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Abstract. We introduce in this paper the notion of the chromatic number of an oriented graph G (that is of
an antisymmetric directed graph) defined as the minimum order of an oriented graph H such that G admits a
homomorphism to H. We study the chromatic number of oriented k-trees and of oriented graphs with bounded
degree. We show that there exist oriented k-trees with chromatic number at least 2¢*! — 1 and that every
oriented k-tree has chromatic number at most (k + 1) x 2*. For 2-trees and 3-trees we decrease these upper
bounds respectively to 7 and 16 and show that these new bounds are tight. As a particular case, we obtain
that oriented outerplanar graphs have chromatic number at most 7 and that this bound is tight too. We then
show that every oriented graph with maximum degree k has chromatic number at most (2k — 1) x 22¥=2, For
oriented graphs with maximum degree 2 we decrease this bound to 5 and show that this new bound is tight.
For oriented graphs with maximum degree 3 we decrease this bound to 16 and conjecture that there exists no
such connected graph with chromatic number greater than 7.
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1 Introduction

In this paper, we introduce and study the notion of the chromatic number of antisymmetric directed
graphs, called oriented graphs in the following. These graphs are in fact orientations of undirected
graphs, obtained by arbitrarily giving one of the two possible orientations to the edges of an undirected
graph. For every graph G, the sets of vertices and edges (or arcs) of G will be respectively denoted
by V(G) and E(G). The number of vertices of a graph G will be called the order of G.

Let G and H be two oriented graphs. A homomorphism of G to H is a mapping u from V(G) to
V' (H) such that for every arc (z,y) in E(G), (uz, py) is an arc in E(H). If there exists a homomorphism
of G to H, we will write G — H and say that G is H-colorable. We will often call such a graph H a
color-graph and its vertices will be called colors. The mapping p will be referred to as a H-coloring, or
simply a coloring, of G. Note that if a graph G is H-colorable, then every subgraph G’ of G is also H-
colorable since the restriction of a homomorphism of G to H to the vertices of G’ is a homomorphism
of G’ to H.

One useful hint the reader should have in mind when considering oriented colorings is that two
vertices that are linked by a directed path of length 1 or 2 must be assigned distinct colors in every
oriented coloring. To see that, observe that from the definition of homomorphisms of oriented graphs
we get that every coloring p of an oriented graph G must satisfy (i) zy € E(G) = px # py and (i7)
zy € E(G), 2t € E(G), px = ut = py # pz (note that this second condition comes from the fact
that we only consider oriented color-graphs). For instance, it is not difficult to check that in every
coloring of the directed cycle C5 on 5 vertices all the vertices must be assigned distinct colors, since
every two vertices are linked by a directed path of length 1 or 2.

Graph homomorphisms have been extensively studied in the last past years. Many papers have
been devoted to the study of the complexity of H-coloring. This problem can be stated as follows :
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2 The chromatic number of oriented graphs

given a fixed graph H, what is the complexity of deciding whether a graph G is H-colorable or not?
This problem has been solved in the undirected case by Hell and Nesetfil [14]. They proved that this
problem is polynomially decidable when the graph H is bipartite and NP-complete otherwise. In the
directed case, only partial answers have been given [3, 4, 12, 15, 16, 17, 18, 24, 25] and the question
is still open.

For an oriented graph H, we will denote by [H]| the set of oriented graphs that are H-colorable:
[H] = {G : G — H}. We define the chromatic number of an oriented graph G, denoted by x(G),
as the order of the smallest oriented graph H such that G € [H]. Note that this notion is a natural
generalisation of the usual notion of chromatic number in the undirected case since an undirected
graph U has chromatic number n if and only if it admits a homomorphism to the complete graph K,
and there exists no homomorphism of U to K,,_1.

These sets [H]| together with the inclusion operator have a lattice structure and have been studied
in [9, 22, 31, 32] (there they were called color-classes). The structure of this lattice is better known
in the undirected case than in the directed one. The main result in [31] shows that the hierarchy of
undirected color-classes is dense, that is given any two color-classes [G1] and [Go] with [G1] & [G2],
there exists a graph G3 such that [G1] & [G3] & [G2] (except in the particular case where G1 = K and
G2 = K>3). This is no longer true in the directed case and there exist infinite sequences of “immediate
predecessors” within the directed hierarchy [22, 25].

In this paper we study the chromatic number of oriented partial k-trees and of oriented k-bounded
graphs (that is graphs with maximum degree k). In section 2 we give some basic definitions. Section 3
is devoted to the study of oriented partial k-trees and section 4 to the study of oriented k-bounded
graphs.

2 Preliminaries

Let F be any (finite or infinite) family of oriented graphs. We define the chromatic number x(F) of F
as the maximum chromatic number of a graph in F (note that this number may be unbounded when
F is infinite). We will say that such a family is colorable, or more precisely C-colorable, if there exists
an oriented graph C such that F C [C]. A family F has a finite chromatic number if and only if it
is C-colorable for some C': the chromatic number of F is obviously bounded by the order of C' and
conversely, if F has a finite chromatic number, say k, it is C-colorable for C' being an oriented graph
containing all oriented graphs of order at most &k as subgraphs (such a graph has at most k x 2%+
vertices when k is odd and %k x 27" vertices when k is even [23]).

The reader should note here that if a family F has a finite chromatic number k, the smallest graph
C such that F is C-colorable may be of order strictly greater than k. For instance, the family Fj of
all graphs with order at most k£ obviously has chromatic number k; however, there is no graph C of
order k such that every tournament on k vertices is C-colorable (such a graph C' should contain all
those tournaments as subgraphs). A family F will be said to be optimally colorable if there exists a
graph C of order x(F) such that F is C-colorable.

The following proposition provides a sufficient condition for a colorable family of graphs to be
optimally colorable. We will say that a family F is complete if for every two graphs F; and F5 in F,
there exists a graph F* in F containing F) and F5 as subgraphs. Then we have:

Proposition 1 FEvery complete family F of graphs which is colorable is optimally colorable.

Proof. Since F is colorable, x(F) is finite and every graph F in F is colorable by a color-graph Cr
having at most x(F) colors. If F is not optimally colorable, then there exists a finite number of graphs
in F, say Fy, Fs, ..., F,, such that for every color-graph C having at most x(F) colors at least one
of them is not C-colorable (it is sufficient here to consider a finite number of graphs since there exists
a finite number of color-graphs having at most x(F) colors). Since F is complete there exists a graph
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F* in F which contains all the F;’s as subgraphs. The graph F* is C'r+-colorable for some color-graph
Cr- having at most x(F) vertices and all the F;’s are thus Cr+-colorable, a contradiction. O

For instance, the family of planar graphs is complete (let F* be the disjoint union of F} and F») as
well as the family of connected planar graphs (let z; be any vertex of Fj; the graph F™* is then obtained
by taking a disjoint copy of each graph F; and identifying the z;’s to a single vertex). In [27], we
have shown with A. Raspaud that the family of oriented planar graphs is colorable and has chromatic
number at most 80. This bound can be significantly improved under a high girth assumption [26]:

Theorem 2 (NeSetf¥il et al.) FEvery oriented planar graph with girth at least 6 (resp. 7,11,16) has
chromatic number at most 32 (resp. 12,7,5).

The chromatic number of an undirected graph is clearly a lower bound for the chromatic number
of any of its orientations. The gap between the chromatic number of an undirected graph and the
chromatic number of its orientations can be arbitrarily large, as illustrated by the following result:

Proposition 3 The family of oriented bipartite graphs is not colorable.

Proof. Let K, ,, be the orientation of the complete bipartite graph on 2n vertices defined as follows:
let V(K,,) ={1,2,...,n}U{1',2',...,n'} and let ij' € E(K, ) ifi = j and j'i € E(K, ;) otherwise.
The chromatic number of K, ,, is 2n since every two vertices are joined by a directed path of length at
most 2 and thus must be assigned distinct colors. Therefore, the family of oriented bipartite graphs
has unbounded chromatic number. a

Let G be an oriented (resp. undirected) graph; a k-clique subgraph of G is a sequence X =
(21,22, ...,2k) of pairwise distinct vertices of G such that the subgraph induced by these vertices is
a tournament (resp. a complete graph). In this paper we will extensively use the following notion:

Definition 4 An orientation vector of size n is a sequence o = (aq,®a,...,q,) in {0,1}"; let G be
an oriented graph and X = (x1,x9,...,2,) be a sequence of pairwise distinct vertices of G. A vertex
y of G is said to be an a-successor of X if for every i, 1 <i < n, we have o; = 1 = z;y € E(G) and
a; = 0= yx; € E(G).

3 The chromatic number of oriented partial k-trees

3.1 The general case

The notion of undirected k-tree can be defined as follows [5]: the complete graph K, with k vertices is
a k-tree; if G is a k-tree then the graph G’ obtained from G by adding a new vertex v linked to every
vertex of a k-clique subgraph of G is a k-tree and there are no further k-trees. A subgraph of a k-tree
is called a partial k-tree. Partial k-trees have been extensively studied in the last past years, since they
often lead to polynomial algorithms for problems which are known to be NP-complete in the general
case (see [30]). The notion of a 1-tree obviously corresponds to the usual notion of a tree. The class
of outerplanar graphs is strictly contained in the class of partial 2-trees. This notion of k-tree seems
to play an essential role in the study of the complexity of the H-coloring problem [10, 16, 24].
The two following results about k-trees will be useful in the sequel:

Proposition 5 The family of partial k-trees is complete.

Proof. Since partial k-trees are subgraphs of k-trees, it suffices to consider k-trees. Let Ty and T be
k-trees and X; be any k-clique subgraph of T7. Consider the graph T3 obtained from 77 by applying,
starting from X7, the same sequence of vertex additions that leads from Kj to T5. The graph T3 thus
obtained is a partial k-tree containing both 77 and 75 as subgraphs. O
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Proposition 6 Let Ty be a partial k-tree, X = (21,%2,...,2Tx) a k-clique subgraph of Ty and T a
partial k'-tree (k' < k). The graph T3 obtained from Ty and Ty by adding edges from every vertex of
Ty to vertices x1, X2, ..., Tp_p 1S also a partial k-tree.

Proof. Let U; be a k-tree containing T} as a subgraph and Us a k'-tree containing T as a subgraph.

We construct a k-tree Uy as follows: starting with Uy, we add k' new vertices, say yi,...,y}, in such
a way that for every j, 1 < j <k, y; is linked to vertices z1,%2,...,Zk_k/,Y1,Y2, - -, Yj—1. The k-tree
thus obtained contains (z1,...,Zk—k, y1,.--,V}) as a k-clique subgraph. Starting from (yi,...,y;) we

then apply the same sequence of vertex additions that leads from Kj to Uy except that every such
new vertex is additionally linked to (z1,...,Zk—g). It is then not difficult to check that the k-tree Us
thus obtained contains T3 as a subgraph, which completes the proof. O

By construction, every k-tree G distinct from the complete graph Kj has a vertex v of degree k
whose neighbourhood is a k-clique subgraph in GG, and whose deletion leads to another k-tree, denoted
by G —wv. It is then folklore to establish by induction that every such undirected k-tree has chromatic
number k£ + 1 (or k& when it is the complete graph Kj): the result is obvious for K and Kj1 and
if G — v has chromatic number k + 1 then, considering any (k + 1)-coloring of G — v, there always
remains a free color to be assigned to v, leading to a (k + 1)-coloring of G. In order to apply the same
technique in the oriented case, we must be able to find in the color-graph an adequate color ¢ to be
assigned to v, whatever the orientations of the arcs linking v to G — v are. The following property Py
will ensure that such a color can always be found.

Definition 7 We will say that a color-graph C satisfies property P for some k > 0 if for every
oriented n-clique subgraph (c1,¢z,...,¢,) in C with 1 < n < k, and every orientation vector a =
(a1, a0, ...,ap) of size n, there exists a color ¢ in V(C') which is an a-successor of (¢, ¢, ..., ¢y).

Note that every color-graph satisfying property P, also satisfies property Py for every k' < k. By
convention, we will assume that every graph with at least one vertex satisfies property Py and that
the null-graph (with no vertices) does not. Then, we have:

Theorem 8 If C is a color-graph satisfying property Py then every oriented partial k-tree is C'-
colorable.

Proof. Note first that it suffices to consider the case of k-trees, since partial k-trees are subgraphs
of k-trees. We proceed by induction on the number of vertices n of a k-tree G. If n = k, then G is a
tournament with vertex set {1, z2,...,z,}. Giving arbitrarily any color ¢ to x1, property P} ensures
that we can achieve a C-coloring of G: if z1,...,z; are already colored, the color of ;1 is obtained
by using the orientation vector (ai,...,q;) defined by o; = 0 iff 2;,12; € E(G). Suppose now that
every oriented k-tree having at most n vertices (n > k) is C-colorable and let H be any oriented
k-tree with n + 1 vertices. Then there exists a vertex v in H with degree k. The induction hypothesis
ensures that H — v is C-colorable and property P says that one can find in C' an adequate color ¢ to
be assigned to v (by choosing an orientation vector according to the direction of the arcs linking v to
its neighbours in G), leading to a C-coloring of H. a

We are now going to propose a combinatorial construction leading for every k to color-graphs
satisfying property Pj, and having (k + 1) x 2 vertices (or colors). Let k be any given positive
integer; we define the color-graph Zj as follows: let V(Z;) be the subset of {1,2,...,k + 1} X
{0, 1}%+! consisting of elements (a,1,...,2x41) such that z, = 0, and let E(Z;) be such that
((ayx1y- oy 2kr1)s (byy1y- .- yks1)) € E(Zg) iff (a > band xy, # y,) or (a < b and x, = y,). Then, the
graph Z; thus defined has exactly (k 4+ 1) x 2* vertices and we have:

Proposition 9 For every k > 0, the color-graph Zj satisfies property P.
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Proof. Let ¢ = (a,x1,...,2r11) be any vertex of Zj. For every i, 1 <1 < k+1, we will denote by ¢(i)
the component x; of ¢ and by Id(c) (the identity of ¢) the component a. Let us first note that only
vertices with distinct identities are linked in Zj. Hence, the oriented n-clique subgraphs (1 <n < k)

in Zj, are exactly the sets of vertices with pairwise distinct identities. Let (c1,¢,...,.n) be such a set
of vertices and o = (o, g, ..., ay) be any orientation vector. Let d denote any identity which does
not appear in (c1, ¢, ..., ¢,). Then, the vertex ¢ defined by:

(1) Id(c) = d,

(13) Vi,1 <i<mn,if (d < Id(¢;) and o; = 1) or (d > Id(ci) and a; = 0)
then ¢(Id(c;)) = ¢i(d)
else c(Id(c;)) =1 — ¢;(d),

is an a-successor of (c1,co,...,¢,) and the result follows. O
We are now able to prove the following:

Theorem 10 For every k, the family T, of oriented partial k-trees is optimally colorable and has
chromatic number at most (k + 1) x 2F.

Proof. From Theorem 8 and Proposition 9, the family 7 is colorable and has chromatic number at
most (k4 1) x 2¥. By Proposition 5 it is also complete and by Proposition 1 it is optimally colorable.
O

Let H be an oriented graph; for every vertex x € V(H), we will denote by I'"(H,xz) (resp.
' (H,z)) the oriented subgraph induced by the successors (resp. predecessors) of z in H. Then we
have:

Theorem 11 For every k > 0, if a color-graph C satisfies property Py then for every color ¢ in V(C),
both T (C,c) and T~ (C,c) satisfy property Pj_1.

Proof. Let ¢ be any color in V(C), (¢1,c¢2,...,¢,), n < k — 1, be any n-clique subgraph of T'"(C, ¢c)

and @ = (a1, @9,...,q,) be any orientation vector of size n. Since C' satisfies Py, the (n + 1)-clique
(c,c1,¢0,...,¢) has a (1,aq, ag,. .., ay)-successor in C' which is also an a-successor of (¢q,ca,...,cp)
in I'"(C,c). A similar argument shows that ['~(C, ¢) also satisfies Pj_1. 0

This theorem leads to the following lower bound for the number of vertices of a graph satisfying
property Pj:

2k+1

Corollary 12 FEwvery color-graph C' satisfying property P, must have at least — 1 colors.

Proof. We proceed by induction on k. The smallest graph satisfying P; is the directed cycle C3 on
three vertices. Let now C be a graph satisfying Pj.. By Theorem 11 and using the induction hypothesis,
every vertex in C must have at least 2% — 1 successors and 2% — 1 predecessors. The number of vertices
of C is therefore at least 2 x (28 — 1) 4+ 1 = 2¥+1 — 1 and the result follows. 0

This lower bound is also a lower bound for the chromatic number of oriented partial k-trees since
we have:

Theorem 13 For every k > 0, there exists an oriented k-tree Ty, with x(T)) > 25+ — 1.
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Figure 1: An oriented graph with chromatic number 7

Proof. We proceed by induction on k. For & = 1, it suffices to consider the directed path on three
vertices (whose vertices must be assigned distinct colors). Suppose now that the result holds up to
(k — 1)-trees and let Tj_; be an oriented (k — 1)-tree with chromatic number at least 2¥+! — 1. Let
Ty, be the oriented k-tree obtained by taking two copies of T 1 and a new vertex x and adding arcs
from z towards every vertex of the first copy and from every vertex of the second copy towards z
(according to Proposition 6, this graph is indeed a k-tree). Then every vertex in the first copy must
be assigned a color distinct from those assigned to the vertices of the second copy. Moreover, vertex
z must be assigned a color distinct from those assigned to all other vertices. Hence, the number of
colors we need for coloring T}, is at least 2 x (2% — 1) 4+ 1 = 2¥*1 — 1 and the result follows. O

This lower bound is tight for oriented trees since every oriented tree is C-colorable, for Cs being
the directed cycle on three vertices. In the following subsection we will show that this lower bound
is also tight for oriented 2-trees. However we will show that this is no longer true for oriented 3-trees
and that the exact value of the chromatic number in this case is 16.

3.2 The case of oriented 2-trees

The smallest color-graph satisfying property P; is the directed cycle C3 on three vertices. By Corol-
lary 12, we know that every color-graph satisfying P» must have at least 7 vertices. The unique
color-graph on 7 vertices which satisfies P, is the tournament QR; [11], build from the non-zero
quadratic residues of 7 as follows:

e V(QRy) = {0,1,...,6},
e Vi, jEV(QRy),ij € B(QR;) < j—i=120r4 (mod7).

This tournament is a rotational tournament and it is vertex-transitive (for every two vertices z and
y, there exists an automorphism that maps z to y). Then, we have:

Theorem 14 The chromatic number of the family of oriented 2-trees is 7. Moreover, this family is
optimally colorable by QR7.

Proof. Tt is easy to check that QR7 satisfies property P, [2]. Hence, every oriented 2-tree is QR7-
colorable and thus has chromatic number at most 7. By Theorem 13, we know that there exists
oriented 2-trees with chromatic number 7 and the result follows. O

Figure 1 depicts such a 2-tree (obtained by the construction given in the proof of Theorem 13).
One can check that all vertices must be assigned distinct colors.

The family of outerplanar graphs is strictly included in the family of 2-trees. Since the graph in
Figure 1 is outerplanar, we also have:
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\H/ &——— reversed arcs
——> all possible arcs
Figure 2: Tromp’s construction

Corollary 15 The chromatic number of the family of oriented outerplanar graphs is 7. Moreover,
this family is optimally colorable by QRy.

This result improves a result given in [27] where it is shown that every oriented outerplanar graph
has chromatic number at most 12.

Property P, says that for every orientation vector a of size 2, every arc in (Q R7 has an «a-successor.
A subdivision of a graph G is obtained by repeatedly subdividing some edges with extra vertices of
degree 2 (that is an edge zy is replaced by two edges zz and zy, where z is a new vertex). If G is
QR7- colorable, then so is every subdivision G’ of G and we have:

Theorem 16 Let F be any family of oriented graphs which is QRz-colorable. Then the family F' of
all oriented subdivisions of the graphs in F is also QRy-colorable.

3.3 The case of oriented 3-trees

The smallest color-graph satisfying Ps has 16 vertices and is obtained by using a construction proposed
by Tromp [29]. Let T1¢ be the oriented graph defined by:

(Z) V(Tm) = {0, 1, e ,6} U {0,, 1’, e ,6,} U {’U,’Ul},

(i) Yi,j € {0,1,...,6}, ij € E(QR;) = ij € E(Tyg) and ¢'j' € E(T}6)
(we have two disjoint copies of the color-graph QRy),

(i5) Vi € {0,1,...,6}, vi,v'i',i'v and iv' € E(Tg),

(iv) Vi,j € {0,1,...,6}, ij € E(QRs) => j'i € E(Tys) and ji' € E(Tyg)
(the arcs between the two copies of QR are "reversed”).

This construction is illustrated by Figure 2. The following propositions are not difficult to
check [29]:

Proposition 17 For every i € {0,1,...,6,v}, the graph Tyg is such that:
1. T™(Tyg,i) and T~ (Tyg,i) are both isomorphic to QRy,
2. i and ' are not joined by an arc,

3. F+(T16,'L') = Fi(Tw,'L’,) and F+(T16,i,) = Fi(Tw,’L’).

Proposition 18 The graph Ty satisfies property Ps.
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There exists no color-graph with 15 vertices which satisfies property P3. By Theorem 11, such
a graph would have to be a tournament such that every vertex x has 7 successors (I'"(z) must be
isomorphic to QR7), every two distinct vertices z and y have 3 successors in common (I'"(z) N T (y)
must be isomorphic to C3) and every three distinct vertices z, y and z have 1 successor in common
(T*(z) N T*(y) N T{y) must contain at least one vertex). Such a tournament cannot exist by the
following result, due to Brown and Reid [7] (simply consider the case n = 1):

Theorem 19 (Brown and Reid) For every positive integer n, there exists no tournament T with
order 8n + 7 satisfying:

(1) every vertex has 4n + 3 successors,
(13) every two distinct vertices have 2n + 1 common successors and
[(iii) every three distinct vertices have n common successors.

In fact, for the particular case we are concerned with (that is » = 1), the third condition can be
weakened as:

(14i") every three distinct vertices inducing a transitive tournament have a common successor.

and we can prove (see [1]):

Proposition 20 There exists no tournament T on 15 wvertices such that for every vertex x in T,
[ (T,z) and T~ (T, x) are both isomorphic to QRy.

We are now able to prove the main result of this subsection:

Theorem 21 The chromatic number of the family of oriented 3-trees is 16. Moreover, this family is
optimally colorable by Tig.

Proof. By Theorem 8 and Proposition 18, every oriented 3-tree is Tjg-colorable and then has chro-
matic number at most 16. In order to get the result we now construct a 3-tree having 3255 vertices
and whose chromatic number is exactly 16.

Step 1: we first build an oriented partial 2-tree T5 in such a way that the only color-graph C of order 7
such that T5 is C-colorable is QR7 (see Figure 3). Let P3 be the directed path on three vertices
and Gy be the partial 2-tree depicted by Figure 1. We now join every vertex z of Gy to two
distinct copies of P3 by adding all possible arcs from z towards the first copy and from the second
copy towards z (see Figure 3a). Since P is a tree, the graph G thus obtained is a partial 2-tree.
To every arc linking such a vertex z to one of its two corresponding copies of P; we now add
four a-successors, one for each possible orientation vector of size 2 (see Figure 3b). The graph
G thus obtained is still a 2-tree and if C' is a color-graph such that G is C-colorable then for
every arc cice in C' and every orientation vector a of size 2, there exists an a-successor of ¢icy in
C. The only color-graph of order 7 satisfying this property is Q R; and we therefore set To = G5
(the number of vertices of Ty is 217).

Step 2: Consider now the graph H; obtained from two distinct copies of the graph Gy and a vertex v by
adding all possible arcs from v towards the first copy and from the second copy towards v. This
graph is a partial 3-tree whose 15 vertices must be assigned distinct colors. We then join every
vertex x of Hy to two distinct copies of Ty by adding all possible arcs from z towards the first
copy and from the second copy towards z, and get a new partial 3-tree Hs having 3255 vertices.
Suppose that C' is a color-graph having 15 vertices such that Hs is C-colorable; every color ¢
in C is such that both I'"(C,¢) and I'"(C, ¢) are isomorphic to QR7;. We know by Theorem 19
that such a graph cannot exist. Hence, Hy has chromatic number 16 and the result follows.

|
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(b)

Figure 3: Construction of an oriented 3-tree with chromatic number 16

4 The chromatic number of oriented k-bounded graphs

We first prove the following general upper bound:

Theorem 22 The family of oriented k-bounded graphs is Zop o-colorable and thus has chromatic
number at most (2k — 1) x 222,

Proof. We proceed by induction on the number of vertices n of an oriented k-bounded graph. If
n = 1 there is nothing to prove. Let now G be an oriented k-bounded graph of order n + 1. Let x
be any vertex of G and let yi,¥2,...,y;, 7 < k, denote the neighbours of z in G. By the induction
hypothesis, G — x is Zs;_o-colorable. Since every y; has degree at most £k — 1 in G — z, we can color
these vertices in such a way that every two of them get distinct identities since at least k distinct
identities may be chosen for each of them (recall here that the identity is the first component of a
color in Zyi, 5). Finally, property Py o ensures that we can find a color for vertex z. O

For small values of k, this result can easily be improved:

Theorem 23 The family of oriented 2-bounded graphs has chromatic number 5 and is optimally
colorable by the tournament T depicted in Figure 4.

Proof. Oriented 2-bounded graphs are in fact oriented paths and oriented cycles. Every oriented
path has chromatic number at most 3 since it is Cs-colorable. Every oriented cycle having at most 4
vertices is contained in T" as a subgraph and is then T-colorable. Let us now show that every oriented
cycle having at least 5 vertices is T-colorable.

Let C = (z1,%9,...,2,) be any such oriented cycle. For every vertex z;, we define the level of
x;, denoted [(x;), as the number of forward arcs minus the number of backward arcs along the path
1% ... %;, taken modulo 3 (we have [(z1) = 0). We are going to color the path xiz5...2,_9 with
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3 2

Figure 4: The tournament 7'

one of the three C3-subgraphs of T' induced by vertices 013, 014 or 024. Then, according to the level
of z,,_9, and to the type of arcs in the path x, sz, 12,21, we complete the coloring of C' as shown
in Figure 5 (other cases are obtained by considering the cycle C' in the opposite direction). The Cs-
subgraph we use is given in each case. Note that the color of any of the z;’s, 2 <7 < n — 2 is uniquely
determined by the color of z; (all vertices with same level are assigned the same color). a

In order to prove that every oriented 3-bounded graph is Tig-colorable, we need the following
lemma:

Lemma 24 For every arc uv in Tig and every orientation vector « of size 2, there exist three distinct
a-successors of uv.

Proof. Tt is not difficult to check that the graph Tig is arc-transitive (for every two arcs zz' and yy’
there exists an automorphism of Ty¢ that maps z to y and 2z’ to y'). Hence, it suffices to consider
one arc, say 01. Note also that if z (resp. z') is a (ay, as)-successor of uv, then z’ (resp. z) is a
(1 —aq, 1 — ag)-successor of uv. The (0,0)-successors of 01 are v, 6 and 2’, and the (0,1)-successors of
01 are 3, 5 and 4’, which completes the proof. a

Theorem 25 The family of oriented 3-bounded graphs is Tig-colorable and thus has chromatic number
at most 16.

Proof. Let G be an oriented 3-bounded graph. We proceed by induction on the order n of G. If
n = 1, there is nothing to prove. Suppose the result is true for every oriented 3-bounded graph with
order at most n. Let now G be an oriented 3-bounded graph with order n + 1. If G has a vertex v
with degree 1, then every Tjg-coloring of G — v can be extended to a Tig-coloring of G. If G has no
vertex with degree 1 but a vertex v with degree 2, then we first color the graph G*, obtained from
G — v by adding an arc linking the two neighbours of v if such an arc does not exist. Then every
Tig-coloring of G* can be extended to a Tig-coloring of G since Tig satisfies property P; (see Section
3). Finally, if G is 3-regular, let v be any vertex of degree 3. Since every neighbour of v has degree 2
in G — v, Lemma 24 ensures that we can construct a Tig-coloring of G — v such that the colors of the
three neighbours of v induce a 3-clique subgraph of T4 (since we have three possible choices for each
of them, we can ensure that colors i and i’ are not simultaneously chosen, for every i € {0,...,6,v}).
This coloring can then be extended to a Tig-coloring of G since Tig satisfies property Ps. O

Theorem 25 improves a previous result given in [27]. We have recently proved with Laurence
Vignal that every oriented 3-bounded graph has chromatic number at most 11 [28]. However, we do
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The path x, ,x, x,x; | [(%2) =0 Uxz) =1 l(Xnz) =2
X @ 0Oe Oe 0
X, @ 30 30 3
X1 @ 1e 20 1
X2 @ 0Oe 1 e 4
3-cycle 013 3-cycle 013 3-cycle 024
e 0e 0oe 0e
@ 2@ 1@ le
Yol @ 1@ 4 @ 4 0
Y2 @ 0Oe 20 3 e
3-cycle 013 3-cycle 023 3-cycle 013
X @ 0e Oe 0e
X, @ 4 @ 30 3 e
Xos @ 1 e 4 ¢ 4 ¢
X, ® 0Oe 2 e 3e
3-cycle 013 3-cycle 023 3-cycle 013

Figure 5: T-coloring of oriented cycles

not know any such connected graph with chromatic number greater than 7. Therefore, we conjecture:
Conjecture 26 The family of oriented 3-bounded connected graphs has chromatic number 7.

The family of oriented k-bounded graphs is obviously complete, and thus optimally colorable, since
the disjoint union of two k-bounded graphs is still k-bounded. However, we do not know up to now
whether the family of oriented connected k-bounded graphs is optimally colorable (the fact that this
family is not complete is easily seen by considering the case of k-regular graphs). Hence, it would be
possible that there exists no color-graph C on 7 vertices such that every oriented connected 3-bounded
graph is C-colorable. In this case, the chromatic number of (not necessarily connected) 3-bounded
graphs would be strictly greater than 7.

5 Conclusions

In this paper, we have introduced a new generalisation of the notion of chromatic number for oriented
graphs. We have given upper bounds for the chromatic number of some families of graphs and a
natural question is now to find optimal bounds for these values. In particular, if we denote by f(k)
the chromatic number of oriented k-bounded graphs, we do not know whether the function f is



12 The chromatic number of oriented graphs

polynomial or exponential (recall that this function is linear in the undirected case). In the case of
k-trees, the construction of optimal color-graphs satisfying property Py is still an open problem for
k > 3. In [2] we have constructed such color-graphs, for k& = 4 and 5, having respectively 40 and 96
colors. For k > 5, the best known color-graphs are the graphs Z; we have used in Section 3.

In [13], Haggkvist and Hell introduced the notion of A-mote graphs, that is graphs G such that
there is no homomorphism A — G. They proved that whenever the graph A is connected, the family
F of all A-mote k-bounded graphs is universal (there exists a A-mote universal graph U, that is a
color-graph in our terminology, such that every graph G in F admits a homomorphism to U). If A is
the directed two-cycle, then A-mote k-bounded graphs are exactly oriented k-bounded graphs. Hence,
the fact that the family of oriented k-bounded graphs is colorable was implicitly contained in their
paper. They were essentially interested in minimising the maximum degree of universal graphs on the
contrary to our approach in which we focus on the minimum order of universal graphs.

Finally, it should be noted that most of the graphs we have used as optimal color-graphs (excepted

the tournament 7" in Theorem 23) play a central role in the theory of bounded timestamp systems [1,
2, 8,19, 21, 33]. Timestamp systems have proven to be an useful tool in the design of many distributed
algorithms [19]. An oriented graph G is a timestamp system of order k if every set {z1,...,x,}, n <k,
of vertices inducing a transitive tournament in G has a common successor. This property is obviously
weaker than the property P, we have considered: every graph satisfying Py is a timestamp system of
order k+ 1. However, most of the best known solutions for the timestamping problem satisfy property
Py. This is namely the case for the graphs Z; we used in section 3, which have been introduced by
Zielonka [33] as a generalisation of a construction proposed by Lamport [21]. The graph Z4 (with 80
vertices) has also been used in [27] as a color-graph for the family of oriented planar graphs. Hence,
any progress in the determination of the chromatic number of oriented partial k-trees would lead to
immediate applications in the theory of timestamp systems.
Bibliographic note. Since the first version of this paper, Kostochka et al. proved in [20] that
every oriented k-bounded graph has chromatic number at most 2k22% and that for every k there exist
oriented k-bounded graphs with chromatic number at least 95 . The function f we discussed above is
thus exponential. In [6], Borodin et al. improved Theorem 2 by showing that every oriented planar
graph with girth 5 (resp. 6, 8, 11) has chromatic number at most 19 (resp. 11, 7, 5).
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