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e.Abstra
t. Graph relabeling systems (GRS's) have been introdu
ed as a suitable tool for 
oding and provingsequential or distributed algorithms on graphs or networks. These systems do not 
hange the underlyingstru
ture of the graph on whi
h they work, but only the labeling of its 
omponents (edges or verti
es). Ea
hrelabeling step is fully determined by the knowledge of a �xed size subgraph, the relabeled o

urren
e. Weintrodu
e an extension of that model, the so-
alled expanding graph relabeling systems (e-GRS's), whi
h allowsthe generation of sets of graphs by means of 
omponent relabeling. We study the generating power of thesesystems and prove that they enable us to generate any re
ursively enumerable set of graphs. We �rst show howthe \from left to right" natural orientation of a string-graph, that is a graph representation of a string, 
an betranslated by means of vertex labels in su
h a way that any lo
al transformation of the string 
an be simulatedby a lo
al relabeling of the string-graph verti
es. Using this translation, we show that any phrase-stru
turestring grammar 
an be simulated by an e-GRS. Finally, we provide a way of en
oding graphs as strings andan e-GRS, 
alled the de
oder, whi
h 
an 
onvert any string representation of the en
oding of a graph into thegraph itself.Keywords. Graph relabeling systems, Graph grammars, Re
ursive enumerability.1 Introdu
tionThe theory of graph rewriting, or graph grammars, is an a
tive �eld in 
omputer s
ien
e for morethan twenty years (see for instan
e the survey by Nagl [21℄). In a graph rewriting system the basi
operation 
onsists in a subgraph repla
ement operation, usually done in three steps : we �rst lo
ate inthe graph to be rewritten an image of the left-hand side of a rewriting rule, and delete it. We then putin its pla
e the right-hand side of the rewriting rule and �nally \
onne
t" it to the host graph. Thisthird step is 
learly the diÆ
ult one and is usually 
arried out by means of some spe
ial embeddingme
hanism depending on the 
onsidered model.Various models have been 
onsidered in the literature. The repla
ement operation may 
on
ernssingle verti
es, as in the Node Label Controlled approa
h [8, 12, 13℄, single edges, or more generallyhyperedges [1, 2, 9, 10, 19, 20℄, or any kind of 
onne
ted subgraphs as in [18, 26℄ or in the well-knownalgebrai
 approa
h of the Berlin s
hool [6, 7℄. In that formalism, rewriting steps are de�ned in termsof double-pushouts (or simple-pushouts in [17, 22℄) in a given 
ategory.Graph relabeling systems have been introdu
ed in [3℄ as a suitable tool for 
oding and provingsequential or distributed algorithms on graphs or networks. These systems deal with 
onne
ted labeledgraphs (given as a graph G together with a labeling fun
tion �) and satisfy the following requirements:(i) they do not 
hange the underlying graph but only the labeling of its 
omponents (edges and/orverti
es), the �nal labeling being the result of the 
omputation,1With the support of the European Basi
 Resear
h A
tion ESPRIT no 3166 \ASMICS" and the ESPRIT-Basi
Resear
h Working Group no 7183 \COMPUGRAPH II". 1



2 Expanding graph relabeling systems have the power of re
ursive enumerability(ii) they are lo
al, that is, ea
h relabeling step 
hanges only a 
onne
ted subgraph of a �xed size inthe underlying graph,(iii) they are lo
ally generated, that is, the appli
ability of a relabeling rule only depends on the lo
al
ontext of the relabeled subgraph.In order to relate the relabeling approa
h to 
lassi
al models of graph rewriting systems, we extendthese relabeling systems and obtain graph generating devi
es based on a relabeling operation, on the
ontrary to the usual repla
ement operation. The expanding graph relabeling systems thus obtained willalso satisfy the three previous 
onstraints. In order to keep the prin
iple of \
omponent relabeling",we introdu
e the notion of an expanded graph whi
h 
an be viewed as an in�nite, 
omplete, simple,loopless graph (
alled the universal graph) in whi
h a �nite subset of 
omponents (verti
es and edges)are sele
ted thanks to an adequate labeling. More pre
isely, we will 
onsider an in�nite 
ountableset of verti
es V1 with asso
iated edge set E(V1) and two labeling fun
tions �v : V1 �! Lv and�e : E(V1) �! Le where Lv and Le are two �nite sets of labels su
h that ? 2 Lv \Le. ? is a spe
ialsymbol used to indi
ate that the 
omponents thus labeled do not have to be 
onsidered as part of the(underlying) graph. In order to deal with �nite graphs we require both the sets fx 2 V1= �v(x) 6= ?gand ffx; yg 2 E(V1)= �e(fx; yg) 6= ?g to be �nite. Note that expanded graphs are simply a way ofviewing 
lassi
al graphs as subgraphs of a universal graph and that we do not really deal with in�nitegraphs (an analogy 
an here be made with the \potentially in�nite" tape of a Turing ma
hine).An expanding relabeling rule will then 
onsist in the relabeling of a �xed 
onne
ted expandedsubgraph, that is a subgraph whose underlying graph is 
onne
ted in the usual way. This leads tothe notion of expanding graph relabeling systems, namely e-GRS's. The basi
 operation is then arelabeling operation whi
h 
an be done in two steps as follows : we �rst lo
ate in the graph to berelabeled an image of the left-hand side of a relabeling rule and then relabel it a

ording to the right-hand side. Hen
e, the third step of the usual graph-repla
ement approa
h is bypassed, leading to aformalism without any expli
it embedding me
hanism, as in the set-theoreti
 approa
h of Raoult [23℄.Moreover, we naturally obtain systems whi
h are \
ontext-preserving" in the following sense : if agraph G derives a graph G0 by the relabeling of a subgraph K of G, then the 
ontext of K in G (thatis all the 
omponents of G that do not belong to K, but also the edges linking a vertex of K and avertex of G nK) is preserved in G0. Under some spe
i�
 
onstraints, su
h a property is also satis�edby some existing models (see se
tion 2 for a more detailed dis
ussion).In this paper we study the generating power of e-GRS's and show that they enable us to generateany re
ursively enumerable set of graphs. To our knowledge, only four models of graph grammars[2, 19, 20, 26℄ have been shown to have a similar power. Our result on relabeling systems seems toindi
ate that the generating power of a graph rewriting system is not a 
onsequen
e of its embeddingme
hanism as suggested by Main and Rozenberg (see dis
ussion in [19℄).In order to prove that a graph rewriting model has the power of re
ursive enumerability, thefollowing method is generally used:(i) prove that any phrase-stru
ture string grammar [11℄ 
an be simulated by a graph rewritingsystem,(ii) �nd a linear en
oding of graphs as strings su
h that the de
oding pro
ess 
an be handled by agraph rewriting system,(iii) \merge" the two above-de�ned systems in order to generate any family of graphs whose 
orre-sponding set of en
odings is re
ursively enumerable.Usual representations of strings by graphs make use of the notion of string-graph. Sin
e we dealwith undire
ted labeled graphs, we have to handle the natural orientation of strings (that is from leftto right) by means of vertex (or edge) labels. It is folklore that any string-graph 
an be \oriented"by using the vertex label set f0; 1; 2g and 
onsidering an edge as dire
ted from an i-labeled vertexto a j-labeled one whenever j = i + 1 (mod 3). For example, the orientation of the string-graph



E. Sopena 3representation of aab
aba may be en
oded as follows:t t t t t t ta a b 
 a b a0 1 2 0 1 2 0However, su
h an en
oding does not allow an easy treatment of string produ
tions: if we want torepla
e the substring b
a by baba
 we must relabel all the verti
es of the left (or right) part of therewritten substring as follows:t t t t t t tt ta a b a b a 
 b a1 2 0 1 2 0 1 2 0or 0 1 2 0 1 2 0 1 2In order to over
ome that drawba
k, we provide a new en
oding of string orientation using 7 labels,whi
h allows us to handle any string produ
tion by 
hanging only a �xed part of the rewritten string(namely the rewritten substring and eventually its immediately left and/or right neighbours).The paper is organised as follows. In se
tion 2, we introdu
e and illustrate the notions of expandedgraphs and expanding graph relabeling systems. In se
tion 3, we turn to the 
ombinatorial problemof string orientation en
oding and show in se
tion 4 how any phrase-stru
ture string grammar 
an besimulated by an e-GRS. In se
tion 5, we provide a linear en
oding of graphs as strings and prove inse
tion 6 that the 
orresponding de
oding operation 
an be handled by an e-GRS, whi
h allows us toobtain our main result (se
tion 7). Finally, se
tion 8 outlines some dire
tions for future work.2 Expanding Graph Relabeling Systems and Graph LanguagesGraph relabeling systems [3, 15, 16℄ have been essentially introdu
ed as a suitable tool for des
ribinglo
al 
omputations on graphs. These systems are essentially \stati
" in the sense that they onlymodify the labeling of edges and verti
es of the rewritten graph, and not the underlying stru
ture ofthe graph itself. In this se
tion, we want to extend these systems in order to allow the generationof sets of graphs, as for 
lassi
al graph grammars. However, our approa
h will preserve the main
hara
teristi
s of graph relabeling systems: the rewriting rules will only be relabeling rules, that isthey will not modify the \underlying stru
ture" of the rewritten graph. In order to 
apture thegenerative 
on
ept, we will work on expanded graphs whi
h 
an be viewed as in�nite 
omplete graphsin whi
h a �nite subset of 
omponents (verti
es and edges) are sele
ted thanks to an adequate labeling.In this paper, we will 
onsider simple, loopless, undire
ted labeled graphs. Note that all thede�nitions we will use 
an easily be extended to other types of graphs. For any set V (�nite or not)we will denote by E(V ) the set E(V ) = ffx; yg= x 2 V; y 2 V; x 6= yg. Let L = (Lv;Le) be a pairof two �nite sets of labels (the vertex and edge labels respe
tively). A labeled graph G is de�ned as atriple (V;E; �) where V is a �nite set of verti
es, E � E(V ) a set of edges, � = (�v; �e) the labelingfun
tion with �v : V �! Lv and �e : E �! Le.Suppose now that ? 2 Lv \Le, where ? is a spe
ial label used to indi
ate that some 
omponentsdo not have to be 
onsidered. An expanded labeled graph is a pair H = (V1; �) where V1 is an in�nite
ountable set of verti
es and � = (�v; �e) a pair of mappings with �v : V1 �! Lv; �e : E(V1) �! Lesu
h that both the sets fx 2 V1= �v(x) 6= ?g and ffx; yg 2 E(V1)= �e(fx; yg) 6= ?g are �nite. E(V1)is the set of edges and �v (resp. �e) the vertex (resp. edge) labeling fun
tion. Two expanded labeledgraphs H = (V1; �) and H 0 = (V1; �0) are said to be isomorphi
 if there exists a one-to-one mapping' over V1 su
h that 8 x 2 V1; �v(x) = �0v('(x)) and 8 x; y 2 V1; �e(fx; yg) = �0e(f'(x); '(y)g).Remark 1 Every labeled graph G = (V;E; �) with V � V1 
an naturally be viewed as an expandedlabeled graph H = (V1; �) with (i) if x 2 V then �v(x) = �v(x) else �v(x) = ? and (ii) if fx; yg 2 Ethen �e(fx; yg) = �e(fx; yg) else �e(fx; yg) = ?. Hen
e, expanded labeled graphs will be simply
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d dt......... tA B

(a) t����tt......... t.........A B
C D(b) t����tt tA B

C D(
)Figure 1: Sample partial graphs.referred to as graphs in the rest of this paper. When we want to expli
itly distinguish these twonotions, we will speak about usual or expanded graphs.Let V be a �nite subset of V1 and � = (�v; �e) be a pair of partial mappings �v : V �! Lv,�e : E(V ) �! Le. The pair K = (V; �) is said to be a partially �nitely expanded graph (or simplypartial graph). Hen
e, a partial graph (V; �) 
an be viewed as a partial labeling of the 
omplete graphKn where n = #V .Note that the labeling of a graph in our sense does not ne
essarily indu
e a usual graph: someexisting edges, that is edges whi
h are not ?-labeled, may have non-existing, or ?-labeled, end-points.We will say that a graph is a real graph if the vertex labeling fun
tion is \well-de�ned" in the followingsense : 8 fx; yg 2 E(V1); �e(fx; yg) 6= ? =) �v(x) 6= ? and �v(y) 6= ?:In the same way, a partial graph will be said to be a real partial graph if :8 fx; yg 2 Dom(�e); �e(fx; yg) 6= ? =) x; y 2 Dom(�v); �v(x) 6= ? and �v(y) 6= ?;where Dom(�v) (resp. Dom(�e)) denotes the set of verti
es (resp. edges) for whi
h �v (resp. �e) isde�ned.Remark 2 When we have to deal with unlabeled graphs, we will use the label sets Lv = Le = f?; "g,where " stands for the \empty" label.Drawing 
onventions. When we draw graphs (or partial graphs), we represent all the 
omponentswhi
h are not ?-labeled and some of the ?-labeled ones when it is ne
essary (e.g. when the graph is nota real graph). ?-labeled verti
es will be drawn as 
ir
les, other verti
es as full 
ir
les, ?-labeled edgesas dotted lines and other edges as thin lines. Some edges of partial graphs may appear as \hanging"edges when one (or two) of their end-points do not belong to Dom(�v). "-labeled 
omponents will bedrawn as unlabeled ones.Example 3 Figure 1(a) shows a partial graph whi
h is not a real partial graph : there is one edgewith only one end-point and two edges with ?-labeled end-points. Figure 1(b) shows a real partialgraph and �gure 1(
) the usual graph it 
orresponds to.We now extend 
lassi
al de�nitions on usual graphs to expanded graphs. Let H = (V1; �) bea graph. A vertex x and an edge of the form fx; yg are said to be in
ident. A generalized path, orsimply path, is a sequen
e (
1; 
2; : : : ; 
k) of not ?-labeled 
omponents (that is edges or verti
es) su
hthat for any i, 1 � i < k, 
i and 
i+1 are in
ident. Hen
e, su
h a path is alternatively made of edgesand verti
es. It may indi�erently start or end with an edge or a vertex. We will say that the two
omponents 
1 and 
k are linked by this path. A graph, or a partial graph, is said to be 
onne
tedwhen any two of its not ?-labeled 
omponents are linked by a path.Let H = (V1; �) be a graph and K = (V; �) be a partial graph. We will say that K is a subgraphof H if (i) V � V1 (whi
h implies E(V ) � E(V1));(ii) 8 x 2 Dom(�v); �v(x) = �v(x);(iii) 8 fx; yg 2 Dom(�e); �e(fx; yg) = �e(fx; yg):
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(b) A relabeling step H�!r H 0Figure 2: The expanded relabeling me
hanism.Let K = (V; �) be a partial graph and � be an inje
tive mapping from V to V 0. The partial graph�(K) = (V 0; �) is de�ned by(i) V 0 = �(V ) = f�(x); x 2 V g;(ii) Dom(�v) = �(Dom(�v)); Dom(�e) = �(Dom(�e));(iii) 8 x 2 Dom(�v); �v(�(x)) = �v(x);(iv) 8 fx; yg 2 Dom(�e); �e(f�(x); �(y)g) = �e(fx; yg):If �(K) is a subgraph of H, we will say that � is an o

urren
e of K in H. In the following, for anysubset A of E(V ), we will denote by �(A) the set ff�(x); �(y)g; fx; yg 2 Ag.In an expanded graph, any two verti
es are linked by an edge (maybe a virtual edge). If we wantto rewrite (i.e. relabel) a given graph in a \lo
al" way, we must restri
t the stru
ture of the left-handsides of the rules in order to avoid the relabeling of \distant" verti
es (i.e. joined by a ?-labeled edge)by a unique rule.An expanding relabeling rule, or simply rule, is a triple r = (V r; �r; � 0r), also denoted (V r; �r) �!(V r; � 0r), su
h that (V r; �r) is a 
onne
ted non-empty partial graph, (V r; � 0r) is a partial graph,Dom(�rv) = Dom(� 0rv ) and Dom(�re ) = Dom(� 0re ). Let r be a rule; the relabeling relation �!r isde�ned in the following way: let H = (V1; �) and H 0 = (V1; �0) be two graphs, H�!r H 0 if thereexists an o

urren
e � of (V r; �r) in H su
h that :(i) � is an o

urren
e of (V r; � 0r) in H 0;(ii) 8 x 2 V1 n �(Dom(�rv)); �v(x) = �0v(x);(iii) 8 fx; yg 2 E(V1) n �(Dom(�re)); �e(fx; yg) = �0e(fx; yg);(iv) 8 x 2 Dom(�rv); (�rv(x) = ? and 8 fx; yg 2 Dom(�re); �re (fx; yg) = ?)=) (8 z 2 V1; �e(fx; zg) = ?):Note that 
ondition (iv) will ensure that the 
reation of a new vertex by a rule will involve a \free"vertex, that is a ?-labeled vertex whi
h is not linked to any \hanging" edge. Note that depending onthe 
hoi
e of that free vertex, we may obtain several graphs whi
h are all isomorphi
. In the following,su
h an o

urren
e of (V r; �r) will be 
alled an o

urren
e of r.Example 4 Figure 2(a) shows a sample rule r and �gure 2(b) a sample appli
ation of r. Note thatthere is no o

urren
e of r in the right bottom part of H sin
e the two 
orresponding A-labeled verti
esare joined by an edge whi
h is not ?-labeled.An expanding graph relabeling system (or e-GRS) is a pair R = (L;P ) where L is a pair (Lv; Le) of�nite label sets (respe
tively of vertex and edge labels) 
ontaining ? and P a �nite set of rules. The



6 Expanding graph relabeling systems have the power of re
ursive enumerabilityrelabeling relation �!R is de�ned by: H �!R H 0 if and only if there exists a rule r 2 P su
h thatH �!r H 0. Its transitive 
losure will be denoted by �!�R .Starting from a graph Z (the axiom), we are now able to generate some (�nite or in�nite) sets ofgraphs. Let T = (Tv; Te) be a pair of terminal label sets. The terminal language of R is de�ned as :LT (R; Z) = f H = H is a real graph with labels in T ; Z �!�R HgFor any e-GRS R = (L;P ) we will simply denote by L(R; Z) the language LL(R; Z) obtained bytaken the whole set L as terminal label set.Expanding graph relabeling systems 
an be understood as 
lassi
al graph rewriting systems whi
hare \
ontext-preserving" in the following sense: if H = (V1; �) and H 0 = (V1; �0) are two graphs su
hthat H�!r H 0 by an appli
ation of r to an o

urren
e �, then we have :(i) 8 x 2 V1 n �(Dom(�rv)); �v(x) = �0v(x);(ii) 8 fx; yg 2 E(V1) n �(Dom(�re)); �e(fx; yg) = �0e(fx; yg):Some of the existing graph rewriting models do not satisfy this 
ondition: in the Node-Label-Controlledapproa
h [8, 12, 13℄ or in the Pfaltz and Rosenfeld approa
h [18℄, edges in
ident to nodes of the\
ontext" of the rewritten nodes 
an be 
reated or removed, a

ording to some 
onne
tion relation.In the Hyperedge Repla
ement approa
h [1, 10℄ or in the algebrai
 approa
h [6℄ this 
ondition isnot satis�ed as soon as we are allowed to identify verti
es in the 
ontext-graph. By using a priorityme
hanism [3℄, we show in [24℄, how su
h systems 
an be simulated by means of relabeling systems :every rewriting step is en
oded by a sequential appli
ation of relabeling steps, ea
h one being 
ontext-preserving.The relabeling approa
h we have introdu
ed is very similar to the double-pushout 
onstru
tion inthe Algebrai
 Approa
h where the left-hand sides are 
onne
ted graphs, the interfa
e graph is dis
reteand the morphisms are inje
tive. One di�eren
e is that the 
ontext preservation in the algebrai
approa
h is ensured thanks to some gluing 
ondition (see [6℄) whi
h prevents a rule from being appliedwhen some \hanging" edges may appear. Another di�eren
e is that in our general model we mayuse as left-hand sides some partial graphs whi
h are not real graphs (as an edge without end-pointsfor instan
e). However, sin
e we will not need to use these possibilities in proving our main result,we obtain as a 
onsequen
e that this parti
ular 
ase of the algebrai
 approa
h also has the power ofre
ursive enumerability.Our model may also be related to the model introdu
ed by Uesu [26℄ : in that model, 
ontextpreservation is ensured by means of some appli
ability 
ondition (using the notion of graph partition)whi
h is equivalent to the gluing 
ondition in the algebrai
 approa
h. But the main di�eren
e betweenour model and Uesu's one is that our relabeling rules always have 
onne
ted left-hand sides. Inparti
ular, the set of rewriting rules used by Uesu in the proof of the re
ursive enumerability powerof his model 
ontains some rules with non-
onne
ted left-hand sides. However, the set of relabelingrules we will use in the following 
an easily be expressed within Uesu's approa
h. We thus obtain anew proof of Uesu's result by means of rewriting rules with 
onne
ted left-hand sides.We now illustrate the notions of e-GRS by giving systems whi
h generate the set of all unlabeledtrees and the set of all unlabeled graphs. Sin
e for any rule the left- and right-hand sides have the sameunderlying graph, the 
orrespondan
e between left- and right-
omponents is established a

ording totheir graphi
al position.Example 5 (unlabeled trees) Let R1 be the e-GRS de�ned by Lv = Le = f";?g and P1 = fr1g wherer1 is given as: r1 : t d. . . . . . . . . �! t tRule r1 allows us to atta
h to any existing vertex a (new) one-degree vertex. Hen
e, if Z stands forthe one vertex (unlabeled) graph, L(R1; Z) is exa
tly the set of unlabeled trees.
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tA �!r1 t taA �!r1 t tt aaA

�!r1 t tt
t aaaA �!r1 t t tt

ta aaaA �!r2 t t tt
t����a aaaA

�!r2 t t tt
t��������a aaaA �!r3 t d tt

t��������a aaa �!r4(4) t tt
t��������Figure 3: A sample derivation sequen
e in R2Example 6 (the set of all unlabeled graphs) In order to generate the set of all graphs, we will usea distinguished vertex (the \administrator" of the generation) whi
h will be linked by a spe
ial edge(with label a) to all the newly 
reated verti
es (rule r1). This administrator will then be able to linktogether any two verti
es of the graph thus 
onstru
ted (rule r2). At the end of that 
onstru
tion,the administrator vertex and all spe
ial edges will be deleted by adequate erasing rules (r3 and r4).More formally, let R2 be the e-GRS de�ned by Lv = fA; ";?g; Le = fa; ";?g and P2 = fr1; r2; r3; r4gwhere the rules are given as:r1 : tA d. . . . . . . . . �! tA tar2 : tA tata. . . . . . . . . �! tA tata����r3 : tA �! dr4 : a �! . . . . . . . . .If ZA stands for the graph with one A-labeled vertex, the e-GRS R2 thus obtained is su
h thatLT (R2; ZA), where T = (f";?g; f";?g), is the set of all unlabeled graphs. Figure 3 shows a samplederivation sequen
e. Note that all spe
ial edges 
an be deleted as soon as their 
orresponding vertexis no longer used in the generation pro
ess.Other examples of e-GRS's generating di�erent families of graphs 
an be found in [25℄.3 En
oding the orientation of string-graphsIn this se
tion, we turn to a 
ombinatorial problem 
on
erning the en
oding of the natural orientation(from left to right) of string-graphs by using vertex labels in su
h a way that any \substring repla
e-



8 Expanding graph relabeling systems have the power of re
ursive enumerabilityment" 
an be realised by a lo
al relabeling of the string-graph. We show that su
h an en
oding 
an beobtained by using a set of 7 vertex labels. This en
oding will allow us to simulate any phrase-stru
turestring grammar by an e-GRS as shown in the next se
tion.When we represent words (or strings) as undire
ted string-graphs, it is ne
essary to use additionalinformation allowing us to retrieve their natural \from left to right" orientation. This 
an easily bedone by using vertex labels taken in the set f0; 1; 2g a

ording to the following rule: an edge fx; yg isdire
ted from x to y i� �(y) = �(x) + 1 (mod 3). Hen
e, any string on an alphabet X 
an be en
odedby a string-graph whose verti
es are labeled in X � f0; 1; 2g. For example, the string aaba
 
an been
oded as follows (the orientation 
omponent is written separately for 
larity):t t t t ta a b a 
0 1 2 0 1If we want to simulate a phrase-stru
ture string grammar by a graph rewriting system, we must be ableto handle appli
ations of string produ
tions, that is substring repla
ements, by a lo
al modi�
ationof the 
orresponding string-graph. For instan
e, an appli
ation of the string produ
tion ab �! b
bashould 
hange the string-graph en
oding aaba
 into a string-graph en
oding ab
baa
. By using the setf0; 1; 2g as orientation 
omponents, we have to relabel all the verti
es on the left (or right) side of therewritten part, thus having:t t t t t t ta b 
 b a a 
0 1 2 0 1 2 0or 1 2 0 1 2 0 1As we want to \lo
ally" relabel the 
orresponding string-graphs, we will have to use a more elaborateen
oding for string orientation.Let us now introdu
e more formally the notion of orientation en
oding.De�nition 7 Let G = (V;A) and H = (W;B) be two loopless antisymetri
 dire
ted graphs. We willsay that H is an en
oder of the orientation of G if there exists an en
oding mapping � from V to Wsu
h that : 8 (x; y) 2 A; (�(x); �(y)) 2 B:The orientation of G 
an then be en
oded by using W as set of vertex labels and labeling any vertexx in V by �(x).For any string u, we will denote by D(u) its asso
iated dire
ted vertex-labeled string-graph rep-resentation. If H = (W;B) is an en
oder for the orientation of D(u) and � an en
oding mapping, wewill denote by UH(u; �) the en
oded version of D(u) given by �.Example 8 As we have seen before, the dire
ted 
y
le C3 (see �gure 4(
)) is an en
oder of anystring-graph. For example, the string-graph D(ab
de) (see �gure 4(a)) 
an be oriented as shown in�gure 4(b), thanks to the mapping � given by �(a) = �(d) = 0; �(b) = �(e) = 1; �(
) = 2. Moreover,it is not diÆ
ult to 
he
k that C3 is the smallest graph whi
h 
an en
ode any string-graph.In order to handle an arbitrary substring repla
ement in a string-graph by a lo
al relabeling of itsverti
es, we will use the dire
ted tournament F7, asso
iated with the Fano plane of order 7. The Fanoplane (see �gure 5) is given as 7 verti
es and 7 lines of three verti
es ea
h (the \internal" line is drawnas a triangle) su
h that any two lines have a unique 
ommon vertex. If we number the verti
es from0 to 6, it is then possible to number the lines from 0 to 6 in su
h a way that:8 i; j 2 f0; 1; : : : ; 6g; i =2 Li and j 2 Li ) i =2 Lj



E. Sopena 9t t t t t- - - -a b 
 d e(a) the string-graph D(ab
de)t t t t ta b 
 d e0 1 2 0 1(b) the en
oded string-graph UC3(ab
de; �)
t tt����- ��	60 12(
) the en
oder C3Figure 4: Orientation of string-graphs with C3.
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L0 = f1; 2; 4g L4 = f5; 6; 1gL1 = f2; 3; 5g L5 = f6; 0; 2gL2 = f3; 4; 6g L6 = f0; 1; 3gL3 = f4; 5; 0g
Figure 5: Numbering of the Fano plane.This numbering is obtained by setting Li = fi+1; i+2; i+4g (these values are taken modulo 7). Theasso
iated dire
ted graph F7 = (V7; E7) is then de�ned by V7 = f0; 1; : : : ; 6g and 8 i; j 2 V7; (i; j) 2E7 i� j 2 Li. Hen
e, ea
h line Li 
orresponds to the set of su

essors of vertex i.It is not diÆ
ult to 
he
k that the graph F7 satis�es the following property :(P ) 8 x; y 2 V7; x 6= y; 9 z 2 V7; s:t: (x; z) 2 E7 and (z; y) 2 E7For instan
e, if we 
onsider the verti
es 0 and 1, the vertex 4 is su
h that (0; 4) and (4; 1) belong toE7, the vertex 3 is su
h that (1; 3) and (3; 0) belong to E7. This property will ensure that the en
oderF7 
an be eÆ
iently used as an en
oder, as shown by the following proposition :Proposition 9 Let � �! �, be a produ
tion, u = u1�u2 and � be an en
oding mapping of D(u) onF7. Then, there exists an en
oding mapping �0 of D(u1�u2) on F7 su
h that :(i) if u1 = u01x1 then 8 x 2 u01; �0(x) = �(x);(ii) if u2 = x2u02 then 8 x 2 u02; �0(x) = �(x):Proof. Note �rst that if ju1j = 0 (resp. ju2j = 0) one 
an always �nd a mapping �0 satisfying the
onditions : the mapping � on u2 (resp. on u1) 
an be extended on � sin
e any vertex in F7 has a
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ursive enumerabilityprede
essor (resp. a su

essor). This is also the 
ase when u1 = x1 or u2 = x2. Suppose now thatu1 = u001y1x1, u2 = x2y2u002. Let � = �1�2 : : : �m and � = �1�2 : : : �n. If m = n, the result is obvioussin
e we 
an simply take �0 = �. Suppose now that n = m + 1. We �rst take �0(�i) = �(�i) for anyi, 1 � i � m. Sin
e u = u1�x2u02, we ne
essarily have �(�m) 6= �(x2) and property (P ) tells us thatthere exists an adequate label for �n. In this 
ase, the mapping �0 is identi
al to � on u1 and u2. Ifn = m+k, k > 1, we simply iterate k times the previous 
onstru
tion and the result follows. Supposenow that n = 0. If (�(x1); �(x2)) is an ar
 in F7 we 
an simply take �0 identi
al to � on u1 and u2.Otherwise, sin
e F7 is antisymetri
, we 
annot have at the same time �(y1) = �(x2) and �(x1) = �(y2).If �(y1) 6= �(x2) (resp. �(x1) 6= �(y2)), the property (P ) tells us that there exists an adequate labelfor x1 (resp. x2) and the result follows. Finally, produ
tions su
h that 0 < n < m 
an be handled by�rst erasing � and then inserting � as shown in the above 
onstru
tions. 2Example 10 Let U(aaba
; �) be the following graph:t t t t ta a b a 
1 2 3 4 5By applying the string produ
tion ab �! b
ba, we obtain the graph U(ab
baa
; �0) de�ned as follows:t t t t t t ta b 
 b a a 
1 2 3 0 2 4 5By applying now the string produ
tion aa �! 
, we obtain the graph U(ab
b

; �0) de�ned as follows:t t t t t ta b 
 b 
 
1 2 3 0 4 1Hen
e, any string produ
tion 
an be handled in a lo
al way by using a set of 7 orientation labels.The problem of en
oding graph orientation by means of vertex labels has also been 
onsidered in [5℄for other families of graphs but in a stati
 way (that is with no \evolution" of the graph thus en
oded).4 e-GRS's and Phrase-Stru
ture String GrammarsA phrase-stru
ture string grammar [11℄ is given as a 4-tuple G =< N;T; P; Z > where N is a �niteset of non-terminal symbols, T a �nite set of terminal symbols su
h that N \T = ;, Z 2 N the axiomsymbol and P a �nite set of string produ
tions p : � �! � with � 2 (T [N)+ nT+ and � 2 (T [N)�.Let u and v be two strings over T[N ; we say that u derives v, denoted u�!� v, if there exists a sequen
eof strings w1; w2; : : : ; wn su
h that w1 = u; wn = v and 8 i; 1 � i < n; wi = w0i�iw00i ; wi+1 = w0i�iw00iwith �i �! �i is a produ
tion in P . As usual, we will say that a string produ
tion p is in
reasingwhen j�j � j�j and de
reasing otherwise. A de
reasing string produ
tion with j�j = 0 will be said tobe erasing. The string language generated by G is de�ned as L(G) = fw 2 T � = Z �!� wg. Su
h aset of strings is said to be re
ursively enumerable.In this se
tion, we will show how any phrase-stru
ture string grammar 
an be simulated by ane-GRS. We have previously seen that the \from left to right" orientation of strings 
an be 
apturedby using spe
ial vertex labels, and have shown that any string produ
tion � �! � 
an be lo
allyhandled. Some spe
ial 
ases require parti
ular attention, namely when the substring to be repla
ed islo
ated at the beginning or at the end of the rewritten string. Sin
e our graph relabeling rules 
annotdete
t whether a given vertex is an \end-point" or not, we will use a slightly di�erent representationof strings as undire
ted string-graphs, by adding two spe
ial end-point verti
es, respe
tively labeledwith L (for Left) and R (for Right). Hen
e, the string aaba
 will be en
oded as (for example):



E. Sopena 11t t t t t t tL a a b a 
 R2 6 3 0 1 5 6If H stands for a string-graph of the above form, we will denote by word(H) the string it en
odes.Using the results of the previous se
tion, we will not indi
ate the orientation labels in the relabelingrules but simply draw them with dire
ted edges. Hen
e, ea
h relabeling rule will in fa
t be a \meta-rule" 
orresponding to a (�nite) set of standard relabeling rules. For example, the following (meta-)rule:
r : t td. . . . . . . . .. . . . . . . . .-a b �! t tt. . . . . . . . .. . . . . . . . .����������� ��R
 b 

orresponds to the set of rules fr(i; j); (i; j) 2 E7g de�ned as:

r(i; j) : t td. . . . . . . . .. . . . . . . . .-a bi j �! t tt. . . . . . . . .. . . . . . . . .����������� ��R
 b 
i j�i;j
where �i;j stands for one 
hosen vertex of V7 su
h that (i; �i;j) 2 E7 and (�i;j ; j) 2 E7 (see property(P ) in se
tion 3).We 
an now state the main result of this se
tion:Theorem 11 For any phrase-stru
ture string grammar G =< N;T; P; Z >, there exists an e-GRSRG and a set T 0 of terminal labels su
h that L(G) = fword(H); H 2 LT 0(RG; Zs)g, where Zs standsfor the string-graph en
oding Z, that is:t t t- -L Z RProof. Let G be any phrase-stru
ture string grammar. The e-GRS RG = (L;P ) will then be de�nedas Lv = (T[N[fL;Rg)�V7, Le = f?; "g and P is obtained by asso
iating with ea
h string produ
tionp a set of relabeling rules in the following way:Case 1: with any in
reasing string produ
tion �1 : : : �m �! �1 : : : �n (n � m) we asso
iate the setof rules fRip(y1; y2); y1; y2 2 T [N [ fL;Rgg de�ned as:Rip(y1; y2) : t t t t- - - -d d. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .::::::::y1 �1 �m y2�! t d d t- -������� ������Rt t. . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . .::::::::y1 �1 �n y2



12 Expanding graph relabeling systems have the power of re
ursive enumerabilityRe
all that our en
oding of strings as undire
ted string-graphs ensures that any \substring" � has aleft (resp. right) neighbour y1 (resp. y2), thanks to the two additional end-point verti
es.Case 2: with any de
reasing non-erasing string produ
tion �1 : : : �m �! �1 : : : �n (0 < n < m) weasso
iate(i) the set of rules fRd1p (y1; y2; x1; x2); y1; y2 2 T [N; x1; x2 2 T [N [ fL;Rgg de�ned as:Rd1p (y1; y2; x1; x2) : t t- -t t t t- - - -d d. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .::::::::y1 �1 �m y2x1 x2�! t d d tt t- -- -������� ������Rt t. . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . .::::::::y1 �1 �n y2x1 x2These rules will be used whenever the substring � to be repla
ed is neither the leftmost nor therightmost substring of the rewritten string.(ii) the set of rules fRd2p (y2; x2); y2 2 T [N; x2 2 T [N [ fL;Rgg de�ned as:Rd2p (y2; x2) : t t t t t-- - - -d d. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .::::::::L �1 �m y2 x2�! t d d t t-- -������� ������Rt t. . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . .::::::::L
�1 �n y2 x2These rules will be used whenever the substring � to be repla
ed is the leftmost substring of therewritten string.(iii) the set of rules fRd3p (y1; x1); y1 2 T [N; x1 2 T [N [ fL;Rgg de�ned as:Rd3p (y1; x1) : t t t tt - - - - -d d. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .::::::::y1 �1 �m Rx1 �! t d d tt - - -������� ������Rt t. . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . .::::::::y1 �1 �n Rx1These rules will be used whenever the substring � to be repla
ed is the rightmost substring of therewritten string.(iv) the rule Rd4p de�ned as:
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Rd4p : t t t t- - - -d d. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .::::::::L �1 �m R�! t d d t- -������� ������Rt t. . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . .::::::::L

�1 �n RThese rules will be used whenever the substring � to be repla
ed is equal to the full rewritten string.Case 3: with any erasing string produ
tion �1 : : : �m �! " (0 < m) we asso
iate(i) the set of rules fRe1p (y1; y2; x1; x2); y1; y2 2 T [N; x1; x2 2 T [N [ fL;Rgg de�ned as:Re1p (y1; y2; x1; x2) : t t- -t t t t- - - -. . . . . . . . . . . . . . . . . .. . . . . . . . .. . . . . . . . .. . . . . . . . .::::y1 �1 �m y2x1 x2�! t d d tt t- --���� ����. . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . .::::y1 y2x1 x2These rules will be used whenever the substring � to be repla
ed is neither the leftmost nor therightmost substring of the rewritten string.(ii) the set of rules fRe2p (y2; x2); y2 2 T [N; x2 2 T [N [ fL;Rgg de�ned as:Re2p (y2; x2) : t t t t t-- - - -. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . .::::L �1 �m y2 x2�! t d d t t-���� ����-. . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . .::::L y2 x2These rules will be used whenever the substring � to be repla
ed is the leftmost substring of therewritten string.(iii) the set of rules fRe3p (y1; x1); y1 2 T [N; x1 2 T [N [ fL;Rgg de�ned as:
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ursive enumerability
Re3p (y1; x1) : t t t tt - - - - -. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . .. . . . . . . . .::::y1 �1 �m Rx1 �! t d d tt - ���� ����-. . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . .::::y1 Rx1These rules will be used whenever the substring � to be repla
ed is the rightmost substring of therewritten string.(iv) the rule Re4p de�ned as:Re4p : t t t t- - - -. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . .::::L �1 �m R�! t d d t���� ����-. . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . .::::L RThese rules will be used whenever the substring � to be repla
ed is equal to the full rewritten string.Note that all of the above rules have been 
onstru
ted in su
h a way that the orientation label of theleftmost and righmost vertex (ex
epted if they are L- or R-labeled) of the left-hand side has not tobe modi�ed (proposition 9). Any string produ
tion p : � �! � appli
able to a given string u�v 
analways be simulated by an appli
ation of a unique relabeling rule on the string-graph en
oding u�v.Hen
e, to any derivation sequen
e of length n in G there is a 
orresponding derivation sequen
e ofthe same length in RG. It is not diÆ
ult to see that the 
onverse also holds and that the e-GRS RGthus 
onstru
ted is su
h that L(G) = fword(H); H 2 LT 0(RG; Zs)g where T 0 is the set of terminallabels de�ned as T 0 = ( f?g [ (fL;Rg [ T )� V7 ; f?; "g ). 25 A linear en
oding of undire
ted graphsIn this se
tion we introdu
e a way of en
oding graphs as strings, inspired by the one used in [19℄,and will show in the next se
tion how the 
orresponding de
oding operation 
an be handled by ane-GRS. For simpli
ity we will only present the 
ase of unlabeled graphs, the general 
ase being aneasy generalisation of it (see remark 14).In order to en
ode an undire
ted unlabeled graph G as a string, we �rst assume that a linearordering of its verti
es is given. The en
oding 
(G) of G will then be given as a string over thealphabet I = fa; l; r; 
; eg and 
an be viewed as a sequen
e of instru
tions allowing a \step by step"
onstru
tion of G. These instru
tions will refer to a sequen
e of verti
es, 
alled the vertex sequen
e(the verti
es whi
h have already been 
reated) having one distinguished vertex, 
alled the 
urrentvertex. More pre
isely, these instru
tions work as follows:
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instru
tion(s)to be exe
uted resulting graphand 
urrent vertex remaining instru
tionsa5 t t t t t" 
l
l
l
rre
rr
 t t t t t" l
l
l
rre
rrl t t t t t" 
l
l
rre
rr
 t t t t t" l
l
rre
rrl t t t t t" 
l
rre
rr
 t t t t t" l
rre
rrl t t t t t" 
rre
rr
 t t t t t" rre
rrr2 t t t t t" e
rre t t t t t� �� �" 
rr
 t t t t t� �� �" rrr2 t t t t t� �� �"Figure 6: En
oding an unlabeled graph as a string.
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ursive enumerabilitya : add a new vertex to the sequen
e and this new vertex be
omes 
urrent,l : the new 
urrent vertex is now the left neighbour of the old one,r : the new 
urrent vertex is now the right neighbour of the old one,
 : 
onne
t the 
urrent vertex to its left neighbour by an unlabeled edge,e : ex
hange the 
urrent vertex and its left neighbour in the sequen
e.Without loss of generality, we 
an assume that the string 
(G) is su
h that 
(G) 2 a�fl; r; 
; eg�(we �rst 
reate all the verti
es of G) and that at the end of the 
omputation the 
urrent vertex is therightmost vertex in the sequen
e. Note that di�erent en
oding fun
tions may yield di�erent en
odingsfor the same graph but we do not need the uni
ity of the en
oding.Example 12 The graphG at the right 
an be en
odedby the string 
(G) = aaaaa
l
l
l
rre
rr as shown inFigure 6 (the 
urrent vertex is marked as "). t t t tt����Any set S of unlabeled undire
ted graphs 
an be asso
iated with the set of strings St(S) de�nedas St(S) = f
(G) = G 2 Sg. We will say that the set S is re
ursively enumerable (see se
tion 7) whenits asso
iated set of strings St(S) is re
ursively enumerable. Note that our de�nition of re
ursiveenumerability of a set of graphs makes referen
e to the spe
ial en
oding 
 we have de�ned. However,any other method allowing us to en
ode graphs as strings leads to the same notion of re
ursiveenumerability sin
e it is always possible to 
onstru
t a Turing ma
hine translating one en
oding intoany other one.6 De
oding by means of an e-GRSIn this se
tion, we will prove that we 
an 
onstru
t an e-GRS whi
h will be able to produ
e any graphwhen starting from the string-graph representation of its en
oding as de�ned in the previous se
tion.This spe
ial e-GRS uses relabeling rules whi
h have been designed in order to simulate any instru
tionof an en
oding as shown before. More formally, we obtain:Proposition 13 There exists an e-GRS D (the de
oder) su
h that for any undire
ted unlabeledgraph G, if ZG stands for the string-graph representation of 
(G) then LT (D; ZG) = fGg, whereT = (f";?g; f";?g).Proof. We start from an axiom ZG whi
h is a string-graph representation of the string 
(G) andwhose orientation is en
oded by F7 (see se
tion 3). The basi
 idea is to provide relabeling rules whi
hwill be able to exe
ute (from left to right) the instru
tions given by 
(G) in a way very similar to theone illustrated in Figure 6. During the de
oding pro
ess, the sequen
e of generated verti
es will berepresented as a string-graph (the sequen
e string) whose edges are labeled s or s and whose verti
es areunlabeled (ex
ept an adequate orientation label des
ribed below) with two spe
ial end-point verti
esrespe
tively labeled by L and R. The string-graph 
orresponding to the remaining instru
tions, 
alledthe instru
tions string, will be atta
hed to the sequen
e string by an edge linking the 
urrent vertexand the next instru
tion to be exe
uted. Hen
e, ea
h intermediate graph in a derivation sequen
e willbe of the following form:t t t t t t t t tt t t t t::::::::- - - - - - -- - -� �AA ��L s s s s s Rl e 
 r R



E. Sopena 17Labels s and s are used in order to distinguish the edges of the sequen
e string (linking any two
onse
utive verti
es) from the edges whi
h have been 
reated between two non 
onse
utive verti
es ofthat sequen
e. Label s (resp. s) is used for a sequen
e edge whi
h has to be (resp. does not have tobe) preserved in the �nal generated graph. Hen
e, the above 
on�guration 
orresponds in fa
t to thefollowing (intermediate) generated graph:t t t t t t t::::� �AA ��Re
all that the 
reation of the verti
es is always made �rst and that ea
h new vertex must be addedto the right end of the sequen
e string. This allows us to en
ode the orientation of the sequen
e stringby using only the label set f0; 1; 2g (see the en
oder C3 in se
tion 3). When all the instru
tions havebeen exe
uted the generated graph has to be \
leaned": the s- and s-labeled edges of the sequen
estring must be modi�ed into ?- or "-labeled edges and the two additional end-point verti
es must beremoved.More formally, we de�ne D = (L;P ) with Lv = f?; "g [ (I [ fL;Rg) � V7 [ fC;L;R; 0; 1; 2g,Le = f?; "; s; sg and P is the set of relabeling rules de�ned below :(i) (the empty 
ase) The �rst rule R" will only be used when the axiom is the string-graph represen-tation of the empty string (the 
orresponding graph is the empty graph) and is de�ned by:R" : t t-L R �! d d. . . . . . . . .(ii) (exe
ution of an `a' instru
tion) We know that all the a instru
tions are lo
ated at the beginningof 
(G). The �rst a will 
reate the sequen
e string (rules R1a(x)) while the next ones will add a newvertex to the a
tual sequen
e (rules R2a(x)). The vertex thus 
reated be
omes 
urrent and the exe
uteda instru
tion is erased from the instru
tion string. Hen
e, we de�ne the two families of rules R1a(x)and R2a(x) for any x 2 I [ fRg as:R1a(x) : tt td d?-. . . . . . . . .. . . . . . . . ..........La x �! td tt t.......... . . . . . . . .- -L Rx
R2a(x) : tt t

d t--. . . . . . . . . .......................
.... Ra x �! td t

t t.......... . . . . . . . .. . . . . . . . .. . . . . . . . .������� ������R Rs
x(iii) (exe
ution of a `l' instru
tion) The following rules will erase the l symbol from the instru
tionstring and link the remaining instru
tions to the left neighbour of the 
urrent vertex. For any x 2I [ fRg and any � 2 fs; sg we then de�ne the rules Rl(�; x) as:Rl(�; x) : t tt t- -. . . . . . . . . . . . . . . . .� l x �! t td t- . . . . . . . . ..........HHHHHHHH� x



18 Expanding graph relabeling systems have the power of re
ursive enumerability(iv) (exe
ution of an `r' instru
tion) The following rules will erase the l symbol from the instru
tionstring and link the remaining instru
tions to the right neighbour of the 
urrent vertex. For anyx 2 I [ fRg and any � 2 fs; sg we then de�ne the rules Rl(�; x) as:Rr(�; x) : t tt t.........--�r x �! t td t......... -. . . . . . . . .� x(v) (exe
ution of a `
' instru
tion) The following rules will 
onne
t the 
urrent vertex to its leftneighbour, that is will relabel the 
orresponding s-labeled edge into a s-labeled one. The instru
tionstring is updated as before (the 
urrent vertex remains 
urrent). For any x 2 I [fRg, the rules R
(x)are then de�ned as:R
(x) : t tt t. . . . . . . . .- -s 
 x �! t td t- . . . . . . . . ..........����s x(vi) (exe
ution of an `e' instru
tion) In order to exe
ute an e instru
tion, it is ne
essary to reorderthe sequen
e string: if the a
tual sequen
e string has the form uz1xyz2v, with y as the 
urrent vertex,then it must be
ome uz1yxz2v (y remains 
urrent). This 
an be done by linking y and z1, as wellas x and z2, by an s-labeled or s-labeled edge depending on whether they were initially linked byan edge or not. On the other hand, the edges fz1; xg; fx; yg and fy; z2g must be relabeled by "or ? depending on whether they were s- or s-labeled, and the orientation of the edge fx; yg mustbe reversed. The instru
tion string is updated as usual and the rules Re(�; �1; �2; �1; �2; x) for anyx 2 I [ fRg, �; �1; �2 2 fs; sg and �1; �2 2 f?; "g thus des
ribed are de�ned as:Re(�; �1; �2; �1; �2; x) :t t t tt t- - --. . . . . . . . .�� AAAA ���1 � �2�1 �2 e x �! t t t td t� .......... . . . . . . . .������ AA-AA ��-�01 � �02�01 �02 xwhere for 1 � i � 2; �0i = " if �i = s and ? otherwise,and for 1 � i � 2; �0i = s if �i = " and s otherwise.(vii) (
leaning the generated graph) When the instru
tion string has been 
ompletely exe
uted (the
urrent vertex is the rightmost vertex in the sequen
e string) we must traverse the sequen
e stringfrom right to left in order to 
lean up the s- and s-labeled edges as well as the two end-point verti
es(with labels L and R). The �rst of these rules to be applied is the rule Rs
 (starting the 
leaningpro
ess) whi
h lead to a spe
ial C-labeled vertex (the \
leaner"):
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Rs
 : t ttR R �! t dt. . . . . . . . .CThen the 
leaner vertex will update all the s- and s-labeled edges by using the rules R
(�),� 2 fs; sg de�ned as:R
(�) : t tt. . . . . . . . .- C� �! t tt.........�����0 Cwhere �0 = " if � = s and ? otherwise.When the 
leaner vertex rea
hes the leftmost vertex of the sequen
e string, it deletes the L-labeledvertex by the following rule Rl
 (last 
leaning):Rl
 : t tt- CL �! d td.......... . . . . . . . .

Note that all of the above rules have been designed in su
h a way that the orientation 
omponent ofthe verti
es of the sequen
e string 
an always be updated in an adequate way whenever it is ne
essary(rules R1a(x), R2a(x) and Re(�; �1; �2; �1; �2; x)). Note also that the 
leaning rules R
(�) erase thatorientation 
omponent when traversing the sequen
e string.Starting from an axiom ZG (the string-graph representation of 
(G)), it is not diÆ
ult to see thatthe system D is su
h that:(i) If 
(G) = " the only rule whi
h 
an be applied is R", leading to the (irredu
ible) empty graph.(ii) If 
(G) 6= ", the only rule whi
h 
an be applied �rst is R1a(x), whi
h initializes the sequen
e string.(iii) At any time, there is only one of the above rules whi
h 
an be applied and that appli
ation leadsto an intermediate sequen
e string whi
h exa
tly re
e
ts the e�e
t of the 
orresponding exe
utedinstru
tion.Hen
e, with any axiom ZG, exa
tly one derivation sequen
e in D 
an be asso
iated that leads toa T -labeled graph isomorphi
 to G itself. 2Remark 14 For simpli
ity, we have restri
ted ourselves to the 
ase of unlabeled graphs. It is notdiÆ
ult to modify our en
oding (and the 
orresponding de
oder) in order to handle labeled graphs: toen
ode an undire
ted labeled graph with vertex label set Lv and edge label set Le we simply repla
ethe instru
tion a by the instru
tions (a; x) for any x 2 Lv and the instru
tion 
 by the instru
tions(
; y) for any y 2 Le. In the same way, by using the dire
ted version of expanded graphs (see [24℄) we
an also prove that there exists an e-GRS whi
h 
an de
ode any string en
oding a dire
ted labeledgraph (for su
h dire
ted graphs we no longer need to use orientation labels).7 e-GRS's and Re
ursively Enumerable Sets of GraphsIn order to prove that any re
ursively enumerable set of graphs 
an be generated by an e-GRS the basi
idea is to merge the system RG (where G stands for the phrase-stru
ture string grammar generatingthe desired set of strings) de�ned in se
tion 4 and the system D de�ned in the previous se
tion.However, we must ensure that the de
oding pro
ess (realised by the rules of D) does not start before
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ursive enumerabilitythe 
omplete generation of a terminal string-graph by RG is a
hieved. This 
an be done by taking aphrase-stru
ture string grammar G in a normal form given in [14℄ (and also used in [20℄) whi
h hasthe following properties:(i) every string produ
tion in G is either a 
ontext-free produ
tion B �! � with B 2 N; � 2 (T [N)�or a produ
tion of the form BC �! BD with B;C;D 2 N ,(ii) in any derivation of G the leftmost symbol remains a non-terminal symbol until the last produ
tionis applied.Sin
e the �rst appli
able produ
tion in D always uses the leftmost (terminal) symbol and its auxiliaryL-labeled left neighbour this normal form will obviously give us the required behaviour of the globalsystem.Hen
e, we �nally obtain:Theorem 15 The sets of graphs generated by e-GRS's are exa
tly the re
ursively enumerable sets oflabeled graphs. Moreover, for any re
ursively enumerable set S of unlabeled graphs, there exists ane-GRS whi
h generates S.Proof. For any e-GRS, it is not diÆ
ult to build a Turing ma
hine whi
h enumerates the set of stringsen
oding the graphs it generates. This set of graphs is thus re
ursively enumerable. Conversely, letS be a re
ursively enumerable set of graphs. There exists a phrase-stru
ture string grammar G =(N;T; P;A), given in the normal form dis
ussed above, whi
h generates the set St(S) = f
(H) = H 2Sg. By Theorem 11 we 
an 
onstru
t an e-GRS RG su
h that LT1(RG; ZA) = fZH ; ZH is a stringrepresentation of 
(H); H 2 Sg. By renaming some labels if ne
essary, we 
an assume that L;R;C; sand s are not used in RG and then de�ne the system RS as the union (in an obvious way) of RGand D. Due to the properties of the string grammar G, every derivation in RS will be of the formZA �!�RG ZH �!�D H and the result follows by taking as terminal labels set T2 = (f?g [ Lv; f?g [ Le)where Lv (resp. Le) stands for the vertex (resp. edge) label set of the 
onsidered labeled graphs. Notethat this 
onstru
tion also holds for any re
ursively enumerable set S of unlabeled graphs. 28 Dis
ussionIn this paper, we have introdu
ed and illustrated a new graph grammar model motivated from thepreviously studied graph relabeling systems. The main 
hara
teristi
s of this model is that it is notbased on a 
lassi
al graph repla
ement operation but on the relabeling of verti
es and edges. Hen
e,no expli
it embedding me
hanism is needed : ea
h relabeling rule appli
ation 
onsists in modifyingsome labels of the relabeled o

urren
e (whi
h allows some kind of logi
al erasing) and possibly addingsome new 
omponents whi
h are not linked to the 
ontext-graph of the relabeled o

urren
e.We have shown that this model has the power of re
ursive enumerability. This 
learly indi
atesthat general e-GRS's are too powerful to have \ni
e" properties : most of the non-trivial questionsabout the generated languages must be unde
idable. Thus, it would be interesting to de�ne \good"restri
tions of the global model. In parti
ular, it would be useful to obtain a 
hara
terization of 
ontext-free e-GRS's (see [4℄) and to see whether 
lassi
al 
ontext-free graph grammars remain expressible inthat new sub
lass or not.It would be interesting to examine the e�e
t on the generative power of some restri
tions su
h asbounding the number of 
omponents in the left-hand sides of the relabeling rules (e.g. using \handles"as left-hand sides would provide a model whi
h is exa
tly the edge-repla
ement model of Habel andKreowski [9℄), whi
h seems to determine a stri
t hierar
hy of e-GRS's. Another possibility would beto restri
t the \erasing" 
apabilities of e-GRS's by means of some adequate 
onstraints de�ned on theright-hand sides of the relabeling rules.The notions of priority and of forbidden 
ontexts, used in graph relabeling systems [3, 15℄ as 
ontrolme
hanisms for the appli
ability of relabeling rules, 
an also be extended to e-GRS's [24, 25℄. Theirrespe
tive in
uen
e on the above-stated restri
tions is not immediate and their study would extendthe results obtained in [15℄.
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