ussed in [12℄.



E. Sopena 76 Homomorphisms of edge-
olored graphsIn [2℄, Alon and Marshall studied a new notion of the 
hromati
 number related to homomorphismsof edge-
olored graphs as introdu
ed by Brewster [8℄. An m-edge-
olored graph is a graph whose edgesare 
olored using the set f1; 2; : : : ;mg as set of 
olors. Homomorphisms of edge-
olored graphs arethen required to preserve the edge 
olors.Alon and Marshall proved the following:Theorem 16 (Alon and Marshall, 1997)For every m > 0, k > 0, there exists an m-edge-
olored graph Hm;k on k �mk�1 verti
es su
h thatevery m-edge-
olored graph with a
y
li
 
hromati
 number at most k has a homomorphism to Hm;k.When n = 2, this result is similar to Theorem 1 although there is no natural relation betweenoriented graphs and 2-edge-
olored graphs. These two results have been uni�ed by Ne�set�ril andRaspaud in [16℄ who 
onsidered the so-
alled 
olored mixed graphs. A mixed graph is a graph whoseverti
es are linked by edges or by ar
s (in su
h a way that the underlying graph remains simple).An (n;m)-
olored mixed graph is a mixed graph whose ar
s (resp. edges) are 
olored using theset f1; 2; : : : ; ng (resp. f1; 2; : : : ;mg) as set of 
olors. By 
onvention, (n; 0)-
olored mixed graphs
orrespond to oriented graphs whose ar
s are n-
olored and (0;m)-
olored mixed graphs 
orrespondto m-edge-
olored graphs. Homomorphisms of 
olored mixed graphs are then required to map edgesto edges, ar
s to ar
s, and to preserve the 
olors. Ne�set�ril and Raspaud proved the following [16℄:Theorem 17 (Ne�set�ril and Raspaud, 1998)For every n � 0, m � 0, k > 0, there exists an (n;m)-
olored mixed graph Mn;m;k on k� (2n+m)k�1verti
es su
h that every (n;m)-
olored mixed graph with a
y
li
 
hromati
 number at most k has ahomomorphism to Mn;m;k.By respe
tively setting n = 1, m = 0 and n = 0 we get Theorems 1 and 16. By adapting a
onstru
tion given in [2℄, it 
an be shown that there exists (n;m)-
olored mixed graphs with a
y
li

hromati
 number at most k having no homomorphism to an (n;m)-
olored mixed graph with lessthan (2n + m)k�1 + k � 1 verti
es. The upper bound given in Theorem 17 is thus in a sense bestpossible.7 Strong 
olorings and antisymmetri
 
owsNe�set�ril and Raspaud introdu
ed in [17℄ a restri
tion of the notion of oriented 
olorings. Let J bean oriented graph whose set of verti
es V (J) = M is an abelian additive group with q elements. AnM -strong-oriented 
oloring of an oriented graph G is a homomorphism f : G! J su
h that for everytwo ar
s (not ne
essarily dis
tin
t) xy and x0y0 in G, we have f(x) � f(y) 6= �(f(x0) � f(y0)). Thesmallest q su
h that G admits anM -strong-oriented 
oloring, jM j = q, is the strong oriented 
hromati
number of G and is denoted by so
n(G). Clearly, o
n(G) � so
n(G) for every graph G.Strong oriented 
hromati
 numbers and a
y
li
 
hromati
 numbers are related as follows [17℄:Theorem 18 (Ne�set�ril and Raspaud, 1999)If H is a graph with a
y
li
 
hromati
 number at most k then every orientation of H has strongoriented 
hromati
 number at most 6k.In parti
ular, every planar graph has strong oriented 
hromati
 number at most 65 = 7776.By duality, strong oriented 
olorings indu
e the notion of antisymmetri
 
ow. Re
all that if Mis an abelian additive group and G an oriented graph, an M -
ow is a mapping � : E(G) ! M su
hthat for every subset S of V (G), Pe2w+(S) �(e) �Pe2w�(S) �(e) = 0, where w+(S) (resp. w�(S))stands for the set of ar
s starting inside S (resp. outside S) and ending outside S (resp. inside S).An antisymmetri
 M -
ow is then de�ned as an M -
ow su
h that (i) no ar
 is mapped to 0 and (ii)



8 Oriented graph 
oloringno two ar
s are mapped to opposite elements. By 
omparing the 
orresponding de�nitions, it is easyto observe that an oriented planar graph G has an antisymmetri
 M -
ow if and only if its dual G�has an M -strong oriented 
oloring.The main result 
on
erning antisymmetri
 
ows is the following [17℄:Theorem 19 (Ne�set�ril and Raspaud, 1999)Every orientation of every 3-edge-
onne
ted graph admits an antisymmetri
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