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e.Abstra
t. Let G = (V;A) be an antisymmetri
 dire
ted graph. An oriented �-
oloring of G is de�nedas a mapping 
 from V to the set of 
olors f1; 2; : : : ; �g satisfying (i) 8 (x; y) 2 A; 
(x) 6= 
(y) and (ii)8 (x; y); (z; t) 2 A; 
(x) = 
(t) =) 
(y) 6= 
(z). The oriented 
hromati
 polynomial of G is then de�ned asthe quantity ~P (G; �), standing for the number of oriented �-
olorings of G. We show in this paper how thispolynomial 
an be 
omputed and prove some properties of it.1 Introdu
tionFor many years, numerous graph 
oloring problems have been 
onsidered in the literature [8℄. Howeververy few of them are 
on
erned with dire
ted graphs. Among these, is the general H-
oloring problem,introdu
ed by Maurer, Salomaa and Wood [7℄ in both the dire
ted and the undire
ted 
ase. Thisproblem 
an be stated as follows : let G = (V;A) and H = (W;B) be two dire
ted (resp. undire
ted)graphs ; we will say that G 
an be H-
olored if there exists a mapping � from V to W satisfying(x; y) 2 A =) (�x; �y) 2 B (resp. fx; yg 2 A =) f�x; �yg 2 B). In the undire
ted 
ase, this notiongeneralizes the usual graph 
oloring problem sin
e a graph G is k-
olorable if and only if it 
an beKk-
olored. Many authors have 
onsidered the 
omplexity of the H-
oloring problem, that is the
omplexity of the question \is a given graph G H-
olorable ?" for some families of graphs H. Thisquestion has been re
ently solved in the undire
ted 
ase by P. Hell and J. Nesetril [5℄ but is still openin the dire
ted 
ase.The 
oloring problem we 
onsider in this paper 
an be viewed as a parti
ular 
ase of the H-
oloringproblem, obtained by only 
onsidering antisymmetri
 dire
ted graphs ((x; y) and (y; x) 
annot bothbelong to the set of ar
s), also 
alled oriented graphs. We are essentially interested in answeringquestions of the type : \Given a family F of oriented graphs, �nd a graph H with a minimum numberof verti
es su
h that every graph in F is H-
olorable". This question was addressed in the 
ase ofplanar graphs by Cour
elle [4℄ whi
h studied graphs and properties of graphs de�nable by monadi
se
ond-order logi
 formulas. Some answers to that problem 
an also be found in [9, 12℄.In this paper we begin the investigation of 
hromati
 polynomials of oriented graphs, whi
h gen-eralize to the oriented 
ase the well-known notion of 
hromati
 polynomials, introdu
ed by Birkho�[2℄ in the undire
ted 
ase and studied by many authors (see e.g. [3, 10, 11℄ for an overview on thissubje
t). In Se
tion 2 we introdu
e and illustrate the notion of �-
olorings and of 
hromati
 polyno-mials in the oriented 
ase. In Se
tion 3 a general method for 
omputing the 
hromati
 polynomialsis presented. We give in Se
tion 4 some basi
 properties of these 
hromati
 polynomials leading tosome 
omputing short
uts. In Se
tion 5 we relate the notions of 
hromati
 polynomials in the orientedand the undire
ted 
ase and propose in Se
tion 6 some dire
tions for future resear
h. Although some1With the support of the European Basi
 Resear
h A
tion ESPRIT No 3166 (ASMICS) and the European CommunityCooperative A
tion IC-1000 (ALTEC). 1
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hromati
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Figure 1: The oriented 
oloring problem.referen
es to the theory of 
hromati
 polynomials in the undire
ted 
ase are made along, this paperis self-
ontained ex
ept for the usual basi
 notions of graph theory.2 De�nitionsA �-
oloring of an undire
ted graph U = (V;E) is a mapping 
 from V to the �nite set of 
olorsC� = f1; 2; : : : ; �g su
h that any two neighbouring verti
es are assigned distin
t 
olors. Let nowG = (V;A) be an oriented graph. An oriented �-
oloring of G is a mapping 
 from V to the set of
olors C� satisfying : (i) 8 (x; y) 2 A; 
(x) 6= 
(y);(ii) 8 (x; y); (z; t) 2 A; 
(x) = 
(t) =) 
(y) 6= 
(z):Note that any oriented �-
oloring of G is also a �-
oloring of the underlying undire
ted graph of Gand that the 
onverse is not true.Example 1 Figure 1.a shows an oriented graph G and an oriented 5-
oloring of G. The mapping
 depi
ted in Figure 1.b is not an oriented 5-
oloring sin
e we have 
(x) = 1 and 
(y) = 2 on onehand, and 
(t) = 1 and 
(z) = 2 on the other hand, whi
h 
ontradi
ts the 
ondition (ii) above. Notehowever that the mapping 
 is a 5-
oloring of the 
orresponding underlying undire
ted graph.Condition (ii) of our de�nition essentially states that we are able to \en
ode" the orientation ofa graph by means of some labels (the 
olors) asso
iated with its verti
es, provided that we keep inmemory what we 
all the 
olor-graph, whi
h gives the relations between these labels [12℄. The 
olor-graph H 
orresponding to the oriented 5-
oloring of the graph G in Figure 1.a is for instan
e given bythe set of ar
s f(1; 2); (2; 3); (2; 4); (2; 5); (3; 5); (4; 1); (4; 3)g (using the terminology of the H-
oloringproblem, we say that G has been H-
olored). Su
h an en
oding may be useful whenever we need torepresent some \dire
ted" notion asso
iated with an undire
ted labelled graph [4, 13℄.For any oriented graph G, we de�ne the oriented 
hromati
 number of G as the minimum valueof � su
h that G has an oriented �-
oloring. It has been shown in [9℄ that any oriented planar graphhas an oriented 
hromati
 number whi
h does not ex
eed 80 and no better upper bound is known upto now. The oriented 
hromati
 number of other families of graphs has been studied in [12℄.Let us now de�ne ~P (G;�) as the number of oriented �-
olorings of G. This quantity is 
alled theoriented 
hromati
 polynomial of G sin
e we will see in the next se
tion that it 
an be expressed asa polynomial in �. If H is an undire
ted graph, the 
hromati
 polynomial of H will be denoted byP (H;�).



E. Sopena 3Note from our de�nition of oriented �-
olorings that the verti
es as well as the 
olors are distin-guishable, as is the 
ase for undire
ted graphs. For further 
larity we give some examples illustratingthe way the oriented �-
olorings of G are 
ounted. First the two following oriented 4-
olorings
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will be 
onsidered as distin
t, although they are in some sense equivalent sin
e we 
an obtain any oneof them from the other by applying an adequate automorphism of G.Se
ondly, the two following oriented 4-
olorings
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will also be 
onsidered as distin
t, although we 
an obtain any one of them from the other by simplypermuting the 
olors 1 and 2. In the sequel, we will speak of oriented �-
oloring with 
olor indi�eren
ewhenever we will want to 
onsider as equivalent any two oriented 
olorings whi
h only di�er by apermutation of their 
olors. Su
h 
olorings are then de�ned as a partition of the set of verti
es V intok subsets V1; : : : ; Vk (k � �) in su
h a way that (i) any two verti
es belonging to the same Vi are notadja
ent and (ii) all the ar
s linking verti
es of any two subsets Vi and Vj have the same dire
tion.Let us now illustrate the notion of oriented 
hromati
 polynomials.Example 2 Consider the following graph G1 :
x y z

tWe 
an 
hoose any of the � 
olors for the vertex y and any of the remaining 
olors for x; z and t.Hen
e, we have : ~P (G1; �) = �(�� 1)3= �4 � 3�3 + 3�2 � �:Consider now the following graph G2 :
x y zNo two verti
es in G2 may have the same 
olor. Hen
e, we have :~P (G2; �) = �(�� 1)(�� 2)= �3 � 3�2 + 2�:Similarly, it is easy to 
he
k that in the following graph G3 :
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all the verti
es must have distin
t 
olors and we have :~P (G3; �) = �(�� 1)(�� 2) (�� 3)(�� 4)= �5 � 10�4 + 35�3 � 50�2 + 24�:For any oriented graph G = (V;A), we will denote by Æ(G) the set of all unoriented pairs of verti
esin G whi
h must be assigned distin
t 
olors in any oriented 
oloring of G. It is not diÆ
ult to see thatwe have Æ(G) = f fx; yg = x; y 2 V; (x; y) 2 A or (y; x) 2 Aor 9 z 2 V; (x; z); (z; y) 2 A or 9 z 2 V; (y; z); (z; x) 2 A g:Let P2(X) denote the set of all two element subsets of X for any set X. Obviously, any orientedgraph G = (V;A) satisfying Æ(G) = P2(V ) has an oriented 
hromati
 polynomial of the form~P (G;�) = �(�� 1)(�� 2) : : : (�� n+ 1);where n stands for the number of verti
es of G. We will denote by �(n) this fa
torial form. Hen
e, weobtain : 8 G = (V;A) with n = jV j; Æ(G) = P2(V ) =) ~P (G;�) = �(n):Note that 
ontrary to the undire
ted 
ase, the tournaments are not the only graphs having thisproperty (see examples G2 and G3 above).Finally, if G is the empty graph on n verti
es, that is the graph having n verti
es and no ar
s, wehave : ~P (G;�) = �n:In the next se
tion, we will show that for any oriented graph G having n verti
es, ~P (G;�) 
an beexpressed as a polynomial of degree n in �. When ~P (G;�) is expressed in terms of the usual monomialbasis for polynomials, we will speak about the usual form of ~P (G;�). We will also express it as afun
tion of the �(i)'s, 1 � i � n, and then speak about its fa
torial form.From now on, we will generally drop the word \oriented" when speaking about 
oloring, 
hromati
number or 
hromati
 polynomial, using it only in the 
ontexts where 
onfusion may arise.3 Computing the fa
torial form of ~P (G; �)One of the main di�eren
es between 
olorings of undire
ted and of oriented graphs is that in the 
aseof oriented graphs the 
oloring 
onstraints are no longer lo
al. In order to de
ide whether or not a
olor 
an be assigned to a vertex x, it is not suÆ
ient to look at the immediate neighbours of x : wemust 
onsider the whole graph to 
he
k 
ondition (ii) of the de�nition.Consequently, 
omputing the 
hromati
 polynomial of an oriented graph will be slightly more
omplex than in the undire
ted 
ase. In order to deal with this non lo
ality we must use 
onstrainedpolynomials de�ned as follows : let G = (V;A) be an oriented graph and X be a subset of P2(V ) ; wewill denote by ~QX(G;�) the number of �-
olorings 
 of G satisfying8 fx; yg 2 X; 
(x) 6= 
(y):
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Figure 2: Computing the fa
torial form of the 
hromati
 polynomial.Intuitively speaking, the set X represents some additionnal 
onstraints on the 
olorings under 
onsid-eration. We will 
all �-X-
olorings those �-
olorings of G satisfying the set of 
onstraints X. Notethat the 
hromati
 polynomial of G 
an then be expressed as~P (G;�) = ~Q;(G;�):In order to 
ompute the quantity ~QX(G;�), we need the following notation : let G = (V;A) and a; bbe any two verti
es in V su
h that fa; bg =2 Æ(G) ; we will denote by G0ab the graph obtained from Gby identifying the verti
es a and b. More formally, let � be the mapping from V to V n fbg de�nedby (i) �b = a and (ii) �x = x, 8 x 6= b. Then, G0ab is the oriented graph with vertex set V 0ab = V n fbgand whose ar
s are given by (�x; �y) 2 A0ab if and only if (x; y) 2 A. It is not diÆ
ult to see thatsin
e the pair fa; bg does not belong to Æ(G), the orientation of the graph G0ab thus obtained is stillantisymmetri
. Similarly, for any subset X of P2(V ) we will denote by X0ab the subset of P2(V n fbg)obtained from X by \renaming" b as a (all the 
onstraints on b are transferred to a) and deleting thepair fa; bg from X if it appears in X. Then we have :Theorem 3 For any oriented graph G = (V;A) having n verti
es and any subset X of P2(V ) we have~QX(G;�) = 8>>>><>>>>: �(n) if X [ Æ(G) = P2(V );~QX[fa;bg(G;�) + ~QX0ab(G0ab; �);8 fa; bg =2 X [ Æ(G) otherwise.Proof. Let G = (V;A) be an oriented graph and X be any set of 
onstraints. If X [ Æ(G) = P2(V ),that means that any pair of verti
es inGmust be assigned distin
t 
olors and we have ~QX(G;�) = �(n).Suppose now that fa; bg =2 X[Æ(G) ; then the �-X-
olorings of G 
an be partitionned into two 
lasses :those in whi
h a and b are assigned distin
t 
olors, 
alled of type 1, and those in whi
h a and b areassigned the same 
olor, 
alled of type 2. It is then not diÆ
ult to 
he
k that the 
olorings of type 1and 2 are respe
tively 
ounted by ~QX[fa;bg(G;�) and ~QX0ab(G0ab; �), and the result follows. 2Note that by applying indu
tively the formula of Theorem 3 we �nally obtain an expression of~P (G;�) = ~Q;(G;�) in terms of the �(i)'s, 1 � i � n. Hen
e, Theorem 3 allows to 
ompute the fa
torialform of ~P (G;�). Su
h a 
omputation will be 
alled a 
hromati
 redu
tion.Example 4 Figure 2 shows how one 
an 
ompute the 
hromati
 polynomial of an oriented graphin its fa
torial form. As usually done, the 
hromati
 polynomial of a graph is denoted by the graph



6 Computing 
hromati
 polynomials of oriented graphsitself. The pairs of the 
orresponding sets of 
onstraints are joined by dashed lines (initially, the set of
onstraints is empty). For any graph G, the pairs of verti
es belonging to Æ(G) whi
h are not indu
edby an ar
 of G are joined by dotted lines. The two verti
es used in ea
h 
hromati
 redu
tion step aredenoted by a and b.By using the formula of Theorem 3, we 
an then obtain :Proposition 5 For any oriented graph G = (V;A) with n verti
es, we have :(i) ~P (G;�) is a polynomial of order n in �,(ii) the 
oeÆ
ient of �n in ~P (G;�) is 1,(iii) ~P (G;�) has no 
onstant term,(iv) the 
oeÆ
ient of �n�1 in ~P (G;�) is �jÆ(G)j.As in the undire
ted 
ase [10℄ we 
an interpret the 
oeÆ
ients of the fa
torial form of ~P (G;�) asfollows :Theorem 6 The 
oeÆ
ient of �(r) in the fa
torial form of ~P (G;�) is the number of ways of 
oloringG using exa
tly r 
olors with 
olor indi�eren
e.Proof. Let N(G; r) denote the number of ways of 
oloring G with exa
tly r 
olors, with 
olor indif-feren
e. The number of ways of 
oloring G with exa
tly r 
olors but re
ognizing the di�erent 
olors isthen r!N(G; r) sin
e we have to assign a 
olor to ea
h subset. The number of �-
olorings of G usingexa
tly r 
olors among the � available ones is then ��r�r!N(G; r). By summing this quantity over allpossible r, we obtain : ~P (G;�) = �Xr=1 ��r�r!N(G; r) = �Xr=1�(r)N(G; r);whi
h 
on
ludes the proof. 24 Some short
utsIn this se
tion, we will give some 
omputationnal tri
ks, or short
uts, allowing an easier 
omputationof 
hromati
 polynomials. These results are based on some spe
ial de
ompositions of the graphs under
onsideration.In the undire
ted 
ase, the 
hromati
 polynomial of a graph 
an always be expressed as the produ
tof the 
hromati
 polynomials of its 
onne
ted 
omponents. In the oriented 
ase, this result no longerholds in general sin
e we have :Theorem 7 Let G be an oriented graph having k 
onne
ted 
omponents G1; G2; : : : ; Gk. The followingequality ~P (G;�) = ~P (G1; �)� ~P (G2; �)� : : :� ~P (Gk; �)holds if and only if at most one of these 
omponents 
ontains more than one vertex. In this 
ase, ifG1 is the non-singleton 
omponent we have :~P (G;�) = �k�1 � ~P (G1; �):Proof. Suppose that any 
omponent but G1 
ontains only one vertex. The k � 1 verti
es ofG2; G3; : : : ; Gk 
an be assigned any of the � 
olors and we have ~P (G;�) = �k�1 � ~P (G1; �). Supposenow that ~P (G;�) is expressed as the produ
t of the 
hromati
 polynomials of its 
omponents and thattwo of them, say G1 and G2, 
ontain at least two verti
es. Then we have at least one ar
 (x1; y1) inG1 and one ar
 (x2; y2) in G2 and the �-
olorings of G1 and G2 are not independent : we 
annot have
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(c) the subgraph(a) the graph G G1 G2Figure 3: Illustration of Theorem 4.3.for instan
e 
(x1) = 
(y2) = 1 and 
(x2) = 
(y1) = 2. In other words the produ
t ~P (G1; �)� ~P (G2; �)
ounts some �-
olorings whi
h are not valid for G, whi
h leads to a 
ontradi
tion. 2The following fa
ts allow to express the 
hromati
 polynomial of a graph as a fun
tion of the
hromati
 polynomials of some of its subgraphs.Observation 8 Let G = (V;A) be an oriented graph and x be a vertex of G su
h that either (i) 8 y 2V n fxg; (x; y) 2 A or (ii) 8 y 2 V n fxg; (y; x) 2 A. Then we have~P (G;�) = �� ~P (G n x; �� 1)where Gnx stands for the graph obtained from G by deleting the vertex x as well as all the ar
s in
identto x.Proof. In any �-
oloring of G, we must 
hoose one 
olor for the vertex x and use the �� 1 remaining
olors to 
olor the rest of the graph, that is G n x. 2Let P1 = Pni=1 ai�(i) and P2 = Pmj=1 bj�(j) be two 
hromati
 polynomials expressed in theirfa
torial form. We then de�ne the produ
t P = P1 �P2, obtained by treating the fa
torials as if theywere powers, as : P = P1 � P2 = nXi=1 mXj=1aibj�(i+j):Then, we have :Theorem 9 Let G = (V;A) be an oriented graph and V1; V2 be two non-empty subsets of V su
h thatV1 [ V2 = V and 8 x1 2 V1; 8 x2 2 V2; fx1; x2g 2 Æ(G). Let G1 (resp. G2) denote the subgraph of Gindu
ed by V1 (resp. V2). Then we have~P (G;�) = ~P (G1; �)� ~P (G2; �):
Proof. The proof of this result is a dire
t translation of the proof of a similar result in the undire
ted
ase (see e.g. [10℄). The main argument is that the verti
es in V1 have to be assigned 
olors whi
hare distin
t from those assigned to verti
es in V2 and that this property is preserved by the 
hromati
redu
tion of Theorem 3. 2



8 Computing 
hromati
 polynomials of oriented graphsNote that the hypothesis of Theorem 3 amount to saying that every two verti
es in G are at(dire
ted) distan
e at most 2.Example 10 Figure 3 shows a graph G satisfying the 
onditions of Theorem 9 and the two 
orre-sponding indu
ed subgraphs G1 and G2. By using the te
hnique introdu
ed in the previous se
tion,it is easy to 
he
k that we have~P (G1; �) = �(2) and ~P (G2; �) = �(4) + 3�(3) + �(2):Then, by treating these fa
torials as if they were powers we obtain~P (G;�) = ~P (G1; �)� ~P (G2; �) = �(2) � (�(4) + 3�(3) + �(2))= �(6) + 3�(5) + �(4):5 Expressing ~P (G; �) by means of 
hromati
 polynomials of undi-re
ted subgraphs of GIn this se
tion we give a formula relating the 
hromati
 polynomial of an oriented graph G to the
hromati
 polynomials of some (underlying) undire
ted subgraphs of G. Let us denote by Und(G) theundire
ted underlying graph of any oriented graph G (obtained by \forgetting" the orientation of thear
s of G). With any oriented graph G = (V;A) we asso
iate the set C(G) de�ned as :C(G) = f f(x; y); (z; t)g 2 A2; (y; z) =2 A; (z; y) =2 A; (x; t) =2 A and (t; x) =2 A g:Roughly speaking, C(G) represents the set of pairs of ar
s whi
h 
an 
ontradi
t the fa
t that a �-
oloring of Und(G) is a valid �-
oloring of G (by means of 
ondition (ii) of the de�nition). Note thatany pair of ar
s of the form f(x; y); (y; z)g belongs to C(G).Now let Z = ff(x1; y1); (z1; t1)g; : : : ; f(xk; yk); (zk; tk)gg be any subset of C(G) ; we will denote byId(G;Z) the undire
ted graph obtained from Und(G) by identifying the verti
es xi and ti, yi and zi,for any 1 � i � k. Note that su
h an operation may lead to a graph having some loops, in whi
h 
asewe let its 
hromati
 polynomial to be 0. Note also that we have Id(G; ;) = Und(G).Then we obtain :Theorem 11 For any oriented graph G we have~P (G;�) = XZ�C(G)(�1)#Z � P (Id(G;Z); �):Proof. This result is obtained by using a standard in
lusion/ex
lusion argument. 2Example 12 Figure 4 illustrates the above Theorem on an oriented graph G with C(G) =ff(a; b); (b; 
)g; f(b; 
); (
; d)gg. The set of 
onsidered pairs of ar
s is pre
ised besides ea
h 
orre-sponding undire
ted graph.Note that Theorem 5.1 does not give an eÆ
ient way of 
omputing ~P (G;�) but only relates
hromati
 polynomials of oriented and undire
ted graphs.



E. Sopena 9

λ
3

λ
3

λ
2

λ
2

a b c d

{(a,b),(b,c)}{(b,c),(c,d)}

{(a,b),(b,c)}

{(b,c),(c,d)}

a b c d

b da=c

a b=d c

b=d a=c

λ - 3 + 3 - λ( ) - 2 ( λ - 2 λ
4 3 2

+ λ ) + ( λ
2

- λ )

λ
4

- 5 + 8 - 4 λFigure 4: Illustration of Theorem 5.1.6 Dis
ussionIn this paper, we have introdu
ed the notion of 
hromati
 polynomials of oriented graphs and shownhow these polynomials 
an be 
omputed. Many questions whi
h are solved in the 
ase of undire
tedgraphs remain open in the oriented 
ase and give natural dire
tions for future work. For instan
e,we do not have up to now any simple me
hanism allowing to derive the usual form of the 
hromati
polynomial, that is allowing to express the 
hromati
 polynomial of a graph G as a fun
tion of the
hromati
 polynomials of some empty graphs. In the same vein, we do not have any general interpre-tation of the 
oeÆ
ients in the usual form of ~P (G;�) (only the �rst two 
oeÆ
ients are interpreted byProposition 5). Unfortunately, it seems that su
h questions are quite diÆ
ult in the oriented 
ase, dueto the non lo
ality of the 
oloring requirements. The property that the 
oeÆ
ients of the 
hromati
polynomial alternate in sign is for instan
e no longer satis�ed in the oriented 
ase as shown by thefollowing graph :
5 4 3 2λ λ λ λ- 4 + 5 - - λSimilarly, the absolute values of the 
oeÆ
ients no longer have the unimodality property, as shown bythe following graph :

λ λ λ λ λ λ λ68 7 5 4 3 2
- 13 + 66 - 155 + 127 λ + 121 - 281 + 134It would also be interesting to study the relation between the 
hromati
 polynomial of an undire
tedgraph H and the 
hromati
 polynomials of its orientations (i.e. the graphs obtained from H by givingany orientation to its edges). Note that sin
e any �-
oloring of any orientation ~H of an undire
tedgraph H is a �-
oloring of H itself, we always have ~P ( ~H; �) � P (H;�). A 
hara
terization of theundire
ted graphs for whi
h one 
an �nd one orientation having the same 
hromati
 polynomialremains to be done (it is not diÆ
ult to 
he
k that 
omplete multipartite graphs belong to that 
lass).The notions of 
hromati
 equivalen
e and 
hromati
 uniqueness [1, 6℄ 
ould also be asked in theoriented 
ase. Two non-isomorphi
 undire
ted graphs are said to be 
hromati
ally equivalent if theyhave identi
al 
hromati
 polynomials. An undire
ted graph is said to be 
hromati
ally unique if itis not 
hromati
ally equivalent to any other graph. These notions should be slightly modi�ed in theoriented 
ase sin
e any oriented graph G has the same 
hromati
 polynomial as its \reversed graph"
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hromati
 polynomials of oriented graphsG�1 (obtained from G by reversing the dire
tion of all its ar
s). Chromati
 uniqueness seems tobe \less frequent" in the oriented 
ase. As mentionned earlier, unlike 
omplete undire
ted graphs,oriented tournaments, for instan
e, are not 
hromati
ally unique : the dire
ted 
y
le with 5 verti
es(see the graph G3 in Se
tion 2) is 
hromati
ally equivalent to any tournament on 5 verti
es.Referen
es[1℄ R. A. Bari, S. Z. Kahn, Chromati
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