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Motivation

Sequential systems

well-understood analysis
(model-checking, controller synthesis,..)

powerful automata-based verification techniques

manipulating “standard” objects
(words, trees,..)

Asynchronous systems

analysis more difficult

automata-based methods harder to obtain

manipulated objects depend on the model
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Asynchronous systems

Models

Processes with links. A process is an automaton (e.g. finite-state).

Links as channels

Links are channels and processes have send and receive operations:
communicating automata, message sequence charts. Turing powerful.

Links as synchronization

Links are shared variables and processes can read/write:
asynchronous automata, Mazurkiewicz traces, event structures.

Regular languages.



Control for shared variables



MODEL



Asynchronous automata

Mazurkiewicz traces
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dom : Σ→ (2P \ ∅): distribution of actions over processes.

Dependence relation: (a, b) ∈ D if dom(a) ∩ dom(b) 6= ∅.
Independence I = (Σ× Σ) \D.

Trace [bcadbcadb] = {bcadbcadb, cbadbcdab, . . .}.



Asynchronous automata

Automata
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Local states sets Sp, Sq, Sr.

Local transitions δb : Sq × Sr → Sq × Sr. Letter b reads/writes its domain
dom(b) = {q, r}.

Asynchronous automata accept trace-closed languages.
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Asynchronous automata

Automata

Given a distributed alphabet and a regular (trace-closed) language L, one
can construct a deterministic asynchronous automaton for L [Zielonka’89].

Complexity: polynomial in DFA for L, exponential in # processes [Genest
et al.’10].



CONTROL



The synthesis/control problem

C

In

Out

S ⊆ (In ; Out)∗

Centralized control (Church)

Given: specification S.

Output: finite automaton
(controller) C with C ⊆ S
+ additional requirements (e.g.,
unconstrained inputs).

Decidable: tree automata.

Distributed control

Comes along with a distributed
architecture (e.g., distributed alphabet).

In general undecidable [Peterson/Reif,
Pnueli/Rosner].

Important: use adequate specifications
(e.g. trace-closed ones for asynchronous
automata).
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(Un)decidability of distributed control

Undecidability
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Partial information: each process knows
only its input. Specification talks about
In/Out of both processes.

Specification is not trace closed.

Pnueli & Rosner setting

Processes behave synchronously, exchanging finite information over
communication links. Links are either external (communication with
environment) or internal.

Only pipeline architectures are decidable [Pnueli/Rosner]. Various
refinements of specifications [Madhusudan/Thiagarajan,
Finkbeiner/Schewe, Gastin et al.].

Proof technique for pipelines: tree automata.
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Controlling asynchronous automata

Formally

Two kinds of actions: controllable (system) and uncontrollable
(environment).

Controllable actions are constrained such that the specification is
respected (+ further requirements, e.g. deadlock-free).

Control strategies: causal past.
Unbounded information flow.
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Controlling asynchronous automata

Example specifications

a0/a1

b0/b1

c0/c1

p
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1 aibjck with k = i.

2 aibjck with k = i · j.

Two methods of control

Process-based [Madhusudan et al.]: Processes decide what actions they
want to do.

Action-based [Gastin et al.]: Actions decide whether they can execute.



From trees to event structures

Synchronous systems: trees

Synthesis considers tree properties
(strategy trees, Rabin).

Asynchronous systems: event structures

Branching behavior of asynchronous systems: event structures.

From traces to event structures

A prefix-closed trace language L defines a
Σ-labeled event structure:

Nodes: prime traces from L.

Partial order: trace prefix relation.

Conflict relation: no common extension.

Label: maximal element of the trace.

Σ = {a, b, c}, D : a− c− b
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Controlling asynchronous automata and event structures

Solution?

The control problem for an asynchronous automaton A can be reduced to the
satisfiability of a monadic second-order (MSO) formula over the event structure
ES(A) of A [Madhusudan et al.].

Bad news

There exist asynchronous automata A s.t. ES(A) has undecidable MSO
theory.

Decidability of MSO is not necessary for deciding the control problem.

Partial results

Process-based control is decidable for asynchronous automata with strong
synchronization (“there is no loop with a concurrent event”) [Madhusudan
et al.].

Action-based control is decidable for asynchronous automata with
co-graph dependence relation [Gastin et al.].

Process-based control reduces to action-based control.
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Conclusions

Control problem in asynchronous setting: open questions.

Problem 1: decidability of the control problem?

Problem 2: characterize asynchronous automata with decidable MSO
theory.

Thiagarajan’s conjecture: ES(A) has decidable MSO theory iff A has no
parallel loops. Conjecture holds for co-graph dependence alphabets.

Problem 3: Reduction from action-based control to process-based control?

Problem 4: Control of communicating automata?

For lossy communicating automata: monotonic games [Abdulla et al.]

Merci !
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