
LaBRI Researh Report No. Compiled on April 11, 2001The �nal version of this paper has been published in Fundamenta Informatiae 27-1 (1996), 1{26.EXPANDING GRAPH RELABELINGSYSTEMS HAVE THE POWER OFRECURSIVE ENUMERABILITY�Eri SOPENA1LaBRI, Univ. Bordeaux I, 351 ours de la Lib�eration, 33405 Talene, Frane.Abstrat. Graph relabeling systems (GRS's) have been introdued as a suitable tool for oding and provingsequential or distributed algorithms on graphs or networks. These systems do not hange the underlyingstruture of the graph on whih they work, but only the labeling of its omponents (edges or verties). Eahrelabeling step is fully determined by the knowledge of a �xed size subgraph, the relabeled ourrene. Weintrodue an extension of that model, the so-alled expanding graph relabeling systems (e-GRS's), whih allowsthe generation of sets of graphs by means of omponent relabeling. We study the generating power of thesesystems and prove that they enable us to generate any reursively enumerable set of graphs. We �rst show howthe \from left to right" natural orientation of a string-graph, that is a graph representation of a string, an betranslated by means of vertex labels in suh a way that any loal transformation of the string an be simulatedby a loal relabeling of the string-graph verties. Using this translation, we show that any phrase-struturestring grammar an be simulated by an e-GRS. Finally, we provide a way of enoding graphs as strings andan e-GRS, alled the deoder, whih an onvert any string representation of the enoding of a graph into thegraph itself.Keywords. Graph relabeling systems, Graph grammars, Reursive enumerability.1 IntrodutionThe theory of graph rewriting, or graph grammars, is an ative �eld in omputer siene for morethan twenty years (see for instane the survey by Nagl [21℄). In a graph rewriting system the basioperation onsists in a subgraph replaement operation, usually done in three steps : we �rst loate inthe graph to be rewritten an image of the left-hand side of a rewriting rule, and delete it. We then putin its plae the right-hand side of the rewriting rule and �nally \onnet" it to the host graph. Thisthird step is learly the diÆult one and is usually arried out by means of some speial embeddingmehanism depending on the onsidered model.Various models have been onsidered in the literature. The replaement operation may onernssingle verties, as in the Node Label Controlled approah [8, 12, 13℄, single edges, or more generallyhyperedges [1, 2, 9, 10, 19, 20℄, or any kind of onneted subgraphs as in [18, 26℄ or in the well-knownalgebrai approah of the Berlin shool [6, 7℄. In that formalism, rewriting steps are de�ned in termsof double-pushouts (or simple-pushouts in [17, 22℄) in a given ategory.Graph relabeling systems have been introdued in [3℄ as a suitable tool for oding and provingsequential or distributed algorithms on graphs or networks. These systems deal with onneted labeledgraphs (given as a graph G together with a labeling funtion �) and satisfy the following requirements:(i) they do not hange the underlying graph but only the labeling of its omponents (edges and/orverties), the �nal labeling being the result of the omputation,1With the support of the European Basi Researh Ation ESPRIT no 3166 \ASMICS" and the ESPRIT-BasiResearh Working Group no 7183 \COMPUGRAPH II". 1

2 Expanding graph relabeling systems have the power of reursive enumerability(ii) they are loal, that is, eah relabeling step hanges only a onneted subgraph of a �xed size inthe underlying graph,(iii) they are loally generated, that is, the appliability of a relabeling rule only depends on the loalontext of the relabeled subgraph.In order to relate the relabeling approah to lassial models of graph rewriting systems, we extendthese relabeling systems and obtain graph generating devies based on a relabeling operation, on theontrary to the usual replaement operation. The expanding graph relabeling systems thus obtained willalso satisfy the three previous onstraints. In order to keep the priniple of \omponent relabeling",we introdue the notion of an expanded graph whih an be viewed as an in�nite, omplete, simple,loopless graph (alled the universal graph) in whih a �nite subset of omponents (verties and edges)are seleted thanks to an adequate labeling. More preisely, we will onsider an in�nite ountableset of verties V1 with assoiated edge set E(V1) and two labeling funtions �v : V1 �! Lv and�e : E(V1) �! Le where Lv and Le are two �nite sets of labels suh that ? 2 Lv \Le. ? is a speialsymbol used to indiate that the omponents thus labeled do not have to be onsidered as part of the(underlying) graph. In order to deal with �nite graphs we require both the sets fx 2 V1= �v(x) 6= ?gand ffx; yg 2 E(V1)= �e(fx; yg) 6= ?g to be �nite. Note that expanded graphs are simply a way ofviewing lassial graphs as subgraphs of a universal graph and that we do not really deal with in�nitegraphs (an analogy an here be made with the \potentially in�nite" tape of a Turing mahine).An expanding relabeling rule will then onsist in the relabeling of a �xed onneted expandedsubgraph, that is a subgraph whose underlying graph is onneted in the usual way. This leads tothe notion of expanding graph relabeling systems, namely e-GRS's. The basi operation is then arelabeling operation whih an be done in two steps as follows : we �rst loate in the graph to berelabeled an image of the left-hand side of a relabeling rule and then relabel it aording to the right-hand side. Hene, the third step of the usual graph-replaement approah is bypassed, leading to aformalism without any expliit embedding mehanism, as in the set-theoreti approah of Raoult [23℄.Moreover, we naturally obtain systems whih are \ontext-preserving" in the following sense : if agraph G derives a graph G0 by the relabeling of a subgraph K of G, then the ontext of K in G (thatis all the omponents of G that do not belong to K, but also the edges linking a vertex of K and avertex of G nK) is preserved in G0. Under some spei� onstraints, suh a property is also satis�edby some existing models (see setion 2 for a more detailed disussion).In this paper we study the generating power of e-GRS's and show that they enable us to generateany reursively enumerable set of graphs. To our knowledge, only four models of graph grammars[2, 19, 20, 26℄ have been shown to have a similar power. Our result on relabeling systems seems toindiate that the generating power of a graph rewriting system is not a onsequene of its embeddingmehanism as suggested by Main and Rozenberg (see disussion in [19℄).In order to prove that a graph rewriting model has the power of reursive enumerability, thefollowing method is generally used:(i) prove that any phrase-struture string grammar [11℄ an be simulated by a graph rewritingsystem,(ii) �nd a linear enoding of graphs as strings suh that the deoding proess an be handled by agraph rewriting system,(iii) \merge" the two above-de�ned systems in order to generate any family of graphs whose orre-sponding set of enodings is reursively enumerable.Usual representations of strings by graphs make use of the notion of string-graph. Sine we dealwith undireted labeled graphs, we have to handle the natural orientation of strings (that is from leftto right) by means of vertex (or edge) labels. It is folklore that any string-graph an be \oriented"by using the vertex label set f0; 1; 2g and onsidering an edge as direted from an i-labeled vertexto a j-labeled one whenever j = i + 1 (mod 3). For example, the orientation of the string-graph

E. Sopena 3representation of aababa may be enoded as follows:t t t t t t ta a b a b a0 1 2 0 1 2 0However, suh an enoding does not allow an easy treatment of string produtions: if we want toreplae the substring ba by baba we must relabel all the verties of the left (or right) part of therewritten substring as follows:t t t t t t tt ta a b a b a b a1 2 0 1 2 0 1 2 0or 0 1 2 0 1 2 0 1 2In order to overome that drawbak, we provide a new enoding of string orientation using 7 labels,whih allows us to handle any string prodution by hanging only a �xed part of the rewritten string(namely the rewritten substring and eventually its immediately left and/or right neighbours).The paper is organised as follows. In setion 2, we introdue and illustrate the notions of expandedgraphs and expanding graph relabeling systems. In setion 3, we turn to the ombinatorial problemof string orientation enoding and show in setion 4 how any phrase-struture string grammar an besimulated by an e-GRS. In setion 5, we provide a linear enoding of graphs as strings and prove insetion 6 that the orresponding deoding operation an be handled by an e-GRS, whih allows us toobtain our main result (setion 7). Finally, setion 8 outlines some diretions for future work.2 Expanding Graph Relabeling Systems and Graph LanguagesGraph relabeling systems [3, 15, 16℄ have been essentially introdued as a suitable tool for desribingloal omputations on graphs. These systems are essentially \stati" in the sense that they onlymodify the labeling of edges and verties of the rewritten graph, and not the underlying struture ofthe graph itself. In this setion, we want to extend these systems in order to allow the generationof sets of graphs, as for lassial graph grammars. However, our approah will preserve the mainharateristis of graph relabeling systems: the rewriting rules will only be relabeling rules, that isthey will not modify the \underlying struture" of the rewritten graph. In order to apture thegenerative onept, we will work on expanded graphs whih an be viewed as in�nite omplete graphsin whih a �nite subset of omponents (verties and edges) are seleted thanks to an adequate labeling.In this paper, we will onsider simple, loopless, undireted labeled graphs. Note that all thede�nitions we will use an easily be extended to other types of graphs. For any set V (�nite or not)we will denote by E(V) the set E(V) = ffx; yg= x 2 V; y 2 V; x 6= yg. Let L = (Lv;Le) be a pairof two �nite sets of labels (the vertex and edge labels respetively). A labeled graph G is de�ned as atriple (V;E; �) where V is a �nite set of verties, E � E(V) a set of edges, � = (�v; �e) the labelingfuntion with �v : V �! Lv and �e : E �! Le.Suppose now that ? 2 Lv \Le, where ? is a speial label used to indiate that some omponentsdo not have to be onsidered. An expanded labeled graph is a pair H = (V1; �) where V1 is an in�niteountable set of verties and � = (�v; �e) a pair of mappings with �v : V1 �! Lv; �e : E(V1) �! Lesuh that both the sets fx 2 V1= �v(x) 6= ?g and ffx; yg 2 E(V1)= �e(fx; yg) 6= ?g are �nite. E(V1)is the set of edges and �v (resp. �e) the vertex (resp. edge) labeling funtion. Two expanded labeledgraphs H = (V1; �) and H 0 = (V1; �0) are said to be isomorphi if there exists a one-to-one mapping' over V1 suh that 8 x 2 V1; �v(x) = �0v('(x)) and 8 x; y 2 V1; �e(fx; yg) = �0e(f'(x); '(y)g).Remark 1 Every labeled graph G = (V;E; �) with V � V1 an naturally be viewed as an expandedlabeled graph H = (V1; �) with (i) if x 2 V then �v(x) = �v(x) else �v(x) = ? and (ii) if fx; yg 2 Ethen �e(fx; yg) = �e(fx; yg) else �e(fx; yg) = ?. Hene, expanded labeled graphs will be simply

4 Expanding graph relabeling systems have the power of reursive enumerability
d dt......... tA B

(a) t����tt......... t.........A B
C D(b) t����tt tA B

C D()Figure 1: Sample partial graphs.referred to as graphs in the rest of this paper. When we want to expliitly distinguish these twonotions, we will speak about usual or expanded graphs.Let V be a �nite subset of V1 and � = (�v; �e) be a pair of partial mappings �v : V �! Lv,�e : E(V) �! Le. The pair K = (V; �) is said to be a partially �nitely expanded graph (or simplypartial graph). Hene, a partial graph (V; �) an be viewed as a partial labeling of the omplete graphKn where n = #V .Note that the labeling of a graph in our sense does not neessarily indue a usual graph: someexisting edges, that is edges whih are not ?-labeled, may have non-existing, or ?-labeled, end-points.We will say that a graph is a real graph if the vertex labeling funtion is \well-de�ned" in the followingsense : 8 fx; yg 2 E(V1); �e(fx; yg) 6= ? =) �v(x) 6= ? and �v(y) 6= ?:In the same way, a partial graph will be said to be a real partial graph if :8 fx; yg 2 Dom(�e); �e(fx; yg) 6= ? =) x; y 2 Dom(�v); �v(x) 6= ? and �v(y) 6= ?;where Dom(�v) (resp. Dom(�e)) denotes the set of verties (resp. edges) for whih �v (resp. �e) isde�ned.Remark 2 When we have to deal with unlabeled graphs, we will use the label sets Lv = Le = f?; "g,where " stands for the \empty" label.Drawing onventions. When we draw graphs (or partial graphs), we represent all the omponentswhih are not ?-labeled and some of the ?-labeled ones when it is neessary (e.g. when the graph is nota real graph). ?-labeled verties will be drawn as irles, other verties as full irles, ?-labeled edgesas dotted lines and other edges as thin lines. Some edges of partial graphs may appear as \hanging"edges when one (or two) of their end-points do not belong to Dom(�v). "-labeled omponents will bedrawn as unlabeled ones.Example 3 Figure 1(a) shows a partial graph whih is not a real partial graph : there is one edgewith only one end-point and two edges with ?-labeled end-points. Figure 1(b) shows a real partialgraph and �gure 1() the usual graph it orresponds to.We now extend lassial de�nitions on usual graphs to expanded graphs. Let H = (V1; �) bea graph. A vertex x and an edge of the form fx; yg are said to be inident. A generalized path, orsimply path, is a sequene (1; 2; : : : ; k) of not ?-labeled omponents (that is edges or verties) suhthat for any i, 1 � i < k, i and i+1 are inident. Hene, suh a path is alternatively made of edgesand verties. It may indi�erently start or end with an edge or a vertex. We will say that the twoomponents 1 and k are linked by this path. A graph, or a partial graph, is said to be onnetedwhen any two of its not ?-labeled omponents are linked by a path.Let H = (V1; �) be a graph and K = (V; �) be a partial graph. We will say that K is a subgraphof H if (i) V � V1 (whih implies E(V) � E(V1));(ii) 8 x 2 Dom(�v); �v(x) = �v(x);(iii) 8 fx; yg 2 Dom(�e); �e(fx; yg) = �e(fx; yg):

E. Sopena 5
t����t.d tA A
B��� �! t����tt tA A

AB ��� �
(a) The rule r

t
t t����tt���

�t.tA AB���
C
C

� �A A�� �!r t
t t����tt���

�tt tBA AA���
C
C �

� �A A��
(b) A relabeling step H�!r H 0Figure 2: The expanded relabeling mehanism.Let K = (V; �) be a partial graph and � be an injetive mapping from V to V 0. The partial graph�(K) = (V 0; �) is de�ned by(i) V 0 = �(V) = f�(x); x 2 V g;(ii) Dom(�v) = �(Dom(�v)); Dom(�e) = �(Dom(�e));(iii) 8 x 2 Dom(�v); �v(�(x)) = �v(x);(iv) 8 fx; yg 2 Dom(�e); �e(f�(x); �(y)g) = �e(fx; yg):If �(K) is a subgraph of H, we will say that � is an ourrene of K in H. In the following, for anysubset A of E(V), we will denote by �(A) the set ff�(x); �(y)g; fx; yg 2 Ag.In an expanded graph, any two verties are linked by an edge (maybe a virtual edge). If we wantto rewrite (i.e. relabel) a given graph in a \loal" way, we must restrit the struture of the left-handsides of the rules in order to avoid the relabeling of \distant" verties (i.e. joined by a ?-labeled edge)by a unique rule.An expanding relabeling rule, or simply rule, is a triple r = (V r; �r; � 0r), also denoted (V r; �r) �!(V r; � 0r), suh that (V r; �r) is a onneted non-empty partial graph, (V r; � 0r) is a partial graph,Dom(�rv) = Dom(� 0rv) and Dom(�re) = Dom(� 0re). Let r be a rule; the relabeling relation �!r isde�ned in the following way: let H = (V1; �) and H 0 = (V1; �0) be two graphs, H�!r H 0 if thereexists an ourrene � of (V r; �r) in H suh that :(i) � is an ourrene of (V r; � 0r) in H 0;(ii) 8 x 2 V1 n �(Dom(�rv)); �v(x) = �0v(x);(iii) 8 fx; yg 2 E(V1) n �(Dom(�re)); �e(fx; yg) = �0e(fx; yg);(iv) 8 x 2 Dom(�rv); (�rv(x) = ? and 8 fx; yg 2 Dom(�re); �re (fx; yg) = ?)=) (8 z 2 V1; �e(fx; zg) = ?):Note that ondition (iv) will ensure that the reation of a new vertex by a rule will involve a \free"vertex, that is a ?-labeled vertex whih is not linked to any \hanging" edge. Note that depending onthe hoie of that free vertex, we may obtain several graphs whih are all isomorphi. In the following,suh an ourrene of (V r; �r) will be alled an ourrene of r.Example 4 Figure 2(a) shows a sample rule r and �gure 2(b) a sample appliation of r. Note thatthere is no ourrene of r in the right bottom part of H sine the two orresponding A-labeled vertiesare joined by an edge whih is not ?-labeled.An expanding graph relabeling system (or e-GRS) is a pair R = (L;P) where L is a pair (Lv; Le) of�nite label sets (respetively of vertex and edge labels) ontaining ? and P a �nite set of rules. The

6 Expanding graph relabeling systems have the power of reursive enumerabilityrelabeling relation �!R is de�ned by: H �!R H 0 if and only if there exists a rule r 2 P suh thatH �!r H 0. Its transitive losure will be denoted by �!�R .Starting from a graph Z (the axiom), we are now able to generate some (�nite or in�nite) sets ofgraphs. Let T = (Tv; Te) be a pair of terminal label sets. The terminal language of R is de�ned as :LT (R; Z) = f H = H is a real graph with labels in T ; Z �!�R HgFor any e-GRS R = (L;P) we will simply denote by L(R; Z) the language LL(R; Z) obtained bytaken the whole set L as terminal label set.Expanding graph relabeling systems an be understood as lassial graph rewriting systems whihare \ontext-preserving" in the following sense: if H = (V1; �) and H 0 = (V1; �0) are two graphs suhthat H�!r H 0 by an appliation of r to an ourrene �, then we have :(i) 8 x 2 V1 n �(Dom(�rv)); �v(x) = �0v(x);(ii) 8 fx; yg 2 E(V1) n �(Dom(�re)); �e(fx; yg) = �0e(fx; yg):Some of the existing graph rewriting models do not satisfy this ondition: in the Node-Label-Controlledapproah [8, 12, 13℄ or in the Pfaltz and Rosenfeld approah [18℄, edges inident to nodes of the\ontext" of the rewritten nodes an be reated or removed, aording to some onnetion relation.In the Hyperedge Replaement approah [1, 10℄ or in the algebrai approah [6℄ this ondition isnot satis�ed as soon as we are allowed to identify verties in the ontext-graph. By using a prioritymehanism [3℄, we show in [24℄, how suh systems an be simulated by means of relabeling systems :every rewriting step is enoded by a sequential appliation of relabeling steps, eah one being ontext-preserving.The relabeling approah we have introdued is very similar to the double-pushout onstrution inthe Algebrai Approah where the left-hand sides are onneted graphs, the interfae graph is disreteand the morphisms are injetive. One di�erene is that the ontext preservation in the algebraiapproah is ensured thanks to some gluing ondition (see [6℄) whih prevents a rule from being appliedwhen some \hanging" edges may appear. Another di�erene is that in our general model we mayuse as left-hand sides some partial graphs whih are not real graphs (as an edge without end-pointsfor instane). However, sine we will not need to use these possibilities in proving our main result,we obtain as a onsequene that this partiular ase of the algebrai approah also has the power ofreursive enumerability.Our model may also be related to the model introdued by Uesu [26℄ : in that model, ontextpreservation is ensured by means of some appliability ondition (using the notion of graph partition)whih is equivalent to the gluing ondition in the algebrai approah. But the main di�erene betweenour model and Uesu's one is that our relabeling rules always have onneted left-hand sides. Inpartiular, the set of rewriting rules used by Uesu in the proof of the reursive enumerability powerof his model ontains some rules with non-onneted left-hand sides. However, the set of relabelingrules we will use in the following an easily be expressed within Uesu's approah. We thus obtain anew proof of Uesu's result by means of rewriting rules with onneted left-hand sides.We now illustrate the notions of e-GRS by giving systems whih generate the set of all unlabeledtrees and the set of all unlabeled graphs. Sine for any rule the left- and right-hand sides have the sameunderlying graph, the orrespondane between left- and right-omponents is established aording totheir graphial position.Example 5 (unlabeled trees) Let R1 be the e-GRS de�ned by Lv = Le = f";?g and P1 = fr1g wherer1 is given as: r1 : t d. �! t tRule r1 allows us to attah to any existing vertex a (new) one-degree vertex. Hene, if Z stands forthe one vertex (unlabeled) graph, L(R1; Z) is exatly the set of unlabeled trees.

E. Sopena 7
tA �!r1 t taA �!r1 t tt aaA

�!r1 t tt
t aaaA �!r1 t t tt

ta aaaA �!r2 t t tt
t����a aaaA

�!r2 t t tt
t��������a aaaA �!r3 t d tt

t��������a aaa �!r4(4) t tt
t��������Figure 3: A sample derivation sequene in R2Example 6 (the set of all unlabeled graphs) In order to generate the set of all graphs, we will usea distinguished vertex (the \administrator" of the generation) whih will be linked by a speial edge(with label a) to all the newly reated verties (rule r1). This administrator will then be able to linktogether any two verties of the graph thus onstruted (rule r2). At the end of that onstrution,the administrator vertex and all speial edges will be deleted by adequate erasing rules (r3 and r4).More formally, let R2 be the e-GRS de�ned by Lv = fA; ";?g; Le = fa; ";?g and P2 = fr1; r2; r3; r4gwhere the rules are given as:r1 : tA d. �! tA tar2 : tA tata. �! tA tata����r3 : tA �! dr4 : a �!If ZA stands for the graph with one A-labeled vertex, the e-GRS R2 thus obtained is suh thatLT (R2; ZA), where T = (f";?g; f";?g), is the set of all unlabeled graphs. Figure 3 shows a samplederivation sequene. Note that all speial edges an be deleted as soon as their orresponding vertexis no longer used in the generation proess.Other examples of e-GRS's generating di�erent families of graphs an be found in [25℄.3 Enoding the orientation of string-graphsIn this setion, we turn to a ombinatorial problem onerning the enoding of the natural orientation(from left to right) of string-graphs by using vertex labels in suh a way that any \substring replae-

8 Expanding graph relabeling systems have the power of reursive enumerabilityment" an be realised by a loal relabeling of the string-graph. We show that suh an enoding an beobtained by using a set of 7 vertex labels. This enoding will allow us to simulate any phrase-struturestring grammar by an e-GRS as shown in the next setion.When we represent words (or strings) as undireted string-graphs, it is neessary to use additionalinformation allowing us to retrieve their natural \from left to right" orientation. This an easily bedone by using vertex labels taken in the set f0; 1; 2g aording to the following rule: an edge fx; yg isdireted from x to y i� �(y) = �(x) + 1 (mod 3). Hene, any string on an alphabet X an be enodedby a string-graph whose verties are labeled in X � f0; 1; 2g. For example, the string aaba an beenoded as follows (the orientation omponent is written separately for larity):t t t t ta a b a 0 1 2 0 1If we want to simulate a phrase-struture string grammar by a graph rewriting system, we must be ableto handle appliations of string produtions, that is substring replaements, by a loal modi�ationof the orresponding string-graph. For instane, an appliation of the string prodution ab �! bbashould hange the string-graph enoding aaba into a string-graph enoding abbaa. By using the setf0; 1; 2g as orientation omponents, we have to relabel all the verties on the left (or right) side of therewritten part, thus having:t t t t t t ta b b a a 0 1 2 0 1 2 0or 1 2 0 1 2 0 1As we want to \loally" relabel the orresponding string-graphs, we will have to use a more elaborateenoding for string orientation.Let us now introdue more formally the notion of orientation enoding.De�nition 7 Let G = (V;A) and H = (W;B) be two loopless antisymetri direted graphs. We willsay that H is an enoder of the orientation of G if there exists an enoding mapping � from V to Wsuh that : 8 (x; y) 2 A; (�(x); �(y)) 2 B:The orientation of G an then be enoded by using W as set of vertex labels and labeling any vertexx in V by �(x).For any string u, we will denote by D(u) its assoiated direted vertex-labeled string-graph rep-resentation. If H = (W;B) is an enoder for the orientation of D(u) and � an enoding mapping, wewill denote by UH(u; �) the enoded version of D(u) given by �.Example 8 As we have seen before, the direted yle C3 (see �gure 4()) is an enoder of anystring-graph. For example, the string-graph D(abde) (see �gure 4(a)) an be oriented as shown in�gure 4(b), thanks to the mapping � given by �(a) = �(d) = 0; �(b) = �(e) = 1; �() = 2. Moreover,it is not diÆult to hek that C3 is the smallest graph whih an enode any string-graph.In order to handle an arbitrary substring replaement in a string-graph by a loal relabeling of itsverties, we will use the direted tournament F7, assoiated with the Fano plane of order 7. The Fanoplane (see �gure 5) is given as 7 verties and 7 lines of three verties eah (the \internal" line is drawnas a triangle) suh that any two lines have a unique ommon vertex. If we number the verties from0 to 6, it is then possible to number the lines from 0 to 6 in suh a way that:8 i; j 2 f0; 1; : : : ; 6g; i =2 Li and j 2 Li) i =2 Lj

E. Sopena 9t t t t t- - - -a b d e(a) the string-graph D(abde)t t t t ta b d e0 1 2 0 1(b) the enoded string-graph UC3(abde; �)
t tt����- ��	60 12() the enoder C3Figure 4: Orientation of string-graphs with C3.

t t t

t
t tt�������
�������

��
����������

��
AAAAAAA

AAAAAAA
AA

QQQQQQQQQQ
QQA A A A ����1 5 6

2
4 03

L0 = f1; 2; 4g L4 = f5; 6; 1gL1 = f2; 3; 5g L5 = f6; 0; 2gL2 = f3; 4; 6g L6 = f0; 1; 3gL3 = f4; 5; 0g
Figure 5: Numbering of the Fano plane.This numbering is obtained by setting Li = fi+1; i+2; i+4g (these values are taken modulo 7). Theassoiated direted graph F7 = (V7; E7) is then de�ned by V7 = f0; 1; : : : ; 6g and 8 i; j 2 V7; (i; j) 2E7 i� j 2 Li. Hene, eah line Li orresponds to the set of suessors of vertex i.It is not diÆult to hek that the graph F7 satis�es the following property :(P) 8 x; y 2 V7; x 6= y; 9 z 2 V7; s:t: (x; z) 2 E7 and (z; y) 2 E7For instane, if we onsider the verties 0 and 1, the vertex 4 is suh that (0; 4) and (4; 1) belong toE7, the vertex 3 is suh that (1; 3) and (3; 0) belong to E7. This property will ensure that the enoderF7 an be eÆiently used as an enoder, as shown by the following proposition :Proposition 9 Let � �! �, be a prodution, u = u1�u2 and � be an enoding mapping of D(u) onF7. Then, there exists an enoding mapping �0 of D(u1�u2) on F7 suh that :(i) if u1 = u01x1 then 8 x 2 u01; �0(x) = �(x);(ii) if u2 = x2u02 then 8 x 2 u02; �0(x) = �(x):Proof. Note �rst that if ju1j = 0 (resp. ju2j = 0) one an always �nd a mapping �0 satisfying theonditions : the mapping � on u2 (resp. on u1) an be extended on � sine any vertex in F7 has a

10 Expanding graph relabeling systems have the power of reursive enumerabilitypredeessor (resp. a suessor). This is also the ase when u1 = x1 or u2 = x2. Suppose now thatu1 = u001y1x1, u2 = x2y2u002. Let � = �1�2 : : : �m and � = �1�2 : : : �n. If m = n, the result is obvioussine we an simply take �0 = �. Suppose now that n = m + 1. We �rst take �0(�i) = �(�i) for anyi, 1 � i � m. Sine u = u1�x2u02, we neessarily have �(�m) 6= �(x2) and property (P) tells us thatthere exists an adequate label for �n. In this ase, the mapping �0 is idential to � on u1 and u2. Ifn = m+k, k > 1, we simply iterate k times the previous onstrution and the result follows. Supposenow that n = 0. If (�(x1); �(x2)) is an ar in F7 we an simply take �0 idential to � on u1 and u2.Otherwise, sine F7 is antisymetri, we annot have at the same time �(y1) = �(x2) and �(x1) = �(y2).If �(y1) 6= �(x2) (resp. �(x1) 6= �(y2)), the property (P) tells us that there exists an adequate labelfor x1 (resp. x2) and the result follows. Finally, produtions suh that 0 < n < m an be handled by�rst erasing � and then inserting � as shown in the above onstrutions. 2Example 10 Let U(aaba; �) be the following graph:t t t t ta a b a 1 2 3 4 5By applying the string prodution ab �! bba, we obtain the graph U(abbaa; �0) de�ned as follows:t t t t t t ta b b a a 1 2 3 0 2 4 5By applying now the string prodution aa �! , we obtain the graph U(abb; �0) de�ned as follows:t t t t t ta b b 1 2 3 0 4 1Hene, any string prodution an be handled in a loal way by using a set of 7 orientation labels.The problem of enoding graph orientation by means of vertex labels has also been onsidered in [5℄for other families of graphs but in a stati way (that is with no \evolution" of the graph thus enoded).4 e-GRS's and Phrase-Struture String GrammarsA phrase-struture string grammar [11℄ is given as a 4-tuple G =< N;T; P; Z > where N is a �niteset of non-terminal symbols, T a �nite set of terminal symbols suh that N \T = ;, Z 2 N the axiomsymbol and P a �nite set of string produtions p : � �! � with � 2 (T [N)+ nT+ and � 2 (T [N)�.Let u and v be two strings over T[N ; we say that u derives v, denoted u�!� v, if there exists a sequeneof strings w1; w2; : : : ; wn suh that w1 = u; wn = v and 8 i; 1 � i < n; wi = w0i�iw00i ; wi+1 = w0i�iw00iwith �i �! �i is a prodution in P . As usual, we will say that a string prodution p is inreasingwhen j�j � j�j and dereasing otherwise. A dereasing string prodution with j�j = 0 will be said tobe erasing. The string language generated by G is de�ned as L(G) = fw 2 T � = Z �!� wg. Suh aset of strings is said to be reursively enumerable.In this setion, we will show how any phrase-struture string grammar an be simulated by ane-GRS. We have previously seen that the \from left to right" orientation of strings an be apturedby using speial vertex labels, and have shown that any string prodution � �! � an be loallyhandled. Some speial ases require partiular attention, namely when the substring to be replaed isloated at the beginning or at the end of the rewritten string. Sine our graph relabeling rules annotdetet whether a given vertex is an \end-point" or not, we will use a slightly di�erent representationof strings as undireted string-graphs, by adding two speial end-point verties, respetively labeledwith L (for Left) and R (for Right). Hene, the string aaba will be enoded as (for example):

E. Sopena 11t t t t t t tL a a b a R2 6 3 0 1 5 6If H stands for a string-graph of the above form, we will denote by word(H) the string it enodes.Using the results of the previous setion, we will not indiate the orientation labels in the relabelingrules but simply draw them with direted edges. Hene, eah relabeling rule will in fat be a \meta-rule" orresponding to a (�nite) set of standard relabeling rules. For example, the following (meta-)rule:
r : t td.-a b �! t tt.����������� ��R b orresponds to the set of rules fr(i; j); (i; j) 2 E7g de�ned as:

r(i; j) : t td.-a bi j �! t tt.����������� ��R b i j�i;j
where �i;j stands for one hosen vertex of V7 suh that (i; �i;j) 2 E7 and (�i;j ; j) 2 E7 (see property(P) in setion 3).We an now state the main result of this setion:Theorem 11 For any phrase-struture string grammar G =< N;T; P; Z >, there exists an e-GRSRG and a set T 0 of terminal labels suh that L(G) = fword(H); H 2 LT 0(RG; Zs)g, where Zs standsfor the string-graph enoding Z, that is:t t t- -L Z RProof. Let G be any phrase-struture string grammar. The e-GRS RG = (L;P) will then be de�nedas Lv = (T[N[fL;Rg)�V7, Le = f?; "g and P is obtained by assoiating with eah string produtionp a set of relabeling rules in the following way:Case 1: with any inreasing string prodution �1 : : : �m �! �1 : : : �n (n � m) we assoiate the setof rules fRip(y1; y2); y1; y2 2 T [N [fL;Rgg de�ned as:Rip(y1; y2) : t t t t- - - -d d.::::::::y1 �1 �m y2�! t d d t- -������� ������Rt t.::::::::y1 �1 �n y2

12 Expanding graph relabeling systems have the power of reursive enumerabilityReall that our enoding of strings as undireted string-graphs ensures that any \substring" � has aleft (resp. right) neighbour y1 (resp. y2), thanks to the two additional end-point verties.Case 2: with any dereasing non-erasing string prodution �1 : : : �m �! �1 : : : �n (0 < n < m) weassoiate(i) the set of rules fRd1p (y1; y2; x1; x2); y1; y2 2 T [N; x1; x2 2 T [N [fL;Rgg de�ned as:Rd1p (y1; y2; x1; x2) : t t- -t t t t- - - -d d.::::::::y1 �1 �m y2x1 x2�! t d d tt t- -- -������� ������Rt t.::::::::y1 �1 �n y2x1 x2These rules will be used whenever the substring � to be replaed is neither the leftmost nor therightmost substring of the rewritten string.(ii) the set of rules fRd2p (y2; x2); y2 2 T [N; x2 2 T [N [fL;Rgg de�ned as:Rd2p (y2; x2) : t t t t t-- - - -d d.::::::::L �1 �m y2 x2�! t d d t t-- -������� ������Rt t.::::::::L
�1 �n y2 x2These rules will be used whenever the substring � to be replaed is the leftmost substring of therewritten string.(iii) the set of rules fRd3p (y1; x1); y1 2 T [N; x1 2 T [N [fL;Rgg de�ned as:Rd3p (y1; x1) : t t t tt - - - - -d d.::::::::y1 �1 �m Rx1 �! t d d tt - - -������� ������Rt t.::::::::y1 �1 �n Rx1These rules will be used whenever the substring � to be replaed is the rightmost substring of therewritten string.(iv) the rule Rd4p de�ned as:

E. Sopena 13
Rd4p : t t t t- - - -d d.::::::::L �1 �m R�! t d d t- -������� ������Rt t.::::::::L

�1 �n RThese rules will be used whenever the substring � to be replaed is equal to the full rewritten string.Case 3: with any erasing string prodution �1 : : : �m �! " (0 < m) we assoiate(i) the set of rules fRe1p (y1; y2; x1; x2); y1; y2 2 T [N; x1; x2 2 T [N [fL;Rgg de�ned as:Re1p (y1; y2; x1; x2) : t t- -t t t t- - - -.::::y1 �1 �m y2x1 x2�! t d d tt t- --���� ����.::::y1 y2x1 x2These rules will be used whenever the substring � to be replaed is neither the leftmost nor therightmost substring of the rewritten string.(ii) the set of rules fRe2p (y2; x2); y2 2 T [N; x2 2 T [N [fL;Rgg de�ned as:Re2p (y2; x2) : t t t t t-- - - -.::::L �1 �m y2 x2�! t d d t t-���� ����-.::::L y2 x2These rules will be used whenever the substring � to be replaed is the leftmost substring of therewritten string.(iii) the set of rules fRe3p (y1; x1); y1 2 T [N; x1 2 T [N [fL;Rgg de�ned as:

14 Expanding graph relabeling systems have the power of reursive enumerability
Re3p (y1; x1) : t t t tt - - - - -.::::y1 �1 �m Rx1 �! t d d tt - ���� ����-.::::y1 Rx1These rules will be used whenever the substring � to be replaed is the rightmost substring of therewritten string.(iv) the rule Re4p de�ned as:Re4p : t t t t- - - -.::::L �1 �m R�! t d d t���� ����-.::::L RThese rules will be used whenever the substring � to be replaed is equal to the full rewritten string.Note that all of the above rules have been onstruted in suh a way that the orientation label of theleftmost and righmost vertex (exepted if they are L- or R-labeled) of the left-hand side has not tobe modi�ed (proposition 9). Any string prodution p : � �! � appliable to a given string u�v analways be simulated by an appliation of a unique relabeling rule on the string-graph enoding u�v.Hene, to any derivation sequene of length n in G there is a orresponding derivation sequene ofthe same length in RG. It is not diÆult to see that the onverse also holds and that the e-GRS RGthus onstruted is suh that L(G) = fword(H); H 2 LT 0(RG; Zs)g where T 0 is the set of terminallabels de�ned as T 0 = (f?g [(fL;Rg [T)� V7 ; f?; "g). 25 A linear enoding of undireted graphsIn this setion we introdue a way of enoding graphs as strings, inspired by the one used in [19℄,and will show in the next setion how the orresponding deoding operation an be handled by ane-GRS. For simpliity we will only present the ase of unlabeled graphs, the general ase being aneasy generalisation of it (see remark 14).In order to enode an undireted unlabeled graph G as a string, we �rst assume that a linearordering of its verties is given. The enoding (G) of G will then be given as a string over thealphabet I = fa; l; r; ; eg and an be viewed as a sequene of instrutions allowing a \step by step"onstrution of G. These instrutions will refer to a sequene of verties, alled the vertex sequene(the verties whih have already been reated) having one distinguished vertex, alled the urrentvertex. More preisely, these instrutions work as follows:

E. Sopena 15

instrution(s)to be exeuted resulting graphand urrent vertex remaining instrutionsa5 t t t t t" lllrrerr t t t t t" lllrrerrl t t t t t" llrrerr t t t t t" llrrerrl t t t t t" lrrerr t t t t t" lrrerrl t t t t t" rrerr t t t t t" rrerrr2 t t t t t" erre t t t t t� �� �" rr t t t t t� �� �" rrr2 t t t t t� �� �"Figure 6: Enoding an unlabeled graph as a string.

16 Expanding graph relabeling systems have the power of reursive enumerabilitya : add a new vertex to the sequene and this new vertex beomes urrent,l : the new urrent vertex is now the left neighbour of the old one,r : the new urrent vertex is now the right neighbour of the old one, : onnet the urrent vertex to its left neighbour by an unlabeled edge,e : exhange the urrent vertex and its left neighbour in the sequene.Without loss of generality, we an assume that the string (G) is suh that (G) 2 a�fl; r; ; eg�(we �rst reate all the verties of G) and that at the end of the omputation the urrent vertex is therightmost vertex in the sequene. Note that di�erent enoding funtions may yield di�erent enodingsfor the same graph but we do not need the uniity of the enoding.Example 12 The graphG at the right an be enodedby the string (G) = aaaaalllrrerr as shown inFigure 6 (the urrent vertex is marked as "). t t t tt����Any set S of unlabeled undireted graphs an be assoiated with the set of strings St(S) de�nedas St(S) = f(G) = G 2 Sg. We will say that the set S is reursively enumerable (see setion 7) whenits assoiated set of strings St(S) is reursively enumerable. Note that our de�nition of reursiveenumerability of a set of graphs makes referene to the speial enoding we have de�ned. However,any other method allowing us to enode graphs as strings leads to the same notion of reursiveenumerability sine it is always possible to onstrut a Turing mahine translating one enoding intoany other one.6 Deoding by means of an e-GRSIn this setion, we will prove that we an onstrut an e-GRS whih will be able to produe any graphwhen starting from the string-graph representation of its enoding as de�ned in the previous setion.This speial e-GRS uses relabeling rules whih have been designed in order to simulate any instrutionof an enoding as shown before. More formally, we obtain:Proposition 13 There exists an e-GRS D (the deoder) suh that for any undireted unlabeledgraph G, if ZG stands for the string-graph representation of (G) then LT (D; ZG) = fGg, whereT = (f";?g; f";?g).Proof. We start from an axiom ZG whih is a string-graph representation of the string (G) andwhose orientation is enoded by F7 (see setion 3). The basi idea is to provide relabeling rules whihwill be able to exeute (from left to right) the instrutions given by (G) in a way very similar to theone illustrated in Figure 6. During the deoding proess, the sequene of generated verties will berepresented as a string-graph (the sequene string) whose edges are labeled s or s and whose verties areunlabeled (exept an adequate orientation label desribed below) with two speial end-point vertiesrespetively labeled by L and R. The string-graph orresponding to the remaining instrutions, alledthe instrutions string, will be attahed to the sequene string by an edge linking the urrent vertexand the next instrution to be exeuted. Hene, eah intermediate graph in a derivation sequene willbe of the following form:t t t t t t t t tt t t t t::::::::- - - - - - -- - -� �AA ��L s s s s s Rl e r R

E. Sopena 17Labels s and s are used in order to distinguish the edges of the sequene string (linking any twoonseutive verties) from the edges whih have been reated between two non onseutive verties ofthat sequene. Label s (resp. s) is used for a sequene edge whih has to be (resp. does not have tobe) preserved in the �nal generated graph. Hene, the above on�guration orresponds in fat to thefollowing (intermediate) generated graph:t t t t t t t::::� �AA ��Reall that the reation of the verties is always made �rst and that eah new vertex must be addedto the right end of the sequene string. This allows us to enode the orientation of the sequene stringby using only the label set f0; 1; 2g (see the enoder C3 in setion 3). When all the instrutions havebeen exeuted the generated graph has to be \leaned": the s- and s-labeled edges of the sequenestring must be modi�ed into ?- or "-labeled edges and the two additional end-point verties must beremoved.More formally, we de�ne D = (L;P) with Lv = f?; "g [(I [fL;Rg) � V7 [fC;L;R; 0; 1; 2g,Le = f?; "; s; sg and P is the set of relabeling rules de�ned below :(i) (the empty ase) The �rst rule R" will only be used when the axiom is the string-graph represen-tation of the empty string (the orresponding graph is the empty graph) and is de�ned by:R" : t t-L R �! d d.(ii) (exeution of an `a' instrution) We know that all the a instrutions are loated at the beginningof (G). The �rst a will reate the sequene string (rules R1a(x)) while the next ones will add a newvertex to the atual sequene (rules R2a(x)). The vertex thus reated beomes urrent and the exeuteda instrution is erased from the instrution string. Hene, we de�ne the two families of rules R1a(x)and R2a(x) for any x 2 I [fRg as:R1a(x) : tt td d?-.La x �! td tt t..........- -L Rx
R2a(x) : tt t

d t--.
.... Ra x �! td t

t t..........������� ������R Rs
x(iii) (exeution of a `l' instrution) The following rules will erase the l symbol from the instrutionstring and link the remaining instrutions to the left neighbour of the urrent vertex. For any x 2I [fRg and any � 2 fs; sg we then de�ne the rules Rl(�; x) as:Rl(�; x) : t tt t- -.� l x �! t td t-HHHHHHHH� x

18 Expanding graph relabeling systems have the power of reursive enumerability(iv) (exeution of an `r' instrution) The following rules will erase the l symbol from the instrutionstring and link the remaining instrutions to the right neighbour of the urrent vertex. For anyx 2 I [fRg and any � 2 fs; sg we then de�ne the rules Rl(�; x) as:Rr(�; x) : t tt t.........--�r x �! t td t......... -.� x(v) (exeution of a `' instrution) The following rules will onnet the urrent vertex to its leftneighbour, that is will relabel the orresponding s-labeled edge into a s-labeled one. The instrutionstring is updated as before (the urrent vertex remains urrent). For any x 2 I [fRg, the rules R(x)are then de�ned as:R(x) : t tt t.- -s x �! t td t-����s x(vi) (exeution of an `e' instrution) In order to exeute an e instrution, it is neessary to reorderthe sequene string: if the atual sequene string has the form uz1xyz2v, with y as the urrent vertex,then it must beome uz1yxz2v (y remains urrent). This an be done by linking y and z1, as wellas x and z2, by an s-labeled or s-labeled edge depending on whether they were initially linked byan edge or not. On the other hand, the edges fz1; xg; fx; yg and fy; z2g must be relabeled by "or ? depending on whether they were s- or s-labeled, and the orientation of the edge fx; yg mustbe reversed. The instrution string is updated as usual and the rules Re(�; �1; �2; �1; �2; x) for anyx 2 I [fRg, �; �1; �2 2 fs; sg and �1; �2 2 f?; "g thus desribed are de�ned as:Re(�; �1; �2; �1; �2; x) :t t t tt t- - --.�� AAAA ���1 � �2�1 �2 e x �! t t t td t������� AA-AA ��-�01 � �02�01 �02 xwhere for 1 � i � 2; �0i = " if �i = s and ? otherwise,and for 1 � i � 2; �0i = s if �i = " and s otherwise.(vii) (leaning the generated graph) When the instrution string has been ompletely exeuted (theurrent vertex is the rightmost vertex in the sequene string) we must traverse the sequene stringfrom right to left in order to lean up the s- and s-labeled edges as well as the two end-point verties(with labels L and R). The �rst of these rules to be applied is the rule Rs (starting the leaningproess) whih lead to a speial C-labeled vertex (the \leaner"):

E. Sopena 19
Rs : t ttR R �! t dt.CThen the leaner vertex will update all the s- and s-labeled edges by using the rules R(�),� 2 fs; sg de�ned as:R(�) : t tt.- C� �! t tt.........�����0 Cwhere �0 = " if � = s and ? otherwise.When the leaner vertex reahes the leftmost vertex of the sequene string, it deletes the L-labeledvertex by the following rule Rl (last leaning):Rl : t tt- CL �! d td..........

Note that all of the above rules have been designed in suh a way that the orientation omponent ofthe verties of the sequene string an always be updated in an adequate way whenever it is neessary(rules R1a(x), R2a(x) and Re(�; �1; �2; �1; �2; x)). Note also that the leaning rules R(�) erase thatorientation omponent when traversing the sequene string.Starting from an axiom ZG (the string-graph representation of (G)), it is not diÆult to see thatthe system D is suh that:(i) If (G) = " the only rule whih an be applied is R", leading to the (irreduible) empty graph.(ii) If (G) 6= ", the only rule whih an be applied �rst is R1a(x), whih initializes the sequene string.(iii) At any time, there is only one of the above rules whih an be applied and that appliation leadsto an intermediate sequene string whih exatly reets the e�et of the orresponding exeutedinstrution.Hene, with any axiom ZG, exatly one derivation sequene in D an be assoiated that leads toa T -labeled graph isomorphi to G itself. 2Remark 14 For simpliity, we have restrited ourselves to the ase of unlabeled graphs. It is notdiÆult to modify our enoding (and the orresponding deoder) in order to handle labeled graphs: toenode an undireted labeled graph with vertex label set Lv and edge label set Le we simply replaethe instrution a by the instrutions (a; x) for any x 2 Lv and the instrution by the instrutions(; y) for any y 2 Le. In the same way, by using the direted version of expanded graphs (see [24℄) wean also prove that there exists an e-GRS whih an deode any string enoding a direted labeledgraph (for suh direted graphs we no longer need to use orientation labels).7 e-GRS's and Reursively Enumerable Sets of GraphsIn order to prove that any reursively enumerable set of graphs an be generated by an e-GRS the basiidea is to merge the system RG (where G stands for the phrase-struture string grammar generatingthe desired set of strings) de�ned in setion 4 and the system D de�ned in the previous setion.However, we must ensure that the deoding proess (realised by the rules of D) does not start before

20 Expanding graph relabeling systems have the power of reursive enumerabilitythe omplete generation of a terminal string-graph by RG is ahieved. This an be done by taking aphrase-struture string grammar G in a normal form given in [14℄ (and also used in [20℄) whih hasthe following properties:(i) every string prodution in G is either a ontext-free prodution B �! � with B 2 N; � 2 (T [N)�or a prodution of the form BC �! BD with B;C;D 2 N ,(ii) in any derivation of G the leftmost symbol remains a non-terminal symbol until the last produtionis applied.Sine the �rst appliable prodution in D always uses the leftmost (terminal) symbol and its auxiliaryL-labeled left neighbour this normal form will obviously give us the required behaviour of the globalsystem.Hene, we �nally obtain:Theorem 15 The sets of graphs generated by e-GRS's are exatly the reursively enumerable sets oflabeled graphs. Moreover, for any reursively enumerable set S of unlabeled graphs, there exists ane-GRS whih generates S.Proof. For any e-GRS, it is not diÆult to build a Turing mahine whih enumerates the set of stringsenoding the graphs it generates. This set of graphs is thus reursively enumerable. Conversely, letS be a reursively enumerable set of graphs. There exists a phrase-struture string grammar G =(N;T; P;A), given in the normal form disussed above, whih generates the set St(S) = f(H) = H 2Sg. By Theorem 11 we an onstrut an e-GRS RG suh that LT1(RG; ZA) = fZH ; ZH is a stringrepresentation of (H); H 2 Sg. By renaming some labels if neessary, we an assume that L;R;C; sand s are not used in RG and then de�ne the system RS as the union (in an obvious way) of RGand D. Due to the properties of the string grammar G, every derivation in RS will be of the formZA �!�RG ZH �!�D H and the result follows by taking as terminal labels set T2 = (f?g [Lv; f?g [Le)where Lv (resp. Le) stands for the vertex (resp. edge) label set of the onsidered labeled graphs. Notethat this onstrution also holds for any reursively enumerable set S of unlabeled graphs. 28 DisussionIn this paper, we have introdued and illustrated a new graph grammar model motivated from thepreviously studied graph relabeling systems. The main harateristis of this model is that it is notbased on a lassial graph replaement operation but on the relabeling of verties and edges. Hene,no expliit embedding mehanism is needed : eah relabeling rule appliation onsists in modifyingsome labels of the relabeled ourrene (whih allows some kind of logial erasing) and possibly addingsome new omponents whih are not linked to the ontext-graph of the relabeled ourrene.We have shown that this model has the power of reursive enumerability. This learly indiatesthat general e-GRS's are too powerful to have \nie" properties : most of the non-trivial questionsabout the generated languages must be undeidable. Thus, it would be interesting to de�ne \good"restritions of the global model. In partiular, it would be useful to obtain a haraterization of ontext-free e-GRS's (see [4℄) and to see whether lassial ontext-free graph grammars remain expressible inthat new sublass or not.It would be interesting to examine the e�et on the generative power of some restritions suh asbounding the number of omponents in the left-hand sides of the relabeling rules (e.g. using \handles"as left-hand sides would provide a model whih is exatly the edge-replaement model of Habel andKreowski [9℄), whih seems to determine a strit hierarhy of e-GRS's. Another possibility would beto restrit the \erasing" apabilities of e-GRS's by means of some adequate onstraints de�ned on theright-hand sides of the relabeling rules.The notions of priority and of forbidden ontexts, used in graph relabeling systems [3, 15℄ as ontrolmehanisms for the appliability of relabeling rules, an also be extended to e-GRS's [24, 25℄. Theirrespetive inuene on the above-stated restritions is not immediate and their study would extendthe results obtained in [15℄.

E. Sopena 21Referenes[1℄ M. Bauderon, B. Courelle, Graph expressions and graph rewriting, Math. System Theory 20(1987) 83{127.[2℄ F. Berman, G. Shannon, Edge grammars: deidability results and formal language issues, Pro.22nd Allerton Conferene on Communiation, Control and Computing, Urbana, IL (1984).[3℄ M. Billaud, P. Lafon, Y. M�etivier and E. Sopena, Graph rewriting systems with priorities, LetureNotes in Comput. Si. 411 (1989) 94{106.[4℄ B. Courelle, An axiomati de�nition of ontext-free rewriting and its appliation to NLC gram-mars, Theoret. Comput. Si. 55 (1987) 141{181.[5℄ B. Courelle, The monadi seond-order logi of graphs VI: on several representations of graphsby relational strutures, Disrete Applied Math. 54 (1994) 117{149.[6℄ H. Ehrig, A tutorial introdution to the algebrai approah of graph grammars, Third Int. Work-shop on Graph Grammars and their Appliations to Computer Siene, Leture Notes in Comput.Si. 291 (1987) 3{14.[7℄ H. Ehrig, M. Pfender, H.-J. Shneider, Graph grammars: an algebrai approah, Pro. 14thAnnual IEEE Symp. Swith. Automat. Theory, Iowa City (1973) 167{180.[8℄ J. Engelfriet, G. Rozenberg, Graph grammars based on node rewriting: an introdution to NLCgraph grammars, Leture Notes in Comput. Si. 532 (1991) 12{23.[9℄ A. Habel, H.-J. Kreowski, Charateristis of graph languages generated by edge replaement,Theoret. Comput. Si. 51 (1987) 81{115.[10℄ A. Habel, H.-J. Kreowski, May we introdue to you: hyperedge replaement, Leture Notes inComput. Si. 291 (1987) 15{26.[11℄ M. Harrison, Introdution to formal language theory, Addison-Wesley (1978).[12℄ D. Janssens, G. Rozenberg, On the struture of node label ontrolled graph languages, Inform. Si.20 (1980) 191{216.[13℄ D. Janssens, G. Rozenberg, Restritions, extensions and variations of NLC grammars, Inform.Si. 20 (1980) 217{244.[14℄ H.-C.-M. Kleijn, M. Penttonen, G. Rozenberg, K. Salomaa, Diretion independent ontext-sensitive grammars, Inform. and Control 63 (1984) 113{117.[15℄ I. Litovsky, Y. M�etivier, E. Sopena, Di�erent loal ontrols for graph relabeling systems, to appearin Math. System Theory (1994).[16℄ I. Litovsky, Y. M�etivier, W. Zielonka, The power and limitations of loal omputations on graphsand networks, Proeedings of Graph-Theoreti Conepts in Computer Siene (WG'92), LetureNotes in Comput. Si. 657 (1993) 333{345.[17℄ M. L�owe, Algebrai approah to single-pushout graph transformation, Theoret. Comput. Si. 109(1993) 181{224.[18℄ J.-L. Pfaltz, A. Rosenfeld, Web grammars, Pro. 1st Int. Joint Conf. on Arti�ial Intelligene,Washington (1969) 609{619.[19℄ M.-G. Main, G. Rozenberg, Handle NLC grammars and R.E. Languages, J. Comput. System Si.35 (1987) 192{205.

22 Expanding graph relabeling systems have the power of reursive enumerability[20℄ M.-G. Main, G. Rozenberg, Edge-label ontrolled graph grammars, J. Comput. System Si. 40(1990) 188{228.[21℄ M. Nagl, A tutorial and bibliographial survey on graph grammars, in Pro. 1st Int. Workshopon Graph Grammars and their Appliations to Computer Siene and Biology, Ehrig, Claus &Rozenberg (Eds), Leture Notes in Comput. Si. 79 (1979).[22℄ J.-C. Raoult, On graph rewritings, Theoret. Comput. Si. 32 (1984) 1{24.[23℄ J.-C. Raoult, Set-theoreti graph rewriting, Leture Notes in Comput. Si 776 (1994), 312{325.[24℄ E. Sopena, Expanding graph relabeling systems, Researh Report 92-76, University Bordeaux I(1992).[25℄ E. Sopena, A generative approah of graph relabeling systems, Researh Report 93-7, UniversityBordeaux I (1993).[26℄ T. Uesu, A system of graph grammars whih generates all reursively enumerable sets of graphs,Tsukuba J. Math. 2 (1978) 11{26.

