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Motivations

Invariants for Verification
Verification of safety properties

Efficient computation of precise enough invariants

Data-flow analysis, abstract interpretation

Widenings/narrowings: successful approach, but might lead to
invariants to coarse for verification

Our Objective
Computation of the exact solution to data-flow analysis problems

Meet Over all Paths

Minimum Fix Point

Acceleration-based techniques

Leroux, Sutre (LaBRI) Acceleration in Convex Data-Flow Analysis FST TCS 2007 2 / 25



Motivations

Invariants for Verification
Verification of safety properties

Efficient computation of precise enough invariants

Data-flow analysis, abstract interpretation

Widenings/narrowings: successful approach, but might lead to
invariants to coarse for verification

Our Objective
Computation of the exact solution to data-flow analysis problems

Meet Over all Paths

Minimum Fix Point

Acceleration-based techniques

Leroux, Sutre (LaBRI) Acceleration in Convex Data-Flow Analysis FST TCS 2007 2 / 25



Outline

1 Introduction

2 Convex Data Flow Analysis of Guarded Translation Systems

3 Acceleration for Self-Loops

4 Acceleration for Cycles

5 Conclusion

Leroux, Sutre (LaBRI) Acceleration in Convex Data-Flow Analysis FST TCS 2007 3 / 25



Guarded Translation Systems (Syntax)

We focus on topologically closed convex subsets of Rn

{~x | A~x ≤ ~b} is called a
{

(real) polyhedron when A ∈ Rn×m

rational polyhedron when A ∈ Qn×m

guarded commands of the form if ~x ∈ G then ~x := ~x + ~d

Definition
An n-dim guarded translation system (GTS) is any pair S = (X , T )
where:

X is a finite set of variables

T is a finite set of transitions of the form X
G,~d−−→ X ′

Transition X
G,~d−−→ X ′ represents the assignment X ′ := (X ∩G) + ~d
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Guarded Translation Systems (Semantics)

Definition
An n-dim guarded translation system (GTS) is any pair S = (X , T )
where:

X is a finite set of variables

T is a finite set of transitions of the form X
G,~d−−→ X ′

Valuation: function ρ from X to closed convex subsets of Rn

Semantics JtK of transition t = X
G,~d−−→ X ′ defined by:

(JtK(ρ))(Y ) =

{

(ρ(X ) ∩G) + ~d if Y = X ′

ρ(Y ) if Y 6= X ′

An n-dim initialized GTS (IGTS) is any triple S = (X , T , ρ0)
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Example

IGTS

XG, ~d

X = {X}

T = {X G,~d−−→ X} with

{

G = R2
+

~d = (−1, 1)

ρ0 = {X 7→ 1× [−1, 1]}

Semantics

-2 -1 0 1 2
-1

0

1

2

3

ρ1 = JtK (ρ0)
ρ2 = JtK (ρ1)
ρ3 = JtK (ρ2) = {X 7→ ∅}
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Convex Data-Flow Analysis

We consider the complete lattice of convex closed subsets of Rn.
partial order is set inclusion ⊆
greatest lower bound is set intersection ∩
least upper bound ⊔ is set union followed by closed convex hull

Extended to valuations

Minimum Fix-Point (MFP) Solution
MFP(S) =

⋂ {ρ : valuation | ρ0 ⊆ ρ and JtK(ρ) ⊆ ρ for all t ∈ T}

MFP(S) is the least fix-point of τ(ρ) = ρ0 ⊔
⊔

t∈T

JtK(ρ).

Kleene fix-point iteration:
⊔

i∈N τ i(⊥) ⊆ MFP(S)

Meet Over all Paths (MOP) Solution
MOP(S) =

⊔ {Jt1K ◦ · · · ◦ JtkK(ρ0) | t1 · · · tk ∈ T ∗ is a path}
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Example

MOP Solution

-2 -1 0 1 2
-1

0

1

2

3

ρ1 = JtK (ρ0)
ρ2 = JtK (ρ1)
ρ3 = JtK (ρ2) = {X 7→ ∅}
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Example

MOP Solution
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0
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ρ1 = JtK (ρ0)
ρ2 = JtK (ρ1)
ρ3 = JtK (ρ2) = {X 7→ ∅}
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Remark
Kleene fix-point iteration
does not stabilize
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Acceleration in Data-Flow Analysis [L. & S., SAS’07]

Objectives
Speed up Kleene fix-point iteration

Don’t loose precision

Minimum Fix-Point Computation with Acceleration

1 do ρ← ρ ⊔ JtK(ρ) for some transition t = X
G,~d−−→ X ′

2 or select a cycle in S and:

1 let S
′ denote the cyclic sub-IGTS, initialized with ρ (restricted to X ′)

2 ρ← ρ ⊔MFP(S′) (or ρ← ρ ⊔MOP(S′))

Acceleration Problem
Compute the MOP/MFP solution for cyclic IGTS
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MFP Solution for Self-Loop IGTS

Theorem

For any n-dim self-loop IGTS ({X}, {X G,~d−−→ X}, ρ0), the MFP solution
is the valuation:

X 7→
{

ρ0(X ) if G ∩ ρ0(X ) = ∅
ρ0(X ) ⊔ ((G ∩ (ρ0(X ) + R+

~d)) + ~d) otherwise

Proof Ideas

⊆ The given expression is a post-fix-point of
s

X
G,~d−−→ X

{
.

⊇ Proof by contradiction, using topological and convexity properties

of both the guard and MFP solution.
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Comparison with Standard Widening on Polyhedra
[Cousot & Halbwachs, POPL’78]

IGTS

X

R2
+, (−1, 1)

ρ0 = {X 7→ 1× [−1, 1]}

Application of widening

Coarser than the MFP
Solution!

Iteration with Widening

-2 -1 0 1 2
-1

0

1

2

3
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Comparison with Polyhedral Abstract Acceleration
[Gonnord & Halbwachs, SAS’06]

Consider an IGTS S =

({X}, {X G,~d−−→ X}, ρ0)

Abstract Acceleration
AbAc(S) = ρ0(X ) ⊔MFP(S′)
where S

′ is equal to S except
on its initial valuation:
ρ′0(X ) = G ∩ ρ0(X ).

Iteration with Abs. Acc.

-2 -1 0 1 2
-1

0

1

2

3
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2-dim Example

GTS

X1 X2

X3X4

G1, ~0

G2, ~0

G3, ~0

G4, ~0

G1 = ]−∞,−1]× [1,+∞[
G2 = [1,+∞[× [1,+∞[
G3 = [1,+∞[× ]−∞,−1]
G4 = ]−∞,−1]× ]−∞,−1]

Initial Valuation

b

bb

b

X1 7→ {(−2, 2)}
X2 7→ {(2, 2)}
X3 7→ {(2,−2)}
X4 7→ {(−2,−2)}
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Kleene iteration on 2-dim Example

X1 X2

X3X4

b

bb

b

Leroux, Sutre (LaBRI) Acceleration in Convex Data-Flow Analysis FST TCS 2007 16 / 25



Kleene iteration on 2-dim Example

X1 X2

X3X4

b

bb

b

Leroux, Sutre (LaBRI) Acceleration in Convex Data-Flow Analysis FST TCS 2007 16 / 25



Kleene iteration on 2-dim Example

X1 X2

X3X4

b

bb

b

Leroux, Sutre (LaBRI) Acceleration in Convex Data-Flow Analysis FST TCS 2007 16 / 25



Kleene iteration on 2-dim Example

X1 X2

X3X4

4

1

h1 =
1
4

b

bb

b

Leroux, Sutre (LaBRI) Acceleration in Convex Data-Flow Analysis FST TCS 2007 16 / 25



Kleene iteration on 2-dim Example

X1 X2

X3X4

4

1

h2 =
4
15

b

bb

b
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Kleene iteration on 2-dim Example

X1 X2

X3X4

4

1

h3 =
15
56

b

bb

b
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MFP Solution for 2-dim Example

hk+1 =
1

4− hk

3

1

1

hk
b

bb

b

(hk )k∈N is nondecreasing, and lim
k→∞

hk = 2−
√

3

Remark
The MFP solution of this 2-dim cyclic IGTS is not rational polyhedral

Leroux, Sutre (LaBRI) Acceleration in Convex Data-Flow Analysis FST TCS 2007 17 / 25



MFP Solution for 2-dim Example

hk+1 =
1

4− hk

3

1

1

hk
b

bb

b

(hk )k∈N is nondecreasing, and lim
k→∞

hk = 2−
√

3

Remark
The MFP solution of this 2-dim cyclic IGTS is not rational polyhedral

Leroux, Sutre (LaBRI) Acceleration in Convex Data-Flow Analysis FST TCS 2007 17 / 25



MFP Solution for 2-dim Example

hk+1 =
1

4− hk

3

1

1

hk
b

bb

b

(hk )k∈N is nondecreasing, and lim
k→∞

hk = 2−
√

3

Remark
The MFP solution of this 2-dim cyclic IGTS is not rational polyhedral

Leroux, Sutre (LaBRI) Acceleration in Convex Data-Flow Analysis FST TCS 2007 17 / 25



MFP Solution for 2-dim Example

hk+1 =
1

4− hk

3

1

1

hk
b

bb

b

(hk )k∈N is nondecreasing, and lim
k→∞

hk = 2−
√

3

Remark
The MFP solution of this 2-dim cyclic IGTS is not rational polyhedral

Leroux, Sutre (LaBRI) Acceleration in Convex Data-Flow Analysis FST TCS 2007 17 / 25



3-dim Example

GTS

X1 X2

X3X4

G1, ~e3

G2, ~e3

G3, ~e3

G4, ~e3

G1 = R− × R+ × R
G2 = R+ × R+ × R
G3 = R+ × R− × R
G4 = R− × R− × R

Initial Valuation

b

bb

b

X1 7→ {(−1, 1)} × R+

X2 7→ {(1, 1)} × R+

X3 7→ {(1,−1)} × R+

X4 7→ {(−1,−1)} × R+
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Kleene iteration on 3-dim Example

b

bb

b

Remark
The MFP solution of this 3-dim cyclic IGTS is not polyhedral
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Acceleration Results for Cycles

2-dim cyclic example with a real (non rational) polyhedral MFP
solution

3-dim cyclic example with a non-polyhedral MFP solution

Question
Is the MFP polyhedral for all 2-dim cyclic IGTS?

Theorem
The MFP solution of any 2-dim IGTS is an algebraic polyhedron.

An algebraic number is any real number definable in 〈R,+, ·,≤〉
Algebraic polyhedrality is required even for cyclic 2-dim IGTS

Leroux, Sutre (LaBRI) Acceleration in Convex Data-Flow Analysis FST TCS 2007 20 / 25



Acceleration Results for Cycles

2-dim cyclic example with a real (non rational) polyhedral MFP
solution

3-dim cyclic example with a non-polyhedral MFP solution

Question
Is the MFP polyhedral for all 2-dim cyclic IGTS?

Theorem
The MFP solution of any 2-dim IGTS is an algebraic polyhedron.

An algebraic number is any real number definable in 〈R,+, ·,≤〉
Algebraic polyhedrality is required even for cyclic 2-dim IGTS

Leroux, Sutre (LaBRI) Acceleration in Convex Data-Flow Analysis FST TCS 2007 20 / 25



Acceleration Results for Cycles

2-dim cyclic example with a real (non rational) polyhedral MFP
solution

3-dim cyclic example with a non-polyhedral MFP solution

Question
Is the MFP polyhedral for all 2-dim cyclic IGTS?

Theorem
The MFP solution of any 2-dim IGTS is an algebraic polyhedron.

An algebraic number is any real number definable in 〈R,+, ·,≤〉
Algebraic polyhedrality is required even for cyclic 2-dim IGTS

Leroux, Sutre (LaBRI) Acceleration in Convex Data-Flow Analysis FST TCS 2007 20 / 25



Proof (1)

MFP Solution Expression

MFP(X ) =
⊔

X0∈X

t1···tk∈LX0,X

Jt1K ◦ · · · ◦ JtkK (∆(X0)) + 0+ MFP(X )

where:

∆(X ) = ρ0(X ) ⊔
⊔

X
G,~d−−→X ′

bd (G) ∩MFP(X )

bd (G) is the topological boundary of G

LX0,X is the set of simple paths from X0 to X

0+C = {~d | C + R+
~d ⊆ C}
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Proof (2)

Observe that 0+ MFP(X ) is a cone in dimension 2.

0+ MFP(X )

There exists ~d1, ~d2, ~d3 ∈ R2 such that:
0+ MFP(X ) = R+

~d1 + R+
~d1 + R+

~d1

Reduce to the case G is an half-space.
=⇒ bd (G) is a line.

bd (G) ∩MFP(X )

There exists two half-spaces H1, H2 such that:
bd (G) ∩MFP(X ) = bd (G) ∩ H1 ∩ H2

Therefore the MFP solution is definable by a formula in 〈R,+, ·,≤〉.
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Summary

Guarded Translation Systems
Self-loops Cyclic General

MOP n ≥ 1 Rational Poly. Rational Poly. Not Polyhedral

1 Rational Poly. Rational Poly. Rational Poly.
MFP 2 Rational Poly. Algebraic Poly. Algebraic Poly.

n ≥ 3 Rational Poly. Not Polyhedral Not Polyhedral

Polyhedra are computable for Rational Poly. and Algebraic Poly.

Results on self-loops carry over to singly initialized cycles
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Related Work & Future Work

Related Work
Interval analysis [Su & Wagner, TACAS’04], [Seidl & Gawlitza,
ESOP’07], [L. & S., SAS’07]
Abstract acceleration for convex polyhedra [Gonnord &
Halbwachs, SAS’06]

Acceleration technique for two self-loops, operations include reset
Incomplete for single self-loops

Future Work
Multiple self-loops
Other abstract lattices

octogons [Miné, AST’01]
templates [Sankaranarayanan et al., VMCAI’05]
two variables per linear inequality [Simon et al., LOPSTR’02]
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