
LaBRI Researh Report No. Compiled on April 11, 2001The �nal version of this paper has been published in Pro. Formal Power Series and Algebrai Combinatoris,FPSAC'94, Dimas (1994), 413{422.COMPUTING CHROMATICPOLYNOMIALS OFORIENTED GRAPHS 1�Eri SOPENALaboratoire Bordelais de Reherhe en Informatique, Unit�e assoi�ee C.N.R.S. 1304, 351, ours de laLib�eration, 33405 Talene, Frane.Abstrat. Let G = (V;A) be an antisymmetri direted graph. An oriented �-oloring of G is de�nedas a mapping  from V to the set of olors f1; 2; : : : ; �g satisfying (i) 8 (x; y) 2 A; (x) 6= (y) and (ii)8 (x; y); (z; t) 2 A; (x) = (t) =) (y) 6= (z). The oriented hromati polynomial of G is then de�ned asthe quantity ~P (G; �), standing for the number of oriented �-olorings of G. We show in this paper how thispolynomial an be omputed and prove some properties of it.1 IntrodutionFor many years, numerous graph oloring problems have been onsidered in the literature [8℄. Howeververy few of them are onerned with direted graphs. Among these, is the general H-oloring problem,introdued by Maurer, Salomaa and Wood [7℄ in both the direted and the undireted ase. Thisproblem an be stated as follows : let G = (V;A) and H = (W;B) be two direted (resp. undireted)graphs ; we will say that G an be H-olored if there exists a mapping � from V to W satisfying(x; y) 2 A =) (�x; �y) 2 B (resp. fx; yg 2 A =) f�x; �yg 2 B). In the undireted ase, this notiongeneralizes the usual graph oloring problem sine a graph G is k-olorable if and only if it an beKk-olored. Many authors have onsidered the omplexity of the H-oloring problem, that is theomplexity of the question \is a given graph G H-olorable ?" for some families of graphs H. Thisquestion has been reently solved in the undireted ase by P. Hell and J. Nesetril [5℄ but is still openin the direted ase.The oloring problem we onsider in this paper an be viewed as a partiular ase of the H-oloringproblem, obtained by only onsidering antisymmetri direted graphs ((x; y) and (y; x) annot bothbelong to the set of ars), also alled oriented graphs. We are essentially interested in answeringquestions of the type : \Given a family F of oriented graphs, �nd a graph H with a minimum numberof verties suh that every graph in F is H-olorable". This question was addressed in the ase ofplanar graphs by Courelle [4℄ whih studied graphs and properties of graphs de�nable by monadiseond-order logi formulas. Some answers to that problem an also be found in [9, 12℄.In this paper we begin the investigation of hromati polynomials of oriented graphs, whih gen-eralize to the oriented ase the well-known notion of hromati polynomials, introdued by Birkho�[2℄ in the undireted ase and studied by many authors (see e.g. [3, 10, 11℄ for an overview on thissubjet). In Setion 2 we introdue and illustrate the notion of �-olorings and of hromati polyno-mials in the oriented ase. In Setion 3 a general method for omputing the hromati polynomialsis presented. We give in Setion 4 some basi properties of these hromati polynomials leading tosome omputing shortuts. In Setion 5 we relate the notions of hromati polynomials in the orientedand the undireted ase and propose in Setion 6 some diretions for future researh. Although some1With the support of the European Basi Researh Ation ESPRIT No 3166 (ASMICS) and the European CommunityCooperative Ation IC-1000 (ALTEC). 1
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Figure 1: The oriented oloring problem.referenes to the theory of hromati polynomials in the undireted ase are made along, this paperis self-ontained exept for the usual basi notions of graph theory.2 De�nitionsA �-oloring of an undireted graph U = (V;E) is a mapping  from V to the �nite set of olorsC� = f1; 2; : : : ; �g suh that any two neighbouring verties are assigned distint olors. Let nowG = (V;A) be an oriented graph. An oriented �-oloring of G is a mapping  from V to the set ofolors C� satisfying : (i) 8 (x; y) 2 A; (x) 6= (y);(ii) 8 (x; y); (z; t) 2 A; (x) = (t) =) (y) 6= (z):Note that any oriented �-oloring of G is also a �-oloring of the underlying undireted graph of Gand that the onverse is not true.Example 1 Figure 1.a shows an oriented graph G and an oriented 5-oloring of G. The mapping depited in Figure 1.b is not an oriented 5-oloring sine we have (x) = 1 and (y) = 2 on onehand, and (t) = 1 and (z) = 2 on the other hand, whih ontradits the ondition (ii) above. Notehowever that the mapping  is a 5-oloring of the orresponding underlying undireted graph.Condition (ii) of our de�nition essentially states that we are able to \enode" the orientation ofa graph by means of some labels (the olors) assoiated with its verties, provided that we keep inmemory what we all the olor-graph, whih gives the relations between these labels [12℄. The olor-graph H orresponding to the oriented 5-oloring of the graph G in Figure 1.a is for instane given bythe set of ars f(1; 2); (2; 3); (2; 4); (2; 5); (3; 5); (4; 1); (4; 3)g (using the terminology of the H-oloringproblem, we say that G has been H-olored). Suh an enoding may be useful whenever we need torepresent some \direted" notion assoiated with an undireted labelled graph [4, 13℄.For any oriented graph G, we de�ne the oriented hromati number of G as the minimum valueof � suh that G has an oriented �-oloring. It has been shown in [9℄ that any oriented planar graphhas an oriented hromati number whih does not exeed 80 and no better upper bound is known upto now. The oriented hromati number of other families of graphs has been studied in [12℄.Let us now de�ne ~P (G;�) as the number of oriented �-olorings of G. This quantity is alled theoriented hromati polynomial of G sine we will see in the next setion that it an be expressed asa polynomial in �. If H is an undireted graph, the hromati polynomial of H will be denoted byP (H;�).



E. Sopena 3Note from our de�nition of oriented �-olorings that the verties as well as the olors are distin-guishable, as is the ase for undireted graphs. For further larity we give some examples illustratingthe way the oriented �-olorings of G are ounted. First the two following oriented 4-olorings
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will be onsidered as distint, although they are in some sense equivalent sine we an obtain any oneof them from the other by applying an adequate automorphism of G.Seondly, the two following oriented 4-olorings
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will also be onsidered as distint, although we an obtain any one of them from the other by simplypermuting the olors 1 and 2. In the sequel, we will speak of oriented �-oloring with olor indi�erenewhenever we will want to onsider as equivalent any two oriented olorings whih only di�er by apermutation of their olors. Suh olorings are then de�ned as a partition of the set of verties V intok subsets V1; : : : ; Vk (k � �) in suh a way that (i) any two verties belonging to the same Vi are notadjaent and (ii) all the ars linking verties of any two subsets Vi and Vj have the same diretion.Let us now illustrate the notion of oriented hromati polynomials.Example 2 Consider the following graph G1 :
x y z

tWe an hoose any of the � olors for the vertex y and any of the remaining olors for x; z and t.Hene, we have : ~P (G1; �) = �(�� 1)3= �4 � 3�3 + 3�2 � �:Consider now the following graph G2 :
x y zNo two verties in G2 may have the same olor. Hene, we have :~P (G2; �) = �(�� 1)(�� 2)= �3 � 3�2 + 2�:Similarly, it is easy to hek that in the following graph G3 :
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all the verties must have distint olors and we have :~P (G3; �) = �(�� 1)(�� 2) (�� 3)(�� 4)= �5 � 10�4 + 35�3 � 50�2 + 24�:For any oriented graph G = (V;A), we will denote by Æ(G) the set of all unoriented pairs of vertiesin G whih must be assigned distint olors in any oriented oloring of G. It is not diÆult to see thatwe have Æ(G) = f fx; yg = x; y 2 V; (x; y) 2 A or (y; x) 2 Aor 9 z 2 V; (x; z); (z; y) 2 A or 9 z 2 V; (y; z); (z; x) 2 A g:Let P2(X) denote the set of all two element subsets of X for any set X. Obviously, any orientedgraph G = (V;A) satisfying Æ(G) = P2(V ) has an oriented hromati polynomial of the form~P (G;�) = �(�� 1)(�� 2) : : : (�� n+ 1);where n stands for the number of verties of G. We will denote by �(n) this fatorial form. Hene, weobtain : 8 G = (V;A) with n = jV j; Æ(G) = P2(V ) =) ~P (G;�) = �(n):Note that ontrary to the undireted ase, the tournaments are not the only graphs having thisproperty (see examples G2 and G3 above).Finally, if G is the empty graph on n verties, that is the graph having n verties and no ars, wehave : ~P (G;�) = �n:In the next setion, we will show that for any oriented graph G having n verties, ~P (G;�) an beexpressed as a polynomial of degree n in �. When ~P (G;�) is expressed in terms of the usual monomialbasis for polynomials, we will speak about the usual form of ~P (G;�). We will also express it as afuntion of the �(i)'s, 1 � i � n, and then speak about its fatorial form.From now on, we will generally drop the word \oriented" when speaking about oloring, hromatinumber or hromati polynomial, using it only in the ontexts where onfusion may arise.3 Computing the fatorial form of ~P (G; �)One of the main di�erenes between olorings of undireted and of oriented graphs is that in the aseof oriented graphs the oloring onstraints are no longer loal. In order to deide whether or not aolor an be assigned to a vertex x, it is not suÆient to look at the immediate neighbours of x : wemust onsider the whole graph to hek ondition (ii) of the de�nition.Consequently, omputing the hromati polynomial of an oriented graph will be slightly moreomplex than in the undireted ase. In order to deal with this non loality we must use onstrainedpolynomials de�ned as follows : let G = (V;A) be an oriented graph and X be a subset of P2(V ) ; wewill denote by ~QX(G;�) the number of �-olorings  of G satisfying8 fx; yg 2 X; (x) 6= (y):
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Figure 2: Computing the fatorial form of the hromati polynomial.Intuitively speaking, the set X represents some additionnal onstraints on the olorings under onsid-eration. We will all �-X-olorings those �-olorings of G satisfying the set of onstraints X. Notethat the hromati polynomial of G an then be expressed as~P (G;�) = ~Q;(G;�):In order to ompute the quantity ~QX(G;�), we need the following notation : let G = (V;A) and a; bbe any two verties in V suh that fa; bg =2 Æ(G) ; we will denote by G0ab the graph obtained from Gby identifying the verties a and b. More formally, let � be the mapping from V to V n fbg de�nedby (i) �b = a and (ii) �x = x, 8 x 6= b. Then, G0ab is the oriented graph with vertex set V 0ab = V n fbgand whose ars are given by (�x; �y) 2 A0ab if and only if (x; y) 2 A. It is not diÆult to see thatsine the pair fa; bg does not belong to Æ(G), the orientation of the graph G0ab thus obtained is stillantisymmetri. Similarly, for any subset X of P2(V ) we will denote by X0ab the subset of P2(V n fbg)obtained from X by \renaming" b as a (all the onstraints on b are transferred to a) and deleting thepair fa; bg from X if it appears in X. Then we have :Theorem 3 For any oriented graph G = (V;A) having n verties and any subset X of P2(V ) we have~QX(G;�) = 8>>>><>>>>: �(n) if X [ Æ(G) = P2(V );~QX[fa;bg(G;�) + ~QX0ab(G0ab; �);8 fa; bg =2 X [ Æ(G) otherwise.Proof. Let G = (V;A) be an oriented graph and X be any set of onstraints. If X [ Æ(G) = P2(V ),that means that any pair of verties inGmust be assigned distint olors and we have ~QX(G;�) = �(n).Suppose now that fa; bg =2 X[Æ(G) ; then the �-X-olorings of G an be partitionned into two lasses :those in whih a and b are assigned distint olors, alled of type 1, and those in whih a and b areassigned the same olor, alled of type 2. It is then not diÆult to hek that the olorings of type 1and 2 are respetively ounted by ~QX[fa;bg(G;�) and ~QX0ab(G0ab; �), and the result follows. 2Note that by applying indutively the formula of Theorem 3 we �nally obtain an expression of~P (G;�) = ~Q;(G;�) in terms of the �(i)'s, 1 � i � n. Hene, Theorem 3 allows to ompute the fatorialform of ~P (G;�). Suh a omputation will be alled a hromati redution.Example 4 Figure 2 shows how one an ompute the hromati polynomial of an oriented graphin its fatorial form. As usually done, the hromati polynomial of a graph is denoted by the graph



6 Computing hromati polynomials of oriented graphsitself. The pairs of the orresponding sets of onstraints are joined by dashed lines (initially, the set ofonstraints is empty). For any graph G, the pairs of verties belonging to Æ(G) whih are not induedby an ar of G are joined by dotted lines. The two verties used in eah hromati redution step aredenoted by a and b.By using the formula of Theorem 3, we an then obtain :Proposition 5 For any oriented graph G = (V;A) with n verties, we have :(i) ~P (G;�) is a polynomial of order n in �,(ii) the oeÆient of �n in ~P (G;�) is 1,(iii) ~P (G;�) has no onstant term,(iv) the oeÆient of �n�1 in ~P (G;�) is �jÆ(G)j.As in the undireted ase [10℄ we an interpret the oeÆients of the fatorial form of ~P (G;�) asfollows :Theorem 6 The oeÆient of �(r) in the fatorial form of ~P (G;�) is the number of ways of oloringG using exatly r olors with olor indi�erene.Proof. Let N(G; r) denote the number of ways of oloring G with exatly r olors, with olor indif-ferene. The number of ways of oloring G with exatly r olors but reognizing the di�erent olors isthen r!N(G; r) sine we have to assign a olor to eah subset. The number of �-olorings of G usingexatly r olors among the � available ones is then ��r�r!N(G; r). By summing this quantity over allpossible r, we obtain : ~P (G;�) = �Xr=1 ��r�r!N(G; r) = �Xr=1�(r)N(G; r);whih onludes the proof. 24 Some shortutsIn this setion, we will give some omputationnal triks, or shortuts, allowing an easier omputationof hromati polynomials. These results are based on some speial deompositions of the graphs underonsideration.In the undireted ase, the hromati polynomial of a graph an always be expressed as the produtof the hromati polynomials of its onneted omponents. In the oriented ase, this result no longerholds in general sine we have :Theorem 7 Let G be an oriented graph having k onneted omponents G1; G2; : : : ; Gk. The followingequality ~P (G;�) = ~P (G1; �)� ~P (G2; �)� : : :� ~P (Gk; �)holds if and only if at most one of these omponents ontains more than one vertex. In this ase, ifG1 is the non-singleton omponent we have :~P (G;�) = �k�1 � ~P (G1; �):Proof. Suppose that any omponent but G1 ontains only one vertex. The k � 1 verties ofG2; G3; : : : ; Gk an be assigned any of the � olors and we have ~P (G;�) = �k�1 � ~P (G1; �). Supposenow that ~P (G;�) is expressed as the produt of the hromati polynomials of its omponents and thattwo of them, say G1 and G2, ontain at least two verties. Then we have at least one ar (x1; y1) inG1 and one ar (x2; y2) in G2 and the �-olorings of G1 and G2 are not independent : we annot have



E. Sopena 7
1 2

3

4

5

6

1 2

(b) the subgraph

3

4

5

6

(c) the subgraph(a) the graph G G1 G2Figure 3: Illustration of Theorem 4.3.for instane (x1) = (y2) = 1 and (x2) = (y1) = 2. In other words the produt ~P (G1; �)� ~P (G2; �)ounts some �-olorings whih are not valid for G, whih leads to a ontradition. 2The following fats allow to express the hromati polynomial of a graph as a funtion of thehromati polynomials of some of its subgraphs.Observation 8 Let G = (V;A) be an oriented graph and x be a vertex of G suh that either (i) 8 y 2V n fxg; (x; y) 2 A or (ii) 8 y 2 V n fxg; (y; x) 2 A. Then we have~P (G;�) = �� ~P (G n x; �� 1)where Gnx stands for the graph obtained from G by deleting the vertex x as well as all the ars inidentto x.Proof. In any �-oloring of G, we must hoose one olor for the vertex x and use the �� 1 remainingolors to olor the rest of the graph, that is G n x. 2Let P1 = Pni=1 ai�(i) and P2 = Pmj=1 bj�(j) be two hromati polynomials expressed in theirfatorial form. We then de�ne the produt P = P1 �P2, obtained by treating the fatorials as if theywere powers, as : P = P1 � P2 = nXi=1 mXj=1aibj�(i+j):Then, we have :Theorem 9 Let G = (V;A) be an oriented graph and V1; V2 be two non-empty subsets of V suh thatV1 [ V2 = V and 8 x1 2 V1; 8 x2 2 V2; fx1; x2g 2 Æ(G). Let G1 (resp. G2) denote the subgraph of Gindued by V1 (resp. V2). Then we have~P (G;�) = ~P (G1; �)� ~P (G2; �):
Proof. The proof of this result is a diret translation of the proof of a similar result in the undiretedase (see e.g. [10℄). The main argument is that the verties in V1 have to be assigned olors whihare distint from those assigned to verties in V2 and that this property is preserved by the hromatiredution of Theorem 3. 2



8 Computing hromati polynomials of oriented graphsNote that the hypothesis of Theorem 3 amount to saying that every two verties in G are at(direted) distane at most 2.Example 10 Figure 3 shows a graph G satisfying the onditions of Theorem 9 and the two orre-sponding indued subgraphs G1 and G2. By using the tehnique introdued in the previous setion,it is easy to hek that we have~P (G1; �) = �(2) and ~P (G2; �) = �(4) + 3�(3) + �(2):Then, by treating these fatorials as if they were powers we obtain~P (G;�) = ~P (G1; �)� ~P (G2; �) = �(2) � (�(4) + 3�(3) + �(2))= �(6) + 3�(5) + �(4):5 Expressing ~P (G; �) by means of hromati polynomials of undi-reted subgraphs of GIn this setion we give a formula relating the hromati polynomial of an oriented graph G to thehromati polynomials of some (underlying) undireted subgraphs of G. Let us denote by Und(G) theundireted underlying graph of any oriented graph G (obtained by \forgetting" the orientation of thears of G). With any oriented graph G = (V;A) we assoiate the set C(G) de�ned as :C(G) = f f(x; y); (z; t)g 2 A2; (y; z) =2 A; (z; y) =2 A; (x; t) =2 A and (t; x) =2 A g:Roughly speaking, C(G) represents the set of pairs of ars whih an ontradit the fat that a �-oloring of Und(G) is a valid �-oloring of G (by means of ondition (ii) of the de�nition). Note thatany pair of ars of the form f(x; y); (y; z)g belongs to C(G).Now let Z = ff(x1; y1); (z1; t1)g; : : : ; f(xk; yk); (zk; tk)gg be any subset of C(G) ; we will denote byId(G;Z) the undireted graph obtained from Und(G) by identifying the verties xi and ti, yi and zi,for any 1 � i � k. Note that suh an operation may lead to a graph having some loops, in whih asewe let its hromati polynomial to be 0. Note also that we have Id(G; ;) = Und(G).Then we obtain :Theorem 11 For any oriented graph G we have~P (G;�) = XZ�C(G)(�1)#Z � P (Id(G;Z); �):Proof. This result is obtained by using a standard inlusion/exlusion argument. 2Example 12 Figure 4 illustrates the above Theorem on an oriented graph G with C(G) =ff(a; b); (b; )g; f(b; ); (; d)gg. The set of onsidered pairs of ars is preised besides eah orre-sponding undireted graph.Note that Theorem 5.1 does not give an eÆient way of omputing ~P (G;�) but only relateshromati polynomials of oriented and undireted graphs.
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- 5 + 8 - 4 λFigure 4: Illustration of Theorem 5.1.6 DisussionIn this paper, we have introdued the notion of hromati polynomials of oriented graphs and shownhow these polynomials an be omputed. Many questions whih are solved in the ase of undiretedgraphs remain open in the oriented ase and give natural diretions for future work. For instane,we do not have up to now any simple mehanism allowing to derive the usual form of the hromatipolynomial, that is allowing to express the hromati polynomial of a graph G as a funtion of thehromati polynomials of some empty graphs. In the same vein, we do not have any general interpre-tation of the oeÆients in the usual form of ~P (G;�) (only the �rst two oeÆients are interpreted byProposition 5). Unfortunately, it seems that suh questions are quite diÆult in the oriented ase, dueto the non loality of the oloring requirements. The property that the oeÆients of the hromatipolynomial alternate in sign is for instane no longer satis�ed in the oriented ase as shown by thefollowing graph :
5 4 3 2λ λ λ λ- 4 + 5 - - λSimilarly, the absolute values of the oeÆients no longer have the unimodality property, as shown bythe following graph :

λ λ λ λ λ λ λ68 7 5 4 3 2
- 13 + 66 - 155 + 127 λ + 121 - 281 + 134It would also be interesting to study the relation between the hromati polynomial of an undiretedgraph H and the hromati polynomials of its orientations (i.e. the graphs obtained from H by givingany orientation to its edges). Note that sine any �-oloring of any orientation ~H of an undiretedgraph H is a �-oloring of H itself, we always have ~P ( ~H; �) � P (H;�). A haraterization of theundireted graphs for whih one an �nd one orientation having the same hromati polynomialremains to be done (it is not diÆult to hek that omplete multipartite graphs belong to that lass).The notions of hromati equivalene and hromati uniqueness [1, 6℄ ould also be asked in theoriented ase. Two non-isomorphi undireted graphs are said to be hromatially equivalent if theyhave idential hromati polynomials. An undireted graph is said to be hromatially unique if itis not hromatially equivalent to any other graph. These notions should be slightly modi�ed in theoriented ase sine any oriented graph G has the same hromati polynomial as its \reversed graph"



10 Computing hromati polynomials of oriented graphsG�1 (obtained from G by reversing the diretion of all its ars). Chromati uniqueness seems tobe \less frequent" in the oriented ase. As mentionned earlier, unlike omplete undireted graphs,oriented tournaments, for instane, are not hromatially unique : the direted yle with 5 verties(see the graph G3 in Setion 2) is hromatially equivalent to any tournament on 5 verties.Referenes[1℄ R. A. Bari, S. Z. Kahn, Chromati equivalene and hromati uniqueness, in Reent Studies inGraph Theory, ed. V. R. Kulli, Vishwa Int. Pub. (1989), 1-13.[2℄ G. D. Birkho�, A determinantal formula for the number of ways of oloring a map, Ann. of Math.14 (1912), 42-46.[3℄ G. D. Birkho�, D. C. Lewis, Chromati polynomials, Trans. Amer. Math. So. 60 (1946), 355-451.[4℄ B. Courelle, The monadi seond-order logi of graphs VI : on several representations of graphsby relationnal strutures, to appear in Disrete Applied Math. (1993).[5℄ P. Hell, J. Nesetril On the omplexity of H-oloring, J. of Combinatorial Theory B 48 (1990),92-110.[6℄ K. M. Koh, K. L. Teo, The searh for hromatially unique graphs, Graphs and Combinatoris 6(1990), 259-285.[7℄ H. A. Maurer, A. Salomaa, D. Wood, Colorings and interpretations : a onnetion between graphsand grammars forms, Disrete Applied Math. 3 (1981), 119-135.[8℄ R. Nelson, R.J. Wilson (Eds), Graph olourings, Pitman Researh Notes in Math. Series 218(1989).[9℄ A. Raspaud, E. Sopena, Good and semi-strong olorings of oriented planar graphs, Internal Re-port, University Bordeaux I (1993), to appear in Information Proessing Letters.[10℄ R. C. Read, An introdution to hromati polynomials, J. Combinatorial Theory 4 (1968), 52-71.[11℄ R. C. Read, W. T. Tutte, Chromati polynomials, Chapter 2 in Seleted Topis in Graph Theory3, eds. L. W. Beineke and R. J. Wilson, Aademi Press (1988).[12℄ E. Sopena, On the hromati number of oriented partial k-trees, Internal Report, UniversityBordeaux I (1993), submitted.[13℄ E. Sopena, Expanding graph relabeling systems have the power of reursive enumerability, InternalReport, University Bordeaux I (1993), submitted.


