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Introduction

• Simulation
• Weather prediction

• Seismology

• Finance ...

• Growing needs
• Faster results

• Better accuracy

• Larger problem

High Performance Computing
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Introduction

• High Performance Runtime Systems for Parallel Architectures
• “Runtime Systems perform dynamically what cannot be not statically”

• Main research directions
• Exploiting shared memory machines

– Thread scheduling over hierarchical multicore architectures

– Task scheduling over accelerator-based machines

• Communication over high speed networks
– Multicore-aware communication engines

– Multithreaded MPI implementations

• Integration of multithreading and communication
– Runtime support for hybrid programming

The RUNTIME team
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Introduction

• The Free lunch is over !
• Reached physical limits

– Clock speed, pipeline, cache …

– Energy is a concern

• Era of parallelism

– SMP, Multicore, Clusters

• Multicore architectures
• Hierarchical chips

• Getting really complex

• Jaguar Machine (Oak Ridge, USA)
• 224162 cores (AMD Opteron)

• 6.9 MW

Multicore architectures
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Introduction

• GPUs are the new kids on the block
• Very powerful data-parallel accelerators

• Specific Instruction Set

• No hardware memory consistency

• Other chips already feature 
specialized hardware

• IBM Cell/BE (PS3)

– 1 PPU + 8 SPUs

• Intel Larrabee / MIC

– 48-core with SIMD units

• Are we happy with that ?
• No, but it's probably unavoidable!

Toward Multi-GPU clusters



6

Introduction

• One interpreation of « Amdalh's law »
• We will always need powerful, general 

purpose cores to speed up sequential 
parts of our applications

• Future processors will be a mix of 
general purpose and specialized cores

• [Intel]

 

• Study today's accelerators to  be 
ready for tomorrow's processors

Heterogeneity is also a solid trend

Mixed Large
and

Small Cores



7

Performance Portability

• Portability
• Codes run anywhere

• Performance portability
• Codes run as fast as possible anywhere

 

• Architectures are evolving FAST

•  HPC has a lot of inertia
• Millions of line of code

• Codes may run for decades

• Impossible to rewrite codes every 5 
years

• Which programming models to use?

Run fast everywhere
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Performance Portability

• Which Programming model?
• There is no perfect model !

• Should be Architecture independent

• Need to express parallelism

• Task parallelism
• Task

– Describes a piece of computation

– Accessed data

• Graph of tasks

– Directed Acyclic Graphs (DAGs)

• Task scheduling

– Static or Dynamic

– Use Runtime systems

 

Task parallelism
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Task Scheduling
Major challenges

• Map task graphs onto the 
different processing units

• Main issues
• Load Balancing
• Data locality M.M.

CPU

CPU

CPU

CPU M.GPU

GPU

CPU

CPU

CPU
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M.GPU
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Task scheduling
Load balancing

2 Xeon cores

Quadro FX5800

Quadro FX4600

 Things can go (really) wrong even on trivial problems !
• Greedy scheduler

– Processing units get tasks when they are idle
• Matrix multiplication

– All tasks are identical

– Heterogeneous performance
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Task scheduling
Data locality

• Explicit Data transfers

• PCI Bus = Bottleneck
• ~150 GB/s within a GPU
• ~10 GB/s on PCI

• Non Uniform Memory Accesses
• Significant impact on scalability

• Load Balancing vs. Data locality
• Cannot avoid all data transfers
• Minimize them

M.M.
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Parallel
Compilers

HPC Applications

Runtime system

Operating System

CPU

Parallel 
Libraries

• “do dynamically what can’t 
be done statically anymore”

• Library that provides
• Task scheduling
• Memory management

• Compilers and libraries 
generate (graphs of) parallel 
tasks

• Additional information is 
welcome!

The need for runtime systems

GPU …

The StarPU runtime system
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Parallel
Compilers

HPC Applications

StarPU

Drivers (CUDA, OpenCL)

CPU

Parallel 
Libraries

• Who generates the code ?
• StarPU Task = ~function pointers
• StarPU don't generates code

• Manual programming

• Libraries era
• PLASMA + MAGMA
• FFTW + CUFFT...

• Rely on compilers
• PGI accelerators
• CAPS HMPP...

The StarPU runtime system
Task scheduling

GPU …f
cpu
gpu
spu

(ARW, BR, CR)
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Time

cpu #3

gpu #1

cpu #2

cpu #1

gpu #2

• Task completion time 
estimation

• History-based

• User-defined cost 
function

• Parametric cost model

• Can be extended to 
improve data locality

• Predict data transfer 
time

The StarPU runtime system
Load Balancing
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• Dense Linear Algebra kernels
• Building blocks for many HPC applications

• State of the art libraries
• PLASMA (Multicore CPUs)

– Dynamically scheduled with QUARK

• MAGMA (Multiple GPUs)

– Hand-coded data transfers, Static task mapping

• General SPLAGMA design

• Use PLASMA algorithm, bypass their scheduler

• PLASMA kernels on CPUs, MAGMA kernels on GPUs

• Programmability

• QR : ~2 days of works, quick algorithmic prototyping

Mixing PLASMA and MAGMA with StarPU
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• QR decomposition
• Mordor8 (UTK) : 16 CPUs (AMD) + 4 GPUs (C1060)

Mixing PLASMA and MAGMA with StarPU
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• QR decomposition
• Mordor8 (UTK) : 16 CPUs (AMD) + 4 GPUs (C1060)

Mixing PLASMA and MAGMA with StarPU

MAGMA
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• QR decomposition
• Mordor8 (UTK) : 16 CPUs (AMD) + 4 GPUs (C1060)

Mixing PLASMA and MAGMA with StarPU

+12 CPUs
~200GFlops

Peak : 12 cores
~150  GFlops
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• « Super-Linear » efficiency in QR?
• Kernel efficiency

– sgeqrt

– CPU: 9 Gflops GPU: 30 Gflops (Speedup : ~3)

– stsqrt

– CPU: 12Gflops GPU: 37 Gflops (Speedup: ~3)

– somqr

– CPU: 8.5 Gflops GPU: 227 Gflops (Speedup: ~27)

– Sssmqr

– CPU: 10Gflops GPU: 285Gflops (Speedup: ~28)

• Task distribution observed on StarPU

– sgeqrt: 20% of tasks on GPUs 

– Sssmqr: 92.5% of tasks on GPUs

• Taking advantage of heterogeneity !

– Only do what you are good for

– Don't do what you are not good for

Mixing PLASMA and MAGMA with StarPU
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Parallel
Compilers

HPC Applications

Runtime system

Operating System

CPU

Parallel 
Libraries

• StarPU

• Freely available under LGPL

• Open to external contributors

• A lot of opportunities

• Enough work for the next decade!

• Tons of Interactions
– CEA, CAPS, Play ALL, …
– PEPPHER European project
– UTK, Urbana Champaign
– FP3C project with Japan
– INTEL, NVIDIA, ...

Conclusion
Summary

GPU …
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