

Satanas: Supports and Algorithms for High Performance Numerical Applications

Raymond Namyst

Team

→ Satanas gathers 4 Inria joint research teams

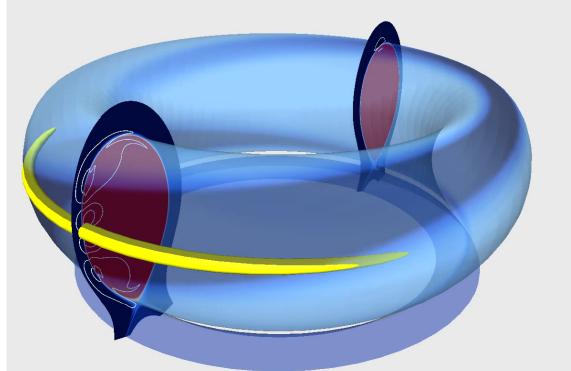
- > Bacchus
 - Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems
- > HiePACS
 - High-end Parallel Algorithms for Challenging numerical Simulations
- Runtime
 - High Performance Runtime Systems for Parallel Architectures
- Phoenix (joined 2 years ago)
 - A Multi-Disciplinary Approach to Orchestrating Networked Entities

→ Composition

- > 18 permanent members
- > 29 PhD candidates

aBRI

Context and Scientific Activities



High Performance Computing

- → Highly demanding numerical simulations
 - > Energy, Materials, Aeronautics, Seismology, Weather Forecast, etc.
- → Multi-scale, multi-physics problems
 - Code coupling

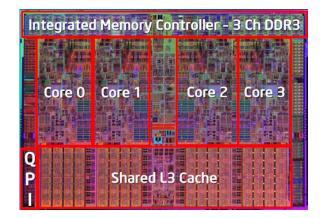
ITER: International Thermonuclear Experimental Reactor

Understanding the evolution of parallel machines

\rightarrow The end of single thread performance increase

- > Clock rate is no longer increasing
- > Thermal dissipation
- Processor architecture is already very sophisticated
 - Prediction and prefetching techniques achieve a very high percentage of success
 - > Actually, processor complexity is decreasing...

→ Question: What kind of circuits should we add on a chip?

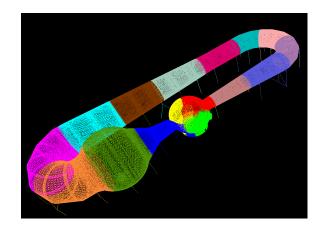

The evolution of computer architecture

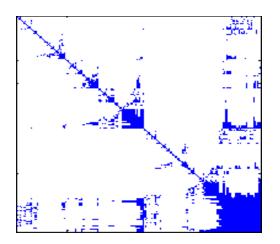
→ Multicore chips

- > Deep memory hierarchies
 - Non Uniform Memory Access
 - Non Uniform I/O Access (NUIOA)
- Non-coherent cache architectures
 - Intel SCC, IBM Cell/BE
- Clusters can no longer be considered as "flat sets of processors"

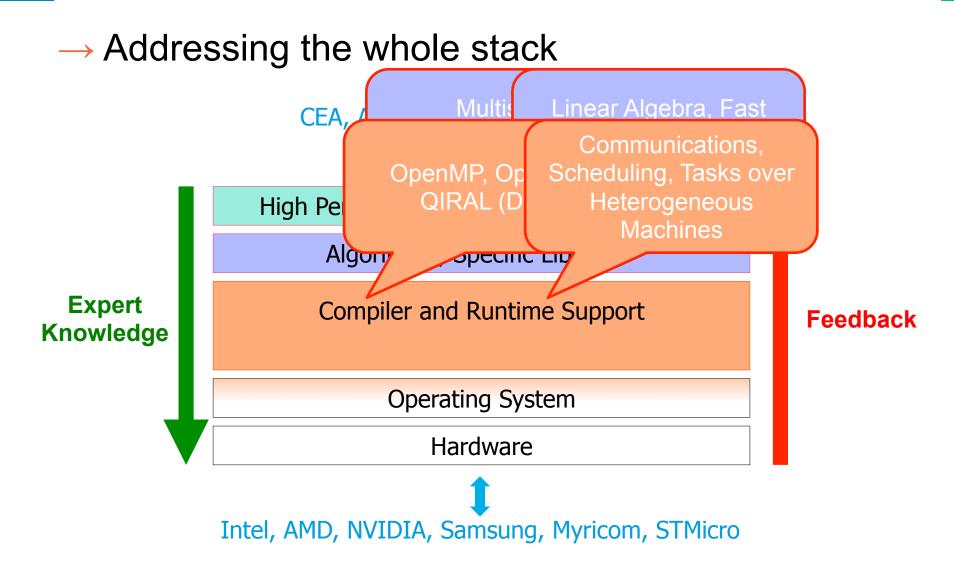
→ Accelerators

- > Nvidia & AMD GPUs
- > Intel MIC
- > Intel Ivy Bridge, AMD APUs
- > Different execution model





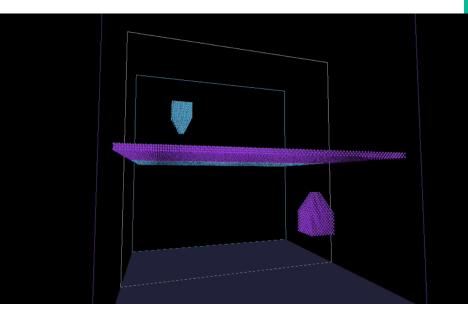
Performing simulations over parallel machines


- → Discretization
 - > Meshes, finite elements, etc.
- \rightarrow Data (re)distribution
 - > Graph/mesh partitioning techniques
- → Parallelization
 - > Linear algebra solvers
 - > N-body computations
 - > Stencils
- → Code optimization
 - > Domain-specific languages
 - > Code analysis, profiling
- → Runtime Systems
 - > Architecture abstraction
 - > Communication protocols
 - > Scheduling, load balancing

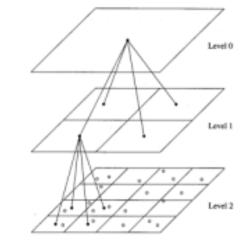
A Holistic and Multidisciplinary Approach

aRR

Major Achievements



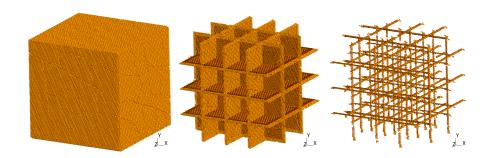
Accurate simulation of Materials


→ N-Body computations

- astrophysics, material physics, biology, electromagnetism
 - ExaStamp: hundreds of billions of atoms over heterogeneous clusters [CEA/DPTA]

→ Fast Multipole Method

- Reduce computational complexity from O(N²) to O(N)
- ScalFMM/StarPU
- FAST-LA with LBNL Stanford



aBRI

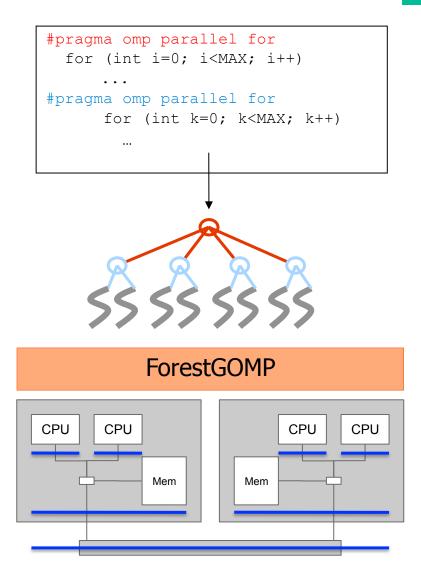
Parallel graph partitioning and remeshing

- → Parallel algorithms for graph mapping on distributed memory architectures
 - > Dynamic remapping
 - > Distributed algorithms
 - > Scotch
 - Widely used in academy and industry
 - Graphs with 2+ Billions vertices on 80k cores
- → Remeshing unstructured meshes on distributed memory architectures
 - > PaMPA
 - Parallel mesh partitioning, data exchange, remeshing and redistribution
 - TurboMECA, ITER

aRR

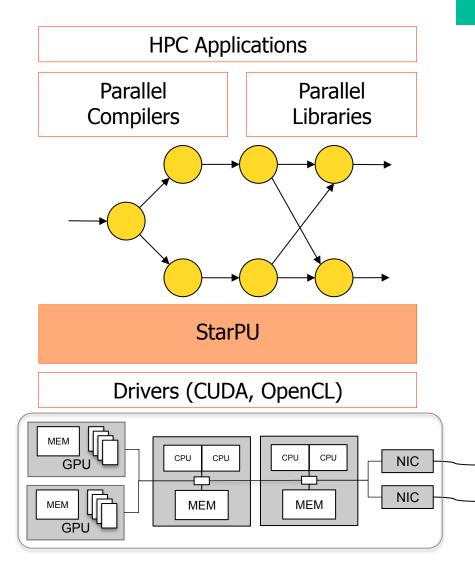
Bringing Industrial Applications to the Exascale Era

- → Aerodynamics of Ariane 6
 - Propelling flow study (unsteady CFD)
 - FLUSEPA: Airbus+HiePACS (+Runtime)
- \rightarrow ITER
 - > Gysela: HiePACS+CEA
 - > 91% efficiency over 458,000 cores (BlueGene Q)



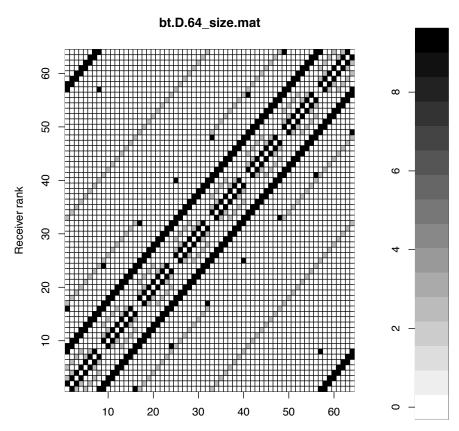
universit

12


Code optimization and scheduling

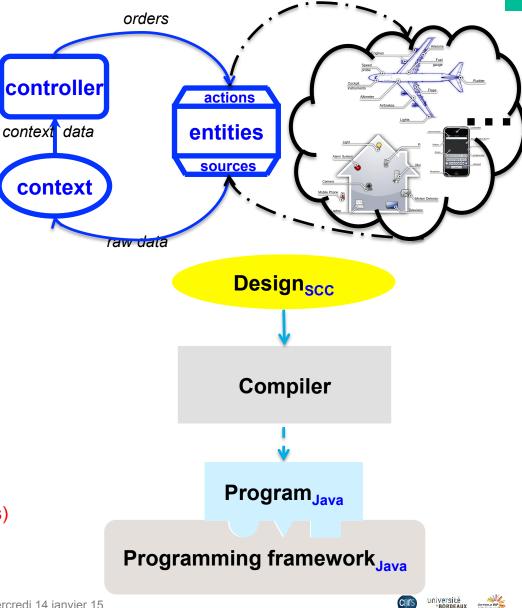
- Performance Analysis and Tuning
 - Combine static binary performance model with dynamic behavior analysis
 - Identify performance bottleneck
 - Provide high-level feedback
 - > MAQAO
 - With Exascale Computing Lab. [Intel]
 - Integration in TAU [Oregon, LANL], Score-P
 - Samsung
- → Multicore-aware OpenMP
 - Capture application's structure with nested trees
 - Scheduling = mapping trees of threads onto a tree of cores
 - Improved Seismic simulations [BRGM]
 - Hwloc Library (Hardware Locality)
 - Open MPI, MPICH, Intel OpenMP, etc.

Exploiting Heterogeneous Architectures


- → Scheduling tasks over heterogeneous machines
 - > Impact:
 - Compilers
 - HMPP [CAPS], XMP
 - GCC
 - Libraries
 - MAGMA-MORSE [UTK, USA]
 - SkePU [Univ. Linköping]
 - StarPU Pioneered research about CPU+GPU runtime systems
 - [CCPE2011] cited 520+ times
- Composability of parallel codes
 - > Resource negotiation
 - Towards "code reusability" in HPC

Optimizing Communication over Clusters

- → Adapting inter-process communication to process locations
 - KNEM: Direct-copy between processes
 - Integrated into MPICH2, Open MPI and MVAPICH2 (ANL, UTK)
- Mapping communication patterns over hierarchical machines
 - > TreeMatch
 - Recursive algorithm to map (group of) processes onto topology
 - Used as process renumbering strategy for
 - MPI_Dist_graph_create()
 - Open MPI, MPICH2


Sender rank

Orchestrating Networked Entities

- **Combining Domain-specific** and General Purpose Languages
 - Sense-Compute-Control > paradigm

DiaSuite

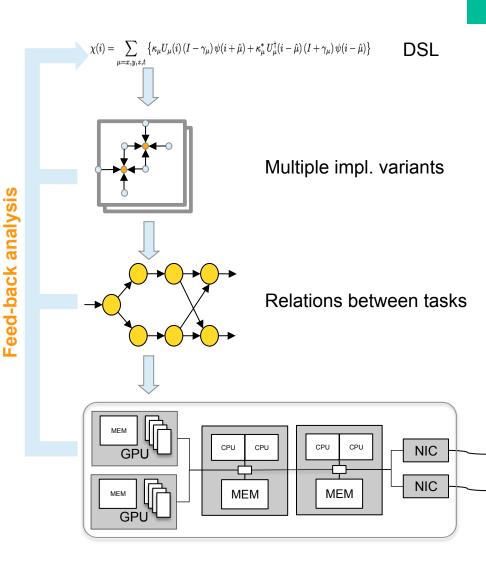
- **Designing Declarations** >
- Language DiaSpec >
- Compilation Java > programming framework
- Verification Design time, > compile time, run time
- Programming Java type >
- Support Eclipse, APIs >
- Monitoring platform for older > adults (installed in 24 houses)
 - Startup IQSpot (smart buildings)

Special Focus on Linear Algebra Solvers over Heterogeneous Architectures

Emmanuel Agullo

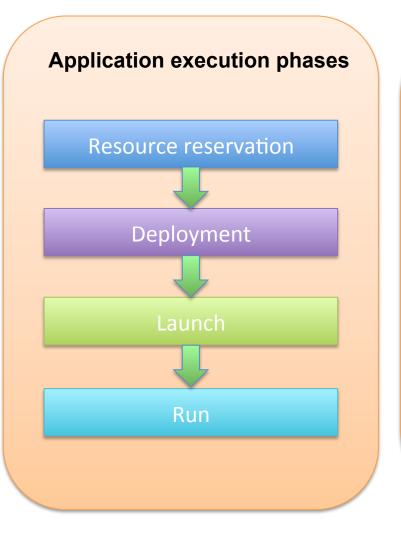
universi

Project



What is anticipated

- → SuperComputers expected to reach Exascale
 - > 10¹⁸ flop/s by 2020
 - > ETP4HPC, EESI, IESP, PRACE
- → The biggest change will come from node architecture
 - > High number of cores
 - > Powerful SIMD units
 - > Hybrid systems
- → Extreme parallelism
 - > Total system concurrency is estimated to reach O(10⁹)
 - > Sounds like embarrassingly parallel hardware!
 - Code coupling applications are welcome
- → Expensive data movements
 - Both in terms of time and power


Languages and runtime systems

- → Pushing new programming models
 - > Exhibit maximum parallelism in architecture-agnostic manner
 - > Capture more semantics from high-level code
 - Math-style DSL
 - OpenCL extensions
- \rightarrow Getting help from code generators
 - > Multiple variants for heterogeneous computing units (code, memory layout)
 - Code analysis and hints for runtime systems
- → Designing better schedulers
 - > Adaptive Granularity (divisible tasks)
 - > Enable Parallel Code Composition (reusability)
 - Auto-dimensioning of parallel codes
- → Better Feedback to humans
 - Diagnose problems like "Your app is properly scheduled, but your kernels perform really bad"

aBRI

Topology-aware data management

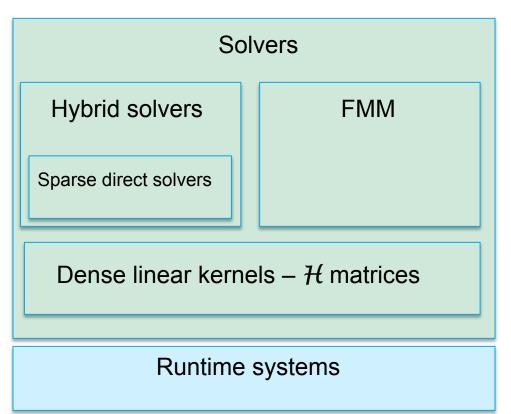
Cross-topic research

Interaction with the ecosystem

Process placement

Data and graph partitioning Process reordering

Affinity management I/O and datapath optimization Migration, Remeshing



aRR

Future Directions on Solvers

→ Bring whole solver stack to the Exascale

- > Resilience
 - Naturally-resilient numerical approaches
- Scalable algorithms
- Complete software suite
 - Industrial consortium under construction



aRR

Expanding the Design-Driven Approach

→ Human-centric software development

New SATANAS

\rightarrow 3 topics

- Algorithms and applications
 - HiePACS
- > Runtime systems
 - TADAAM
 - STORM
- > Orchestration of Networked Entities
 - Phoenix

