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eAbstra
t. We introdu
e in this paper the notion of the 
hromati
 number of an oriented graph G (that is ofan antisymmetri
 dire
ted graph) de�ned as the minimum order of an oriented graph H su
h that G admits ahomomorphism to H . We study the 
hromati
 number of oriented k-trees and of oriented graphs with boundeddegree. We show that there exist oriented k-trees with 
hromati
 number at least 2k+1 � 1 and that everyoriented k-tree has 
hromati
 number at most (k + 1) � 2k. For 2-trees and 3-trees we de
rease these upperbounds respe
tively to 7 and 16 and show that these new bounds are tight. As a parti
ular 
ase, we obtainthat oriented outerplanar graphs have 
hromati
 number at most 7 and that this bound is tight too. We thenshow that every oriented graph with maximum degree k has 
hromati
 number at most (2k � 1)� 22k�2. Fororiented graphs with maximum degree 2 we de
rease this bound to 5 and show that this new bound is tight.For oriented graphs with maximum degree 3 we de
rease this bound to 16 and 
onje
ture that there exists nosu
h 
onne
ted graph with 
hromati
 number greater than 7.Keywords. Graph 
oloring, Graph homomorphism, Oriented 
oloring.1 Introdu
tionIn this paper, we introdu
e and study the notion of the 
hromati
 number of antisymmetri
 dire
tedgraphs, 
alled oriented graphs in the following. These graphs are in fa
t orientations of undire
tedgraphs, obtained by arbitrarily giving one of the two possible orientations to the edges of an undire
tedgraph. For every graph G, the sets of verti
es and edges (or ar
s) of G will be respe
tively denotedby V (G) and E(G). The number of verti
es of a graph G will be 
alled the order of G.Let G and H be two oriented graphs. A homomorphism of G to H is a mapping � from V (G) toV (H) su
h that for every ar
 (x; y) inE(G), (�x; �y) is an ar
 inE(H). If there exists a homomorphismof G to H, we will write G! H and say that G is H-
olorable. We will often 
all su
h a graph H a
olor-graph and its verti
es will be 
alled 
olors. The mapping � will be referred to as a H-
oloring, orsimply a 
oloring, of G. Note that if a graph G is H-
olorable, then every subgraph G0 of G is also H-
olorable sin
e the restri
tion of a homomorphism of G to H to the verti
es of G0 is a homomorphismof G0 to H.One useful hint the reader should have in mind when 
onsidering oriented 
olorings is that twoverti
es that are linked by a dire
ted path of length 1 or 2 must be assigned distin
t 
olors in everyoriented 
oloring. To see that, observe that from the de�nition of homomorphisms of oriented graphswe get that every 
oloring � of an oriented graph G must satisfy (i) xy 2 E(G) =) �x 6= �y and (ii)xy 2 E(G), zt 2 E(G), �x = �t =) �y 6= �z (note that this se
ond 
ondition 
omes from the fa
tthat we only 
onsider oriented 
olor-graphs). For instan
e, it is not diÆ
ult to 
he
k that in every
oloring of the dire
ted 
y
le C5 on 5 verti
es all the verti
es must be assigned distin
t 
olors, sin
eevery two verti
es are linked by a dire
ted path of length 1 or 2.Graph homomorphisms have been extensively studied in the last past years. Many papers havebeen devoted to the study of the 
omplexity of H-
oloring. This problem 
an be stated as follows :1Part of this work has been supported by the PRC Math�ematiques et Informatique, the European Basi
 Resear
hA
tion ESPRIT no 3166 (ASMICS) and the European Community Cooperative A
tion IC-1000 (ALTEC).1



2 The 
hromati
 number of oriented graphsgiven a �xed graph H, what is the 
omplexity of de
iding whether a graph G is H-
olorable or not?This problem has been solved in the undire
ted 
ase by Hell and Ne�set�ril [14℄. They proved that thisproblem is polynomially de
idable when the graph H is bipartite and NP-
omplete otherwise. In thedire
ted 
ase, only partial answers have been given [3, 4, 12, 15, 16, 17, 18, 24, 25℄ and the questionis still open.For an oriented graph H, we will denote by [H℄ the set of oriented graphs that are H-
olorable:[H℄ = fG : G ! Hg. We de�ne the 
hromati
 number of an oriented graph G, denoted by �(G),as the order of the smallest oriented graph H su
h that G 2 [H℄. Note that this notion is a naturalgeneralisation of the usual notion of 
hromati
 number in the undire
ted 
ase sin
e an undire
tedgraph U has 
hromati
 number n if and only if it admits a homomorphism to the 
omplete graph Knand there exists no homomorphism of U to Kn�1.These sets [H℄ together with the in
lusion operator have a latti
e stru
ture and have been studiedin [9, 22, 31, 32℄ (there they were 
alled 
olor-
lasses). The stru
ture of this latti
e is better knownin the undire
ted 
ase than in the dire
ted one. The main result in [31℄ shows that the hierar
hy ofundire
ted 
olor-
lasses is dense, that is given any two 
olor-
lasses [G1℄ and [G2℄ with [G1℄ �= [G2℄,there exists a graph G3 su
h that [G1℄ �= [G3℄ �= [G2℄ (ex
ept in the parti
ular 
ase where G1 = K1 andG2 = K2). This is no longer true in the dire
ted 
ase and there exist in�nite sequen
es of \immediateprede
essors" within the dire
ted hierar
hy [22, 25℄.In this paper we study the 
hromati
 number of oriented partial k-trees and of oriented k-boundedgraphs (that is graphs with maximum degree k). In se
tion 2 we give some basi
 de�nitions. Se
tion 3is devoted to the study of oriented partial k-trees and se
tion 4 to the study of oriented k-boundedgraphs.2 PreliminariesLet F be any (�nite or in�nite) family of oriented graphs. We de�ne the 
hromati
 number �(F) of Fas the maximum 
hromati
 number of a graph in F (note that this number may be unbounded whenF is in�nite). We will say that su
h a family is 
olorable, or more pre
isely C-
olorable, if there existsan oriented graph C su
h that F � [C℄. A family F has a �nite 
hromati
 number if and only if itis C-
olorable for some C: the 
hromati
 number of F is obviously bounded by the order of C and
onversely, if F has a �nite 
hromati
 number, say k, it is C-
olorable for C being an oriented graph
ontaining all oriented graphs of order at most k as subgraphs (su
h a graph has at most k � 2 k�12verti
es when k is odd and 32p2k � 2 k�12 verti
es when k is even [23℄).The reader should note here that if a family F has a �nite 
hromati
 number k, the smallest graphC su
h that F is C-
olorable may be of order stri
tly greater than k. For instan
e, the family Fk ofall graphs with order at most k obviously has 
hromati
 number k; however, there is no graph C oforder k su
h that every tournament on k verti
es is C-
olorable (su
h a graph C should 
ontain allthose tournaments as subgraphs). A family F will be said to be optimally 
olorable if there exists agraph C of order �(F) su
h that F is C-
olorable.The following proposition provides a suÆ
ient 
ondition for a 
olorable family of graphs to beoptimally 
olorable. We will say that a family F is 
omplete if for every two graphs F1 and F2 in F ,there exists a graph F � in F 
ontaining F1 and F2 as subgraphs. Then we have:Proposition 1 Every 
omplete family F of graphs whi
h is 
olorable is optimally 
olorable.Proof. Sin
e F is 
olorable, �(F) is �nite and every graph F in F is 
olorable by a 
olor-graph CFhaving at most �(F) 
olors. If F is not optimally 
olorable, then there exists a �nite number of graphsin F , say F1, F2, : : :, Fn, su
h that for every 
olor-graph C having at most �(F) 
olors at least oneof them is not C-
olorable (it is suÆ
ient here to 
onsider a �nite number of graphs sin
e there existsa �nite number of 
olor-graphs having at most �(F) 
olors). Sin
e F is 
omplete there exists a graph



E. Sopena 3F � in F whi
h 
ontains all the Fi's as subgraphs. The graph F � is CF �-
olorable for some 
olor-graphCF � having at most �(F) verti
es and all the Fi's are thus CF �-
olorable, a 
ontradi
tion. 2For instan
e, the family of planar graphs is 
omplete (let F � be the disjoint union of F1 and F2) aswell as the family of 
onne
ted planar graphs (let xi be any vertex of Fi; the graph F � is then obtainedby taking a disjoint 
opy of ea
h graph Fi and identifying the xi's to a single vertex). In [27℄, wehave shown with A. Raspaud that the family of oriented planar graphs is 
olorable and has 
hromati
number at most 80. This bound 
an be signi�
antly improved under a high girth assumption [26℄:Theorem 2 (Ne�set�ril et al.) Every oriented planar graph with girth at least 6 (resp. 7,11,16) has
hromati
 number at most 32 (resp. 12,7,5).The 
hromati
 number of an undire
ted graph is 
learly a lower bound for the 
hromati
 numberof any of its orientations. The gap between the 
hromati
 number of an undire
ted graph and the
hromati
 number of its orientations 
an be arbitrarily large, as illustrated by the following result:Proposition 3 The family of oriented bipartite graphs is not 
olorable.Proof. Let Kn;n be the orientation of the 
omplete bipartite graph on 2n verti
es de�ned as follows:let V (Kn;n) = f1; 2; : : : ; ng[f10; 20; : : : ; n0g and let ij0 2 E(Kn;n) if i = j and j0i 2 E(Kn;n) otherwise.The 
hromati
 number of Kn;n is 2n sin
e every two verti
es are joined by a dire
ted path of length atmost 2 and thus must be assigned distin
t 
olors. Therefore, the family of oriented bipartite graphshas unbounded 
hromati
 number. 2Let G be an oriented (resp. undire
ted) graph; a k-
lique subgraph of G is a sequen
e X =(x1; x2; : : : ; xk) of pairwise distin
t verti
es of G su
h that the subgraph indu
ed by these verti
es isa tournament (resp. a 
omplete graph). In this paper we will extensively use the following notion:De�nition 4 An orientation ve
tor of size n is a sequen
e � = (�1; �2; : : : ; �n) in f0; 1gn; let G bean oriented graph and X = (x1; x2; : : : ; xn) be a sequen
e of pairwise distin
t verti
es of G. A vertexy of G is said to be an �-su

essor of X if for every i, 1 � i � n, we have �i = 1 =) xiy 2 E(G) and�i = 0 =) yxi 2 E(G).3 The 
hromati
 number of oriented partial k-trees3.1 The general 
aseThe notion of undire
ted k-tree 
an be de�ned as follows [5℄: the 
omplete graph Kk with k verti
es isa k-tree; if G is a k-tree then the graph G0 obtained from G by adding a new vertex v linked to everyvertex of a k-
lique subgraph of G is a k-tree and there are no further k-trees. A subgraph of a k-treeis 
alled a partial k-tree. Partial k-trees have been extensively studied in the last past years, sin
e theyoften lead to polynomial algorithms for problems whi
h are known to be NP-
omplete in the general
ase (see [30℄). The notion of a 1-tree obviously 
orresponds to the usual notion of a tree. The 
lassof outerplanar graphs is stri
tly 
ontained in the 
lass of partial 2-trees. This notion of k-tree seemsto play an essential role in the study of the 
omplexity of the H-
oloring problem [10, 16, 24℄.The two following results about k-trees will be useful in the sequel:Proposition 5 The family of partial k-trees is 
omplete.Proof. Sin
e partial k-trees are subgraphs of k-trees, it suÆ
es to 
onsider k-trees. Let T1 and T2 bek-trees and X1 be any k-
lique subgraph of T1. Consider the graph T3 obtained from T1 by applying,starting from X1, the same sequen
e of vertex additions that leads from Kk to T2. The graph T3 thusobtained is a partial k-tree 
ontaining both T1 and T2 as subgraphs. 2



4 The 
hromati
 number of oriented graphsProposition 6 Let T1 be a partial k-tree, X = (x1; x2; : : : ; xk) a k-
lique subgraph of T1 and T2 apartial k0-tree (k0 < k). The graph T3 obtained from T1 and T2 by adding edges from every vertex ofT2 to verti
es x1, x2, : : :, xk�k0 is also a partial k-tree.Proof. Let U1 be a k-tree 
ontaining T1 as a subgraph and U2 a k0-tree 
ontaining T2 as a subgraph.We 
onstru
t a k-tree U3 as follows: starting with U1, we add k0 new verti
es, say y1; : : : ; y0k, in su
ha way that for every j, 1 � j � k0, yj is linked to verti
es x1; x2; : : : ; xk�k0 ; y1; y2; : : : ; yj�1. The k-treethus obtained 
ontains (x1; : : : ; xk�k0 ; y1; : : : ; y0k) as a k-
lique subgraph. Starting from (y1; : : : ; y0k) wethen apply the same sequen
e of vertex additions that leads from Kk0 to U2 ex
ept that every su
hnew vertex is additionally linked to (x1; : : : ; xk�k0). It is then not diÆ
ult to 
he
k that the k-tree U3thus obtained 
ontains T3 as a subgraph, whi
h 
ompletes the proof. 2By 
onstru
tion, every k-tree G distin
t from the 
omplete graph Kk has a vertex v of degree kwhose neighbourhood is a k-
lique subgraph in G, and whose deletion leads to another k-tree, denotedby G� v. It is then folklore to establish by indu
tion that every su
h undire
ted k-tree has 
hromati
number k + 1 (or k when it is the 
omplete graph Kk): the result is obvious for Kk and Kk+1 andif G � v has 
hromati
 number k + 1 then, 
onsidering any (k + 1)-
oloring of G � v, there alwaysremains a free 
olor to be assigned to v, leading to a (k+1)-
oloring of G. In order to apply the samete
hnique in the oriented 
ase, we must be able to �nd in the 
olor-graph an adequate 
olor 
 to beassigned to v, whatever the orientations of the ar
s linking v to G� v are. The following property Pkwill ensure that su
h a 
olor 
an always be found.De�nition 7 We will say that a 
olor-graph C satis�es property Pk for some k > 0 if for everyoriented n-
lique subgraph (
1; 
2; : : : ; 
n) in C with 1 � n � k, and every orientation ve
tor � =(�1; �2; : : : ; �n) of size n, there exists a 
olor 
 in V (C) whi
h is an �-su

essor of (
1; 
2; : : : ; 
n).Note that every 
olor-graph satisfying property Pk also satis�es property Pk0 for every k0 < k. By
onvention, we will assume that every graph with at least one vertex satis�es property P0 and thatthe null-graph (with no verti
es) does not. Then, we have:Theorem 8 If C is a 
olor-graph satisfying property Pk then every oriented partial k-tree is C-
olorable.Proof. Note �rst that it suÆ
es to 
onsider the 
ase of k-trees, sin
e partial k-trees are subgraphsof k-trees. We pro
eed by indu
tion on the number of verti
es n of a k-tree G. If n = k, then G is atournament with vertex set fx1; x2; : : : ; xng. Giving arbitrarily any 
olor 
 to x1, property Pk ensuresthat we 
an a
hieve a C-
oloring of G: if x1; : : : ; xi are already 
olored, the 
olor of xi+1 is obtainedby using the orientation ve
tor (�1; : : : ; �i) de�ned by �j = 0 i� xi+1xj 2 E(G). Suppose now thatevery oriented k-tree having at most n verti
es (n � k) is C-
olorable and let H be any orientedk-tree with n+1 verti
es. Then there exists a vertex v in H with degree k. The indu
tion hypothesisensures that H � v is C-
olorable and property Pk says that one 
an �nd in C an adequate 
olor 
 tobe assigned to v (by 
hoosing an orientation ve
tor a

ording to the dire
tion of the ar
s linking v toits neighbours in G), leading to a C-
oloring of H. 2We are now going to propose a 
ombinatorial 
onstru
tion leading for every k to 
olor-graphssatisfying property Pk and having (k + 1) � 2k verti
es (or 
olors). Let k be any given positiveinteger; we de�ne the 
olor-graph Zk as follows: let V (Zk) be the subset of f1; 2; : : : ; k + 1g �f0; 1gk+1 
onsisting of elements (a; x1; : : : ; xk+1) su
h that xa = 0, and let E(Zk) be su
h that((a; x1; : : : ; xk+1); (b; y1; : : : ; yk+1)) 2 E(Zk) i� (a > b and xb 6= ya) or (a < b and xb = ya). Then, thegraph Zk thus de�ned has exa
tly (k + 1)� 2k verti
es and we have:Proposition 9 For every k > 0, the 
olor-graph Zk satis�es property Pk.



E. Sopena 5Proof. Let 
 = (a; x1; : : : ; xk+1) be any vertex of Zk. For every i, 1 � i � k+1, we will denote by 
(i)the 
omponent xi of 
 and by Id(
) (the identity of 
) the 
omponent a. Let us �rst note that onlyverti
es with distin
t identities are linked in Zk. Hen
e, the oriented n-
lique subgraphs (1 � n � k)in Zk are exa
tly the sets of verti
es with pairwise distin
t identities. Let (
1; 
2; : : : ;
 n) be su
h a setof verti
es and � = (�1; �2; : : : ; �n) be any orientation ve
tor. Let d denote any identity whi
h doesnot appear in (
1; 
2; : : : ; 
n). Then, the vertex 
 de�ned by:(i) Id(
) = d,(ii) 8 i, 1 � i � n, if (d < Id(
i) and �i = 1) or (d > Id(
i) and �i = 0)then 
(Id(
i)) = 
i(d)else 
(Id(
i)) = 1� 
i(d),is an �-su

essor of (
1; 
2; : : : ; 
n) and the result follows. 2We are now able to prove the following:Theorem 10 For every k, the family Tk of oriented partial k-trees is optimally 
olorable and has
hromati
 number at most (k + 1)� 2k.Proof. From Theorem 8 and Proposition 9, the family Tk is 
olorable and has 
hromati
 number atmost (k+1)� 2k. By Proposition 5 it is also 
omplete and by Proposition 1 it is optimally 
olorable.2Let H be an oriented graph; for every vertex x 2 V (H), we will denote by �+(H;x) (resp.��(H;x)) the oriented subgraph indu
ed by the su

essors (resp. prede
essors) of x in H. Then wehave:Theorem 11 For every k > 0, if a 
olor-graph C satis�es property Pk then for every 
olor 
 in V (C),both �+(C; 
) and ��(C; 
) satisfy property Pk�1.Proof. Let 
 be any 
olor in V (C), (
1; 
2; : : : ; 
n), n � k � 1, be any n-
lique subgraph of �+(C; 
)and � = (�1; �2; : : : ; �n) be any orientation ve
tor of size n. Sin
e C satis�es Pk, the (n + 1)-
lique(
; 
1; 
2; : : : ; 
n) has a (1; �1; �2; : : : ; �n)-su

essor in C whi
h is also an �-su

essor of (
1; 
2; : : : ; 
n)in �+(C; 
). A similar argument shows that ��(C; 
) also satis�es Pk�1. 2This theorem leads to the following lower bound for the number of verti
es of a graph satisfyingproperty Pk:Corollary 12 Every 
olor-graph C satisfying property Pk must have at least 2k+1 � 1 
olors.Proof. We pro
eed by indu
tion on k. The smallest graph satisfying P1 is the dire
ted 
y
le C3 onthree verti
es. Let now C be a graph satisfying Pk. By Theorem 11 and using the indu
tion hypothesis,every vertex in C must have at least 2k�1 su

essors and 2k�1 prede
essors. The number of verti
esof C is therefore at least 2� (2k � 1) + 1 = 2k+1 � 1 and the result follows. 2This lower bound is also a lower bound for the 
hromati
 number of oriented partial k-trees sin
ewe have:Theorem 13 For every k > 0, there exists an oriented k-tree Tk with �(Tk) � 2k+1 � 1.



6 The 
hromati
 number of oriented graphs

Figure 1: An oriented graph with 
hromati
 number 7Proof. We pro
eed by indu
tion on k. For k = 1, it suÆ
es to 
onsider the dire
ted path on threeverti
es (whose verti
es must be assigned distin
t 
olors). Suppose now that the result holds up to(k � 1)-trees and let Tk�1 be an oriented (k � 1)-tree with 
hromati
 number at least 2k+1 � 1. LetTk be the oriented k-tree obtained by taking two 
opies of Tk�1 and a new vertex x and adding ar
sfrom x towards every vertex of the �rst 
opy and from every vertex of the se
ond 
opy towards x(a

ording to Proposition 6, this graph is indeed a k-tree). Then every vertex in the �rst 
opy mustbe assigned a 
olor distin
t from those assigned to the verti
es of the se
ond 
opy. Moreover, vertexx must be assigned a 
olor distin
t from those assigned to all other verti
es. Hen
e, the number of
olors we need for 
oloring Tk is at least 2� (2k � 1) + 1 = 2k+1 � 1 and the result follows. 2This lower bound is tight for oriented trees sin
e every oriented tree is C3-
olorable, for C3 beingthe dire
ted 
y
le on three verti
es. In the following subse
tion we will show that this lower boundis also tight for oriented 2-trees. However we will show that this is no longer true for oriented 3-treesand that the exa
t value of the 
hromati
 number in this 
ase is 16.3.2 The 
ase of oriented 2-treesThe smallest 
olor-graph satisfying property P1 is the dire
ted 
y
le C3 on three verti
es. By Corol-lary 12, we know that every 
olor-graph satisfying P2 must have at least 7 verti
es. The unique
olor-graph on 7 verti
es whi
h satis�es P2 is the tournament QR7 [11℄, build from the non-zeroquadrati
 residues of 7 as follows:� V (QR7) = f0; 1; : : : ; 6g,� 8 i; j 2 V (QR7), ij 2 E(QR7)() j � i � 1; 2 or 4 (mod 7).This tournament is a rotational tournament and it is vertex-transitive (for every two verti
es x andy, there exists an automorphism that maps x to y). Then, we have:Theorem 14 The 
hromati
 number of the family of oriented 2-trees is 7. Moreover, this family isoptimally 
olorable by QR7.Proof. It is easy to 
he
k that QR7 satis�es property P2 [2℄. Hen
e, every oriented 2-tree is QR7-
olorable and thus has 
hromati
 number at most 7. By Theorem 13, we know that there existsoriented 2-trees with 
hromati
 number 7 and the result follows. 2Figure 1 depi
ts su
h a 2-tree (obtained by the 
onstru
tion given in the proof of Theorem 13).One 
an 
he
k that all verti
es must be assigned distin
t 
olors.The family of outerplanar graphs is stri
tly in
luded in the family of 2-trees. Sin
e the graph inFigure 1 is outerplanar, we also have:
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Figure 2: Tromp's 
onstru
tionCorollary 15 The 
hromati
 number of the family of oriented outerplanar graphs is 7. Moreover,this family is optimally 
olorable by QR7.This result improves a result given in [27℄ where it is shown that every oriented outerplanar graphhas 
hromati
 number at most 12.Property P2 says that for every orientation ve
tor � of size 2, every ar
 in QR7 has an �-su

essor.A subdivision of a graph G is obtained by repeatedly subdividing some edges with extra verti
es ofdegree 2 (that is an edge xy is repla
ed by two edges xz and zy, where z is a new vertex). If G isQR7- 
olorable, then so is every subdivision G0 of G and we have:Theorem 16 Let F be any family of oriented graphs whi
h is QR7-
olorable. Then the family F 0 ofall oriented subdivisions of the graphs in F is also QR7-
olorable.3.3 The 
ase of oriented 3-treesThe smallest 
olor-graph satisfying P3 has 16 verti
es and is obtained by using a 
onstru
tion proposedby Tromp [29℄. Let T16 be the oriented graph de�ned by:(i) V (T16) = f0; 1; : : : ; 6g [ f00; 10; : : : ; 60g [ fv; v0g,(ii) 8 i; j 2 f0; 1; : : : ; 6g, ij 2 E(QR7) =) ij 2 E(T16) and i0j0 2 E(T16)(we have two disjoint 
opies of the 
olor-graph QR7),(iii) 8 i 2 f0; 1; : : : ; 6g, vi; v0i0; i0v and iv0 2 E(T16),(iv) 8 i; j 2 f0; 1; : : : ; 6g, ij 2 E(QR7) =) j0i 2 E(T16) and ji0 2 E(T16)(the ar
s between the two 
opies of QR7 are "reversed").This 
onstru
tion is illustrated by Figure 2. The following propositions are not diÆ
ult to
he
k [29℄:Proposition 17 For every i 2 f0; 1; : : : ; 6; vg, the graph T16 is su
h that:1. �+(T16; i) and ��(T16; i) are both isomorphi
 to QR7,2. i and i0 are not joined by an ar
,3. �+(T16; i) = ��(T16; i0) and �+(T16; i0) = ��(T16; i).Proposition 18 The graph T16 satis�es property P3.



8 The 
hromati
 number of oriented graphsThere exists no 
olor-graph with 15 verti
es whi
h satis�es property P3. By Theorem 11, su
ha graph would have to be a tournament su
h that every vertex x has 7 su

essors (�+(x) must beisomorphi
 to QR7), every two distin
t verti
es x and y have 3 su

essors in 
ommon (�+(x)\�+(y)must be isomorphi
 to C3) and every three distin
t verti
es x, y and z have 1 su

essor in 
ommon(�+(x) \ �+(y) \ �(y) must 
ontain at least one vertex). Su
h a tournament 
annot exist by thefollowing result, due to Brown and Reid [7℄ (simply 
onsider the 
ase n = 1):Theorem 19 (Brown and Reid) For every positive integer n, there exists no tournament T withorder 8n+ 7 satisfying:(i) every vertex has 4n+ 3 su

essors,(ii) every two distin
t verti
es have 2n+ 1 
ommon su

essors and[(iii) every three distin
t verti
es have n 
ommon su

essors.In fa
t, for the parti
ular 
ase we are 
on
erned with (that is n = 1), the third 
ondition 
an beweakened as:(iii0) every three distin
t verti
es indu
ing a transitive tournament have a 
ommon su

essor.and we 
an prove (see [1℄):Proposition 20 There exists no tournament T on 15 verti
es su
h that for every vertex x in T ,�+(T; x) and ��(T; x) are both isomorphi
 to QR7.We are now able to prove the main result of this subse
tion:Theorem 21 The 
hromati
 number of the family of oriented 3-trees is 16. Moreover, this family isoptimally 
olorable by T16.Proof. By Theorem 8 and Proposition 18, every oriented 3-tree is T16-
olorable and then has 
hro-mati
 number at most 16. In order to get the result we now 
onstru
t a 3-tree having 3255 verti
esand whose 
hromati
 number is exa
tly 16.Step 1: we �rst build an oriented partial 2-tree T2 in su
h a way that the only 
olor-graph C of order 7su
h that T2 is C-
olorable is QR7 (see Figure 3). Let P3 be the dire
ted path on three verti
esand G0 be the partial 2-tree depi
ted by Figure 1. We now join every vertex x of G0 to twodistin
t 
opies of P3 by adding all possible ar
s from x towards the �rst 
opy and from the se
ond
opy towards x (see Figure 3a). Sin
e P3 is a tree, the graph G1 thus obtained is a partial 2-tree.To every ar
 linking su
h a vertex x to one of its two 
orresponding 
opies of P3 we now addfour �-su

essors, one for ea
h possible orientation ve
tor of size 2 (see Figure 3b). The graphG2 thus obtained is still a 2-tree and if C is a 
olor-graph su
h that G2 is C-
olorable then forevery ar
 
1
2 in C and every orientation ve
tor � of size 2, there exists an �-su

essor of 
1
2 inC. The only 
olor-graph of order 7 satisfying this property is QR7 and we therefore set T2 = G2(the number of verti
es of T2 is 217).Step 2: Consider now the graph H1 obtained from two distin
t 
opies of the graph G0 and a vertex v byadding all possible ar
s from v towards the �rst 
opy and from the se
ond 
opy towards v. Thisgraph is a partial 3-tree whose 15 verti
es must be assigned distin
t 
olors. We then join everyvertex x of H1 to two distin
t 
opies of T2 by adding all possible ar
s from x towards the �rst
opy and from the se
ond 
opy towards x, and get a new partial 3-tree H2 having 3255 verti
es.Suppose that C is a 
olor-graph having 15 verti
es su
h that H2 is C-
olorable; every 
olor 
in C is su
h that both �+(C; 
) and ��(C; 
) are isomorphi
 to QR7. We know by Theorem 19that su
h a graph 
annot exist. Hen
e, H2 has 
hromati
 number 16 and the result follows. 2
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Figure 3: Constru
tion of an oriented 3-tree with 
hromati
 number 164 The 
hromati
 number of oriented k-bounded graphsWe �rst prove the following general upper bound:Theorem 22 The family of oriented k-bounded graphs is Z2k�2-
olorable and thus has 
hromati
number at most (2k � 1)� 22k�2.Proof. We pro
eed by indu
tion on the number of verti
es n of an oriented k-bounded graph. Ifn = 1 there is nothing to prove. Let now G be an oriented k-bounded graph of order n + 1. Let xbe any vertex of G and let y1; y2; : : : ; yj, j � k, denote the neighbours of x in G. By the indu
tionhypothesis, G � x is Z2k�2-
olorable. Sin
e every yi has degree at most k � 1 in G� x, we 
an 
olorthese verti
es in su
h a way that every two of them get distin
t identities sin
e at least k distin
tidentities may be 
hosen for ea
h of them (re
all here that the identity is the �rst 
omponent of a
olor in Z2k�2). Finally, property P2k�2 ensures that we 
an �nd a 
olor for vertex x. 2For small values of k, this result 
an easily be improved:Theorem 23 The family of oriented 2-bounded graphs has 
hromati
 number 5 and is optimally
olorable by the tournament T depi
ted in Figure 4.Proof. Oriented 2-bounded graphs are in fa
t oriented paths and oriented 
y
les. Every orientedpath has 
hromati
 number at most 3 sin
e it is C3-
olorable. Every oriented 
y
le having at most 4verti
es is 
ontained in T as a subgraph and is then T -
olorable. Let us now show that every oriented
y
le having at least 5 verti
es is T -
olorable.Let C = (x1; x2; : : : ; xn) be any su
h oriented 
y
le. For every vertex xi, we de�ne the level ofxi, denoted l(xi), as the number of forward ar
s minus the number of ba
kward ar
s along the pathx1x2 : : : xi, taken modulo 3 (we have l(x1) = 0). We are going to 
olor the path x1x2 : : : xn�2 with
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Figure 4: The tournament Tone of the three C3-subgraphs of T indu
ed by verti
es 013, 014 or 024. Then, a

ording to the levelof xn�2, and to the type of ar
s in the path xn�2xn�1xnx1, we 
omplete the 
oloring of C as shownin Figure 5 (other 
ases are obtained by 
onsidering the 
y
le C in the opposite dire
tion). The C3-subgraph we use is given in ea
h 
ase. Note that the 
olor of any of the xi's, 2 � i � n� 2 is uniquelydetermined by the 
olor of x1 (all verti
es with same level are assigned the same 
olor). 2In order to prove that every oriented 3-bounded graph is T16-
olorable, we need the followinglemma:Lemma 24 For every ar
 uv in T16 and every orientation ve
tor � of size 2, there exist three distin
t�-su

essors of uv.Proof. It is not diÆ
ult to 
he
k that the graph T16 is ar
-transitive (for every two ar
s xx0 and yy0there exists an automorphism of T16 that maps x to y and x0 to y0). Hen
e, it suÆ
es to 
onsiderone ar
, say 01. Note also that if x (resp. x0) is a (�1; �2)-su

essor of uv, then x0 (resp. x) is a(1��1; 1��2)-su

essor of uv. The (0,0)-su

essors of 01 are v, 6 and 2', and the (0,1)-su

essors of01 are 3, 5 and 4', whi
h 
ompletes the proof. 2Theorem 25 The family of oriented 3-bounded graphs is T16-
olorable and thus has 
hromati
 numberat most 16.Proof. Let G be an oriented 3-bounded graph. We pro
eed by indu
tion on the order n of G. Ifn = 1, there is nothing to prove. Suppose the result is true for every oriented 3-bounded graph withorder at most n. Let now G be an oriented 3-bounded graph with order n + 1. If G has a vertex vwith degree 1, then every T16-
oloring of G � v 
an be extended to a T16-
oloring of G. If G has novertex with degree 1 but a vertex v with degree 2, then we �rst 
olor the graph G�, obtained fromG � v by adding an ar
 linking the two neighbours of v if su
h an ar
 does not exist. Then everyT16-
oloring of G� 
an be extended to a T16-
oloring of G sin
e T16 satis�es property P3 (see Se
tion3). Finally, if G is 3-regular, let v be any vertex of degree 3. Sin
e every neighbour of v has degree 2in G� v, Lemma 24 ensures that we 
an 
onstru
t a T16-
oloring of G� v su
h that the 
olors of thethree neighbours of v indu
e a 3-
lique subgraph of T16 (sin
e we have three possible 
hoi
es for ea
hof them, we 
an ensure that 
olors i and i0 are not simultaneously 
hosen, for every i 2 f0; : : : ; 6; vg).This 
oloring 
an then be extended to a T16-
oloring of G sin
e T16 satis�es property P3. 2Theorem 25 improves a previous result given in [27℄. We have re
ently proved with Lauren
eVignal that every oriented 3-bounded graph has 
hromati
 number at most 11 [28℄. However, we do
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Figure 5: T -
oloring of oriented 
y
lesnot know any su
h 
onne
ted graph with 
hromati
 number greater than 7. Therefore, we 
onje
ture:Conje
ture 26 The family of oriented 3-bounded 
onne
ted graphs has 
hromati
 number 7.The family of oriented k-bounded graphs is obviously 
omplete, and thus optimally 
olorable, sin
ethe disjoint union of two k-bounded graphs is still k-bounded. However, we do not know up to nowwhether the family of oriented 
onne
ted k-bounded graphs is optimally 
olorable (the fa
t that thisfamily is not 
omplete is easily seen by 
onsidering the 
ase of k-regular graphs). Hen
e, it would bepossible that there exists no 
olor-graph C on 7 verti
es su
h that every oriented 
onne
ted 3-boundedgraph is C-
olorable. In this 
ase, the 
hromati
 number of (not ne
essarily 
onne
ted) 3-boundedgraphs would be stri
tly greater than 7.5 Con
lusionsIn this paper, we have introdu
ed a new generalisation of the notion of 
hromati
 number for orientedgraphs. We have given upper bounds for the 
hromati
 number of some families of graphs and anatural question is now to �nd optimal bounds for these values. In parti
ular, if we denote by f(k)the 
hromati
 number of oriented k-bounded graphs, we do not know whether the fun
tion f is
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 number of oriented graphspolynomial or exponential (re
all that this fun
tion is linear in the undire
ted 
ase). In the 
ase ofk-trees, the 
onstru
tion of optimal 
olor-graphs satisfying property Pk is still an open problem fork > 3. In [2℄ we have 
onstru
ted su
h 
olor-graphs, for k = 4 and 5, having respe
tively 40 and 96
olors. For k > 5, the best known 
olor-graphs are the graphs Zk we have used in Se
tion 3.In [13℄, H�aggkvist and Hell introdu
ed the notion of A-mote graphs, that is graphs G su
h thatthere is no homomorphism A! G. They proved that whenever the graph A is 
onne
ted, the familyF of all A-mote k-bounded graphs is universal (there exists a A-mote universal graph U , that is a
olor-graph in our terminology, su
h that every graph G in F admits a homomorphism to U). If A isthe dire
ted two-
y
le, then A-mote k-bounded graphs are exa
tly oriented k-bounded graphs. Hen
e,the fa
t that the family of oriented k-bounded graphs is 
olorable was impli
itly 
ontained in theirpaper. They were essentially interested in minimising the maximum degree of universal graphs on the
ontrary to our approa
h in whi
h we fo
us on the minimum order of universal graphs.Finally, it should be noted that most of the graphs we have used as optimal 
olor-graphs (ex
eptedthe tournament T in Theorem 23) play a 
entral role in the theory of bounded timestamp systems [1,2, 8, 19, 21, 33℄. Timestamp systems have proven to be an useful tool in the design of many distributedalgorithms [19℄. An oriented graph G is a timestamp system of order k if every set fx1; : : : ; xng, n < k,of verti
es indu
ing a transitive tournament in G has a 
ommon su

essor. This property is obviouslyweaker than the property Pk we have 
onsidered: every graph satisfying Pk is a timestamp system oforder k+1. However, most of the best known solutions for the timestamping problem satisfy propertyPk. This is namely the 
ase for the graphs Zk we used in se
tion 3, whi
h have been introdu
ed byZielonka [33℄ as a generalisation of a 
onstru
tion proposed by Lamport [21℄. The graph Z4 (with 80verti
es) has also been used in [27℄ as a 
olor-graph for the family of oriented planar graphs. Hen
e,any progress in the determination of the 
hromati
 number of oriented partial k-trees would lead toimmediate appli
ations in the theory of timestamp systems.Bibliographi
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