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2 The hromati number of oriented graphsgiven a �xed graph H, what is the omplexity of deiding whether a graph G is H-olorable or not?This problem has been solved in the undireted ase by Hell and Ne�set�ril [14℄. They proved that thisproblem is polynomially deidable when the graph H is bipartite and NP-omplete otherwise. In thedireted ase, only partial answers have been given [3, 4, 12, 15, 16, 17, 18, 24, 25℄ and the questionis still open.For an oriented graph H, we will denote by [H℄ the set of oriented graphs that are H-olorable:[H℄ = fG : G ! Hg. We de�ne the hromati number of an oriented graph G, denoted by �(G),as the order of the smallest oriented graph H suh that G 2 [H℄. Note that this notion is a naturalgeneralisation of the usual notion of hromati number in the undireted ase sine an undiretedgraph U has hromati number n if and only if it admits a homomorphism to the omplete graph Knand there exists no homomorphism of U to Kn�1.These sets [H℄ together with the inlusion operator have a lattie struture and have been studiedin [9, 22, 31, 32℄ (there they were alled olor-lasses). The struture of this lattie is better knownin the undireted ase than in the direted one. The main result in [31℄ shows that the hierarhy ofundireted olor-lasses is dense, that is given any two olor-lasses [G1℄ and [G2℄ with [G1℄ �= [G2℄,there exists a graph G3 suh that [G1℄ �= [G3℄ �= [G2℄ (exept in the partiular ase where G1 = K1 andG2 = K2). This is no longer true in the direted ase and there exist in�nite sequenes of \immediatepredeessors" within the direted hierarhy [22, 25℄.In this paper we study the hromati number of oriented partial k-trees and of oriented k-boundedgraphs (that is graphs with maximum degree k). In setion 2 we give some basi de�nitions. Setion 3is devoted to the study of oriented partial k-trees and setion 4 to the study of oriented k-boundedgraphs.2 PreliminariesLet F be any (�nite or in�nite) family of oriented graphs. We de�ne the hromati number �(F) of Fas the maximum hromati number of a graph in F (note that this number may be unbounded whenF is in�nite). We will say that suh a family is olorable, or more preisely C-olorable, if there existsan oriented graph C suh that F � [C℄. A family F has a �nite hromati number if and only if itis C-olorable for some C: the hromati number of F is obviously bounded by the order of C andonversely, if F has a �nite hromati number, say k, it is C-olorable for C being an oriented graphontaining all oriented graphs of order at most k as subgraphs (suh a graph has at most k � 2 k�12verties when k is odd and 32p2k � 2 k�12 verties when k is even [23℄).The reader should note here that if a family F has a �nite hromati number k, the smallest graphC suh that F is C-olorable may be of order stritly greater than k. For instane, the family Fk ofall graphs with order at most k obviously has hromati number k; however, there is no graph C oforder k suh that every tournament on k verties is C-olorable (suh a graph C should ontain allthose tournaments as subgraphs). A family F will be said to be optimally olorable if there exists agraph C of order �(F) suh that F is C-olorable.The following proposition provides a suÆient ondition for a olorable family of graphs to beoptimally olorable. We will say that a family F is omplete if for every two graphs F1 and F2 in F ,there exists a graph F � in F ontaining F1 and F2 as subgraphs. Then we have:Proposition 1 Every omplete family F of graphs whih is olorable is optimally olorable.Proof. Sine F is olorable, �(F) is �nite and every graph F in F is olorable by a olor-graph CFhaving at most �(F) olors. If F is not optimally olorable, then there exists a �nite number of graphsin F , say F1, F2, : : :, Fn, suh that for every olor-graph C having at most �(F) olors at least oneof them is not C-olorable (it is suÆient here to onsider a �nite number of graphs sine there existsa �nite number of olor-graphs having at most �(F) olors). Sine F is omplete there exists a graph



E. Sopena 3F � in F whih ontains all the Fi's as subgraphs. The graph F � is CF �-olorable for some olor-graphCF � having at most �(F) verties and all the Fi's are thus CF �-olorable, a ontradition. 2For instane, the family of planar graphs is omplete (let F � be the disjoint union of F1 and F2) aswell as the family of onneted planar graphs (let xi be any vertex of Fi; the graph F � is then obtainedby taking a disjoint opy of eah graph Fi and identifying the xi's to a single vertex). In [27℄, wehave shown with A. Raspaud that the family of oriented planar graphs is olorable and has hromatinumber at most 80. This bound an be signi�antly improved under a high girth assumption [26℄:Theorem 2 (Ne�set�ril et al.) Every oriented planar graph with girth at least 6 (resp. 7,11,16) hashromati number at most 32 (resp. 12,7,5).The hromati number of an undireted graph is learly a lower bound for the hromati numberof any of its orientations. The gap between the hromati number of an undireted graph and thehromati number of its orientations an be arbitrarily large, as illustrated by the following result:Proposition 3 The family of oriented bipartite graphs is not olorable.Proof. Let Kn;n be the orientation of the omplete bipartite graph on 2n verties de�ned as follows:let V (Kn;n) = f1; 2; : : : ; ng[f10; 20; : : : ; n0g and let ij0 2 E(Kn;n) if i = j and j0i 2 E(Kn;n) otherwise.The hromati number of Kn;n is 2n sine every two verties are joined by a direted path of length atmost 2 and thus must be assigned distint olors. Therefore, the family of oriented bipartite graphshas unbounded hromati number. 2Let G be an oriented (resp. undireted) graph; a k-lique subgraph of G is a sequene X =(x1; x2; : : : ; xk) of pairwise distint verties of G suh that the subgraph indued by these verties isa tournament (resp. a omplete graph). In this paper we will extensively use the following notion:De�nition 4 An orientation vetor of size n is a sequene � = (�1; �2; : : : ; �n) in f0; 1gn; let G bean oriented graph and X = (x1; x2; : : : ; xn) be a sequene of pairwise distint verties of G. A vertexy of G is said to be an �-suessor of X if for every i, 1 � i � n, we have �i = 1 =) xiy 2 E(G) and�i = 0 =) yxi 2 E(G).3 The hromati number of oriented partial k-trees3.1 The general aseThe notion of undireted k-tree an be de�ned as follows [5℄: the omplete graph Kk with k verties isa k-tree; if G is a k-tree then the graph G0 obtained from G by adding a new vertex v linked to everyvertex of a k-lique subgraph of G is a k-tree and there are no further k-trees. A subgraph of a k-treeis alled a partial k-tree. Partial k-trees have been extensively studied in the last past years, sine theyoften lead to polynomial algorithms for problems whih are known to be NP-omplete in the generalase (see [30℄). The notion of a 1-tree obviously orresponds to the usual notion of a tree. The lassof outerplanar graphs is stritly ontained in the lass of partial 2-trees. This notion of k-tree seemsto play an essential role in the study of the omplexity of the H-oloring problem [10, 16, 24℄.The two following results about k-trees will be useful in the sequel:Proposition 5 The family of partial k-trees is omplete.Proof. Sine partial k-trees are subgraphs of k-trees, it suÆes to onsider k-trees. Let T1 and T2 bek-trees and X1 be any k-lique subgraph of T1. Consider the graph T3 obtained from T1 by applying,starting from X1, the same sequene of vertex additions that leads from Kk to T2. The graph T3 thusobtained is a partial k-tree ontaining both T1 and T2 as subgraphs. 2



4 The hromati number of oriented graphsProposition 6 Let T1 be a partial k-tree, X = (x1; x2; : : : ; xk) a k-lique subgraph of T1 and T2 apartial k0-tree (k0 < k). The graph T3 obtained from T1 and T2 by adding edges from every vertex ofT2 to verties x1, x2, : : :, xk�k0 is also a partial k-tree.Proof. Let U1 be a k-tree ontaining T1 as a subgraph and U2 a k0-tree ontaining T2 as a subgraph.We onstrut a k-tree U3 as follows: starting with U1, we add k0 new verties, say y1; : : : ; y0k, in suha way that for every j, 1 � j � k0, yj is linked to verties x1; x2; : : : ; xk�k0 ; y1; y2; : : : ; yj�1. The k-treethus obtained ontains (x1; : : : ; xk�k0 ; y1; : : : ; y0k) as a k-lique subgraph. Starting from (y1; : : : ; y0k) wethen apply the same sequene of vertex additions that leads from Kk0 to U2 exept that every suhnew vertex is additionally linked to (x1; : : : ; xk�k0). It is then not diÆult to hek that the k-tree U3thus obtained ontains T3 as a subgraph, whih ompletes the proof. 2By onstrution, every k-tree G distint from the omplete graph Kk has a vertex v of degree kwhose neighbourhood is a k-lique subgraph in G, and whose deletion leads to another k-tree, denotedby G� v. It is then folklore to establish by indution that every suh undireted k-tree has hromatinumber k + 1 (or k when it is the omplete graph Kk): the result is obvious for Kk and Kk+1 andif G � v has hromati number k + 1 then, onsidering any (k + 1)-oloring of G � v, there alwaysremains a free olor to be assigned to v, leading to a (k+1)-oloring of G. In order to apply the sametehnique in the oriented ase, we must be able to �nd in the olor-graph an adequate olor  to beassigned to v, whatever the orientations of the ars linking v to G� v are. The following property Pkwill ensure that suh a olor an always be found.De�nition 7 We will say that a olor-graph C satis�es property Pk for some k > 0 if for everyoriented n-lique subgraph (1; 2; : : : ; n) in C with 1 � n � k, and every orientation vetor � =(�1; �2; : : : ; �n) of size n, there exists a olor  in V (C) whih is an �-suessor of (1; 2; : : : ; n).Note that every olor-graph satisfying property Pk also satis�es property Pk0 for every k0 < k. Byonvention, we will assume that every graph with at least one vertex satis�es property P0 and thatthe null-graph (with no verties) does not. Then, we have:Theorem 8 If C is a olor-graph satisfying property Pk then every oriented partial k-tree is C-olorable.Proof. Note �rst that it suÆes to onsider the ase of k-trees, sine partial k-trees are subgraphsof k-trees. We proeed by indution on the number of verties n of a k-tree G. If n = k, then G is atournament with vertex set fx1; x2; : : : ; xng. Giving arbitrarily any olor  to x1, property Pk ensuresthat we an ahieve a C-oloring of G: if x1; : : : ; xi are already olored, the olor of xi+1 is obtainedby using the orientation vetor (�1; : : : ; �i) de�ned by �j = 0 i� xi+1xj 2 E(G). Suppose now thatevery oriented k-tree having at most n verties (n � k) is C-olorable and let H be any orientedk-tree with n+1 verties. Then there exists a vertex v in H with degree k. The indution hypothesisensures that H � v is C-olorable and property Pk says that one an �nd in C an adequate olor  tobe assigned to v (by hoosing an orientation vetor aording to the diretion of the ars linking v toits neighbours in G), leading to a C-oloring of H. 2We are now going to propose a ombinatorial onstrution leading for every k to olor-graphssatisfying property Pk and having (k + 1) � 2k verties (or olors). Let k be any given positiveinteger; we de�ne the olor-graph Zk as follows: let V (Zk) be the subset of f1; 2; : : : ; k + 1g �f0; 1gk+1 onsisting of elements (a; x1; : : : ; xk+1) suh that xa = 0, and let E(Zk) be suh that((a; x1; : : : ; xk+1); (b; y1; : : : ; yk+1)) 2 E(Zk) i� (a > b and xb 6= ya) or (a < b and xb = ya). Then, thegraph Zk thus de�ned has exatly (k + 1)� 2k verties and we have:Proposition 9 For every k > 0, the olor-graph Zk satis�es property Pk.



E. Sopena 5Proof. Let  = (a; x1; : : : ; xk+1) be any vertex of Zk. For every i, 1 � i � k+1, we will denote by (i)the omponent xi of  and by Id() (the identity of ) the omponent a. Let us �rst note that onlyverties with distint identities are linked in Zk. Hene, the oriented n-lique subgraphs (1 � n � k)in Zk are exatly the sets of verties with pairwise distint identities. Let (1; 2; : : : ; n) be suh a setof verties and � = (�1; �2; : : : ; �n) be any orientation vetor. Let d denote any identity whih doesnot appear in (1; 2; : : : ; n). Then, the vertex  de�ned by:(i) Id() = d,(ii) 8 i, 1 � i � n, if (d < Id(i) and �i = 1) or (d > Id(i) and �i = 0)then (Id(i)) = i(d)else (Id(i)) = 1� i(d),is an �-suessor of (1; 2; : : : ; n) and the result follows. 2We are now able to prove the following:Theorem 10 For every k, the family Tk of oriented partial k-trees is optimally olorable and hashromati number at most (k + 1)� 2k.Proof. From Theorem 8 and Proposition 9, the family Tk is olorable and has hromati number atmost (k+1)� 2k. By Proposition 5 it is also omplete and by Proposition 1 it is optimally olorable.2Let H be an oriented graph; for every vertex x 2 V (H), we will denote by �+(H;x) (resp.��(H;x)) the oriented subgraph indued by the suessors (resp. predeessors) of x in H. Then wehave:Theorem 11 For every k > 0, if a olor-graph C satis�es property Pk then for every olor  in V (C),both �+(C; ) and ��(C; ) satisfy property Pk�1.Proof. Let  be any olor in V (C), (1; 2; : : : ; n), n � k � 1, be any n-lique subgraph of �+(C; )and � = (�1; �2; : : : ; �n) be any orientation vetor of size n. Sine C satis�es Pk, the (n + 1)-lique(; 1; 2; : : : ; n) has a (1; �1; �2; : : : ; �n)-suessor in C whih is also an �-suessor of (1; 2; : : : ; n)in �+(C; ). A similar argument shows that ��(C; ) also satis�es Pk�1. 2This theorem leads to the following lower bound for the number of verties of a graph satisfyingproperty Pk:Corollary 12 Every olor-graph C satisfying property Pk must have at least 2k+1 � 1 olors.Proof. We proeed by indution on k. The smallest graph satisfying P1 is the direted yle C3 onthree verties. Let now C be a graph satisfying Pk. By Theorem 11 and using the indution hypothesis,every vertex in C must have at least 2k�1 suessors and 2k�1 predeessors. The number of vertiesof C is therefore at least 2� (2k � 1) + 1 = 2k+1 � 1 and the result follows. 2This lower bound is also a lower bound for the hromati number of oriented partial k-trees sinewe have:Theorem 13 For every k > 0, there exists an oriented k-tree Tk with �(Tk) � 2k+1 � 1.



6 The hromati number of oriented graphs

Figure 1: An oriented graph with hromati number 7Proof. We proeed by indution on k. For k = 1, it suÆes to onsider the direted path on threeverties (whose verties must be assigned distint olors). Suppose now that the result holds up to(k � 1)-trees and let Tk�1 be an oriented (k � 1)-tree with hromati number at least 2k+1 � 1. LetTk be the oriented k-tree obtained by taking two opies of Tk�1 and a new vertex x and adding arsfrom x towards every vertex of the �rst opy and from every vertex of the seond opy towards x(aording to Proposition 6, this graph is indeed a k-tree). Then every vertex in the �rst opy mustbe assigned a olor distint from those assigned to the verties of the seond opy. Moreover, vertexx must be assigned a olor distint from those assigned to all other verties. Hene, the number ofolors we need for oloring Tk is at least 2� (2k � 1) + 1 = 2k+1 � 1 and the result follows. 2This lower bound is tight for oriented trees sine every oriented tree is C3-olorable, for C3 beingthe direted yle on three verties. In the following subsetion we will show that this lower boundis also tight for oriented 2-trees. However we will show that this is no longer true for oriented 3-treesand that the exat value of the hromati number in this ase is 16.3.2 The ase of oriented 2-treesThe smallest olor-graph satisfying property P1 is the direted yle C3 on three verties. By Corol-lary 12, we know that every olor-graph satisfying P2 must have at least 7 verties. The uniqueolor-graph on 7 verties whih satis�es P2 is the tournament QR7 [11℄, build from the non-zeroquadrati residues of 7 as follows:� V (QR7) = f0; 1; : : : ; 6g,� 8 i; j 2 V (QR7), ij 2 E(QR7)() j � i � 1; 2 or 4 (mod 7).This tournament is a rotational tournament and it is vertex-transitive (for every two verties x andy, there exists an automorphism that maps x to y). Then, we have:Theorem 14 The hromati number of the family of oriented 2-trees is 7. Moreover, this family isoptimally olorable by QR7.Proof. It is easy to hek that QR7 satis�es property P2 [2℄. Hene, every oriented 2-tree is QR7-olorable and thus has hromati number at most 7. By Theorem 13, we know that there existsoriented 2-trees with hromati number 7 and the result follows. 2Figure 1 depits suh a 2-tree (obtained by the onstrution given in the proof of Theorem 13).One an hek that all verties must be assigned distint olors.The family of outerplanar graphs is stritly inluded in the family of 2-trees. Sine the graph inFigure 1 is outerplanar, we also have:



E. Sopena 7

Figure 2: Tromp's onstrutionCorollary 15 The hromati number of the family of oriented outerplanar graphs is 7. Moreover,this family is optimally olorable by QR7.This result improves a result given in [27℄ where it is shown that every oriented outerplanar graphhas hromati number at most 12.Property P2 says that for every orientation vetor � of size 2, every ar in QR7 has an �-suessor.A subdivision of a graph G is obtained by repeatedly subdividing some edges with extra verties ofdegree 2 (that is an edge xy is replaed by two edges xz and zy, where z is a new vertex). If G isQR7- olorable, then so is every subdivision G0 of G and we have:Theorem 16 Let F be any family of oriented graphs whih is QR7-olorable. Then the family F 0 ofall oriented subdivisions of the graphs in F is also QR7-olorable.3.3 The ase of oriented 3-treesThe smallest olor-graph satisfying P3 has 16 verties and is obtained by using a onstrution proposedby Tromp [29℄. Let T16 be the oriented graph de�ned by:(i) V (T16) = f0; 1; : : : ; 6g [ f00; 10; : : : ; 60g [ fv; v0g,(ii) 8 i; j 2 f0; 1; : : : ; 6g, ij 2 E(QR7) =) ij 2 E(T16) and i0j0 2 E(T16)(we have two disjoint opies of the olor-graph QR7),(iii) 8 i 2 f0; 1; : : : ; 6g, vi; v0i0; i0v and iv0 2 E(T16),(iv) 8 i; j 2 f0; 1; : : : ; 6g, ij 2 E(QR7) =) j0i 2 E(T16) and ji0 2 E(T16)(the ars between the two opies of QR7 are "reversed").This onstrution is illustrated by Figure 2. The following propositions are not diÆult tohek [29℄:Proposition 17 For every i 2 f0; 1; : : : ; 6; vg, the graph T16 is suh that:1. �+(T16; i) and ��(T16; i) are both isomorphi to QR7,2. i and i0 are not joined by an ar,3. �+(T16; i) = ��(T16; i0) and �+(T16; i0) = ��(T16; i).Proposition 18 The graph T16 satis�es property P3.



8 The hromati number of oriented graphsThere exists no olor-graph with 15 verties whih satis�es property P3. By Theorem 11, suha graph would have to be a tournament suh that every vertex x has 7 suessors (�+(x) must beisomorphi to QR7), every two distint verties x and y have 3 suessors in ommon (�+(x)\�+(y)must be isomorphi to C3) and every three distint verties x, y and z have 1 suessor in ommon(�+(x) \ �+(y) \ �(y) must ontain at least one vertex). Suh a tournament annot exist by thefollowing result, due to Brown and Reid [7℄ (simply onsider the ase n = 1):Theorem 19 (Brown and Reid) For every positive integer n, there exists no tournament T withorder 8n+ 7 satisfying:(i) every vertex has 4n+ 3 suessors,(ii) every two distint verties have 2n+ 1 ommon suessors and[(iii) every three distint verties have n ommon suessors.In fat, for the partiular ase we are onerned with (that is n = 1), the third ondition an beweakened as:(iii0) every three distint verties induing a transitive tournament have a ommon suessor.and we an prove (see [1℄):Proposition 20 There exists no tournament T on 15 verties suh that for every vertex x in T ,�+(T; x) and ��(T; x) are both isomorphi to QR7.We are now able to prove the main result of this subsetion:Theorem 21 The hromati number of the family of oriented 3-trees is 16. Moreover, this family isoptimally olorable by T16.Proof. By Theorem 8 and Proposition 18, every oriented 3-tree is T16-olorable and then has hro-mati number at most 16. In order to get the result we now onstrut a 3-tree having 3255 vertiesand whose hromati number is exatly 16.Step 1: we �rst build an oriented partial 2-tree T2 in suh a way that the only olor-graph C of order 7suh that T2 is C-olorable is QR7 (see Figure 3). Let P3 be the direted path on three vertiesand G0 be the partial 2-tree depited by Figure 1. We now join every vertex x of G0 to twodistint opies of P3 by adding all possible ars from x towards the �rst opy and from the seondopy towards x (see Figure 3a). Sine P3 is a tree, the graph G1 thus obtained is a partial 2-tree.To every ar linking suh a vertex x to one of its two orresponding opies of P3 we now addfour �-suessors, one for eah possible orientation vetor of size 2 (see Figure 3b). The graphG2 thus obtained is still a 2-tree and if C is a olor-graph suh that G2 is C-olorable then forevery ar 12 in C and every orientation vetor � of size 2, there exists an �-suessor of 12 inC. The only olor-graph of order 7 satisfying this property is QR7 and we therefore set T2 = G2(the number of verties of T2 is 217).Step 2: Consider now the graph H1 obtained from two distint opies of the graph G0 and a vertex v byadding all possible ars from v towards the �rst opy and from the seond opy towards v. Thisgraph is a partial 3-tree whose 15 verties must be assigned distint olors. We then join everyvertex x of H1 to two distint opies of T2 by adding all possible ars from x towards the �rstopy and from the seond opy towards x, and get a new partial 3-tree H2 having 3255 verties.Suppose that C is a olor-graph having 15 verties suh that H2 is C-olorable; every olor in C is suh that both �+(C; ) and ��(C; ) are isomorphi to QR7. We know by Theorem 19that suh a graph annot exist. Hene, H2 has hromati number 16 and the result follows. 2
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Figure 3: Constrution of an oriented 3-tree with hromati number 164 The hromati number of oriented k-bounded graphsWe �rst prove the following general upper bound:Theorem 22 The family of oriented k-bounded graphs is Z2k�2-olorable and thus has hromatinumber at most (2k � 1)� 22k�2.Proof. We proeed by indution on the number of verties n of an oriented k-bounded graph. Ifn = 1 there is nothing to prove. Let now G be an oriented k-bounded graph of order n + 1. Let xbe any vertex of G and let y1; y2; : : : ; yj, j � k, denote the neighbours of x in G. By the indutionhypothesis, G � x is Z2k�2-olorable. Sine every yi has degree at most k � 1 in G� x, we an olorthese verties in suh a way that every two of them get distint identities sine at least k distintidentities may be hosen for eah of them (reall here that the identity is the �rst omponent of aolor in Z2k�2). Finally, property P2k�2 ensures that we an �nd a olor for vertex x. 2For small values of k, this result an easily be improved:Theorem 23 The family of oriented 2-bounded graphs has hromati number 5 and is optimallyolorable by the tournament T depited in Figure 4.Proof. Oriented 2-bounded graphs are in fat oriented paths and oriented yles. Every orientedpath has hromati number at most 3 sine it is C3-olorable. Every oriented yle having at most 4verties is ontained in T as a subgraph and is then T -olorable. Let us now show that every orientedyle having at least 5 verties is T -olorable.Let C = (x1; x2; : : : ; xn) be any suh oriented yle. For every vertex xi, we de�ne the level ofxi, denoted l(xi), as the number of forward ars minus the number of bakward ars along the pathx1x2 : : : xi, taken modulo 3 (we have l(x1) = 0). We are going to olor the path x1x2 : : : xn�2 with
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Figure 4: The tournament Tone of the three C3-subgraphs of T indued by verties 013, 014 or 024. Then, aording to the levelof xn�2, and to the type of ars in the path xn�2xn�1xnx1, we omplete the oloring of C as shownin Figure 5 (other ases are obtained by onsidering the yle C in the opposite diretion). The C3-subgraph we use is given in eah ase. Note that the olor of any of the xi's, 2 � i � n� 2 is uniquelydetermined by the olor of x1 (all verties with same level are assigned the same olor). 2In order to prove that every oriented 3-bounded graph is T16-olorable, we need the followinglemma:Lemma 24 For every ar uv in T16 and every orientation vetor � of size 2, there exist three distint�-suessors of uv.Proof. It is not diÆult to hek that the graph T16 is ar-transitive (for every two ars xx0 and yy0there exists an automorphism of T16 that maps x to y and x0 to y0). Hene, it suÆes to onsiderone ar, say 01. Note also that if x (resp. x0) is a (�1; �2)-suessor of uv, then x0 (resp. x) is a(1��1; 1��2)-suessor of uv. The (0,0)-suessors of 01 are v, 6 and 2', and the (0,1)-suessors of01 are 3, 5 and 4', whih ompletes the proof. 2Theorem 25 The family of oriented 3-bounded graphs is T16-olorable and thus has hromati numberat most 16.Proof. Let G be an oriented 3-bounded graph. We proeed by indution on the order n of G. Ifn = 1, there is nothing to prove. Suppose the result is true for every oriented 3-bounded graph withorder at most n. Let now G be an oriented 3-bounded graph with order n + 1. If G has a vertex vwith degree 1, then every T16-oloring of G � v an be extended to a T16-oloring of G. If G has novertex with degree 1 but a vertex v with degree 2, then we �rst olor the graph G�, obtained fromG � v by adding an ar linking the two neighbours of v if suh an ar does not exist. Then everyT16-oloring of G� an be extended to a T16-oloring of G sine T16 satis�es property P3 (see Setion3). Finally, if G is 3-regular, let v be any vertex of degree 3. Sine every neighbour of v has degree 2in G� v, Lemma 24 ensures that we an onstrut a T16-oloring of G� v suh that the olors of thethree neighbours of v indue a 3-lique subgraph of T16 (sine we have three possible hoies for eahof them, we an ensure that olors i and i0 are not simultaneously hosen, for every i 2 f0; : : : ; 6; vg).This oloring an then be extended to a T16-oloring of G sine T16 satis�es property P3. 2Theorem 25 improves a previous result given in [27℄. We have reently proved with LaureneVignal that every oriented 3-bounded graph has hromati number at most 11 [28℄. However, we do
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Figure 5: T -oloring of oriented ylesnot know any suh onneted graph with hromati number greater than 7. Therefore, we onjeture:Conjeture 26 The family of oriented 3-bounded onneted graphs has hromati number 7.The family of oriented k-bounded graphs is obviously omplete, and thus optimally olorable, sinethe disjoint union of two k-bounded graphs is still k-bounded. However, we do not know up to nowwhether the family of oriented onneted k-bounded graphs is optimally olorable (the fat that thisfamily is not omplete is easily seen by onsidering the ase of k-regular graphs). Hene, it would bepossible that there exists no olor-graph C on 7 verties suh that every oriented onneted 3-boundedgraph is C-olorable. In this ase, the hromati number of (not neessarily onneted) 3-boundedgraphs would be stritly greater than 7.5 ConlusionsIn this paper, we have introdued a new generalisation of the notion of hromati number for orientedgraphs. We have given upper bounds for the hromati number of some families of graphs and anatural question is now to �nd optimal bounds for these values. In partiular, if we denote by f(k)the hromati number of oriented k-bounded graphs, we do not know whether the funtion f is
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