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On Flatness for 2-dimensional Vector Addition Systems with States #2

Verification of distributed systems

Distributed systems

infinite-state, concurrent

ensuring correctness: challenging!

Formal verification:
M

?
|= ϕundecidable

Computation of forward/backward reachability sets post∗ / pre∗

Decidable classes

dedicated algorithms

Semi-algorithms for general classes

no termination guarantee
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On Flatness for 2-dimensional Vector Addition Systems with States #3

Accelerated post∗ / pre∗ computation

S = 〈S, Σ,→〉 labeled transition system

Set R ⊆ 2S of regions

closure under set operations (∩, \)

closure under post / pre : post(r, σ) ∈ R and pre(r, σ) ∈ R

effectivity

Loop acceleration:

post(r, σ∗) computable region

Speeds up post∗ / pre∗ computation

Accelerated symbolic model-checkers: LASH, TReX, FAST
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On Flatness for 2-dimensional Vector Addition Systems with States #4

Decidable classes vs. Acceleration

Effective computation of post∗ / pre∗

2-dim VASS and extensions

Lossy VASS

Timed automata

Lossy Fifo systems

Pushdown systems

· · ·

Acceleration

integer counters systems

real counters systems

Fifo systems

· · ·

Termination of accelerated semi-algorithms on decidable classes?
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On Flatness for 2-dimensional Vector Addition Systems with States #5

Flatness: a condition for termination

S is flat if S is equivalent (w.r.t reachability) to
S

i S′
i where:

S′
i is “extracted” from S

S′
i contains no nested loops

Accelerated post∗ / pre∗ computation terminates iff S is flat

Are (some) decidable classes flat?

Timed automata are flat [CJ99]

binary reachability relation effectively definable in real arithmetic

This paper: 2-dim VASS are flat

2-dim VASS have an effectively semilinear binary reachability relation
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On Flatness for 2-dimensional Vector Addition Systems with States #6

Outline of the talk

Vector Addition Systems with States

Flatness

Ultimate flatness of 2-dim VASS

Flatness of 2-dim VASS

Conclusion and future work
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On Flatness for 2-dimensional Vector Addition Systems with States #7

n-dim Vector Addition Systems with States

Finite automaton

Counters (over N)

+1, -1 (and 6= 0?)

p q

(0, 1,−1)
t1

(0,−1, 1)

t
′

1

(0,−1, 2)
t3

(0, 0, 0)

t2

(−1, 0, 0)

t4

(p, (5, 0, 1))
t1−→ (p, (5, 1, 0))

t2−→ (q, (5, 1, 0))
t3−→ (q, (5, 0, 2))

?
?
yt4

. . . (q, (4, 0, 4))
t2
2←− (q, (4, 2, 0))

t2←− (p, (4, 2, 0))
t2
1←− (p, (4, 0, 2))

Equivalent to Petri nets with n unbounded places
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On Flatness for 2-dimensional Vector Addition Systems with States #8

VASS: syntax

p q

(0, 1,−1)
t1

(0,−1, 1)

t
′

1

(0,−1, 2)
t3

(0, 0, 0)

t2

(−1, 0, 0)

t4

Labeled directed graph V = (Q, T, α, β, δ)

Q : finite set of locations and T : finite set of transitions

source mapping α : T → Q and target mapping β : T → Q

δ : T → Z
n : displacement labeling

Paths: ΠV (q, q′) ⊆ T ∗, ΠV =
[

q,q′∈Q

ΠV (q, q′)
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On Flatness for 2-dimensional Vector Addition Systems with States #9

VASS: semantics

V = (Q, T, α, β, δ)

Q, T : finite sets

α, β : T → Q

δ : T → Z
n

p q

(0, 1,−1)
t1

(0,−1, 1)

t
′

1

(0,−1, 2)
t3

(0, 0, 0)

t2

(−1, 0, 0)

t4

Labeled transition system 〈CV , T,RV 〉 where:

CV = Q× N
n

(q, x) RV (t) (q′, x′) if

8

>><

>>:

q = α(t)

q′ = β(t)

x
′ = x + δ(t)

Labeled transition system 〈CV , T,RV 〉

Extension of δ and RV to words π ∈ T ∗ and languages L ⊆ T ∗ :

8

>><

>>:

δ(ε) = 0

δ(π · t) = δ(π) + δ(t)

δ(L) = {δ(π) / π ∈ L}

8

>><

>>:

RV (ε) = IdCV

RV (π · t) = RV (π) · RV (t)

RV (L) =
S

π∈LRV (π)
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On Flatness for 2-dimensional Vector Addition Systems with States #10

Semilinear sets

Given P ⊆ Z
n,

P ∗ =

(
kX

i=0

ci pi / k, c0, . . . , ck ∈ N and p0, . . . , pk ∈ P

)

Linear set: (x + P ∗) with x ∈ Z
n and P ⊆ Z

n finite

Semilinear set: finite union of linear sets

Semilinear sets are the subsets of Z
n that are definable in Presburger

arithmetic 〈Z,≤, +〉 [GS66]
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On Flatness for 2-dimensional Vector Addition Systems with States #11

Flatness

Linear path scheme: ρ = σ0θ∗1σ1 · · · θ
∗
kσk ⊆ ΠV with σi, θi ∈ T ∗

Semilinear path scheme: finite union of linear path schemes

Definition

A reachability subrelation R ⊆ R∗
V is flat if R ⊆ RV (ρ) for some SLPS ρ

A VASS V is flat if R∗
V is flat

Theorem. ([CJ98, FL02]) RV (ρ) is effectively semilinear for any SLPS ρ

Corollary. R∗
V is effectively semilinear for any flat VASS V
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On Flatness for 2-dimensional Vector Addition Systems with States #12

Towards ultimate flatness in dimension 2

Goal: find SLPS ρ such that R∗ ⊆ R(ρ)

Goal: find SLPS ρ such that R∗|[c ..∞[2 ⊆ R(ρ) for some c ∈ N

First, look for SLPS that capture all possible displacements

Lemma. ∃ ρq,q′ ⊆ Π(q, q′) SLPS such that δ(ρq,q′) = δ(Π(q, q′))

q

(2,−1)

t1

(−1, 2)

t2

Choose ρ = t∗1t∗2

But R∗|[c ..∞[2 6⊆ R(ρ) (for all c ∈ N)

(q, (c, c))
∗
−→ (q, (4c, 4c))

ρ is not “straight enough”
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On Flatness for 2-dimensional Vector Addition Systems with States #13

Eliminating zig-zags

zigzag-free LPS: ρ = σ0θ∗1σ1 · · · θ
∗
kσk with δ(θi) in the same quadrant

zigzag-free SLPS: finite union of zigzag-free LPS

SLPS in dimension 2 can be “straightened”

Lemma. ∃ ρq,q′ ⊆ Π(q, q′) zigzag-free SLPS such that δ(ρq,q′) = δ(Π(q, q′))

q

(2,−1)

t1

(−1, 2)

t2

Straighten ρ = t∗1t∗2 into:

ρ′ =

{(0,0),(1,1),(2,2)}
z }| {

(ε + t1t2 + (t1t2)
2) ·

(0,3)∗

z }| {

(t1t22)
∗ ·

(3,0)∗

z }| {

(t21t2)∗ +

t∗1 · (t
2
1t2)

∗

| {z }

{(2,−1),(3,0)}∗

+ t∗2 · (t1t22)
∗

| {z }

{(−1,2),(0,3)}∗
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On Flatness for 2-dimensional Vector Addition Systems with States #13

Eliminating zig-zags

zigzag-free LPS: ρ = σ0θ∗1σ1 · · · θ
∗
kσk with δ(θi) in the same quadrant

zigzag-free SLPS: finite union of zigzag-free LPS

SLPS in dimension 2 can be “straightened”

Lemma. ∃ ρq,q′ ⊆ Π(q, q′) zigzag-free SLPS such that δ(ρq,q′) = δ(Π(q, q′))

q

(2,−1)

t1

(−1, 2)

t2

Straighten ρ = t∗1t∗2 into:

ρ′ =

{(0,0),(1,1),(2,2)}
z }| {

(ε + t1t2 + (t1t2)
2) ·

(0,3)∗

z }| {

(t1t22)
∗ ·

(3,0)∗

z }| {

(t21t2)∗ +

t∗1 · (t
2
1t2)

∗

| {z }

{(2,−1),(3,0)}∗

+ t∗2 · (t1t22)
∗

| {z }

{(−1,2),(0,3)}∗

CONCUR’04 – 31 August 2004



On Flatness for 2-dimensional Vector Addition Systems with States #13

Eliminating zig-zags

zigzag-free LPS: ρ = σ0θ∗1σ1 · · · θ
∗
kσk with δ(θi) in the same quadrant

zigzag-free SLPS: finite union of zigzag-free LPS

SLPS in dimension 2 can be “straightened”

Lemma. ∃ ρq,q′ ⊆ Π(q, q′) zigzag-free SLPS such that δ(ρq,q′) = δ(Π(q, q′))

q

(2,−1)

t1

(−1, 2)

t2

Straighten ρ = t∗1t∗2 into:

ρ′ =

{(0,0),(1,1),(2,2)}
z }| {

(ε + t1t2 + (t1t2)
2) ·

(0,3)∗

z }| {

(t1t22)
∗ ·

(3,0)∗

z }| {

(t21t2)∗ +

t∗1 · (t
2
1t2)

∗

| {z }

{(2,−1),(3,0)}∗

+ t∗2 · (t1t22)
∗

| {z }

{(−1,2),(0,3)}∗

CONCUR’04 – 31 August 2004



On Flatness for 2-dimensional Vector Addition Systems with States #14

Ultimate flatness of 2-dim VASS

∃ ρq,q′ ⊆ Π(q, q′) zigzag-free SLPS such that δ(ρq,q′) = δ(Π(q, q′))

m

x

x
′ Path from (q, x) to (q′, x′)

along a zigzag-free LPS

The “margin” m does not de-
pend on x or x

′

Proposition. The restriction R∗|[c ..∞[2 ⊆ R(ρ) is flat
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Ultimate flatness of 2-dim VASS

∃ ρq,q′ ⊆ Π(q, q′) zigzag-free SLPS such that δ(ρq,q′) = δ(Π(q, q′))

m

x

x
′ Path from (q, x) to (q′, x′)

along a zigzag-free LPS

The “margin” m does not de-
pend on x or x

′

Proposition. The restriction R∗|[c ..∞[2 ⊆ R(ρ) is flat

CONCUR’04 – 31 August 2004



On Flatness for 2-dimensional Vector Addition Systems with States #15

Flatness of 1-dim VASS

Simplification: assume that δ : T → {−1, 0, 1}n

I = [0 .. c] and I∞ = [c ..∞[

R∗|I and R∗|I∞ are flat

Consider (q, x)
∗
−→ (q′, x′) with x ≤ c and x′ > c

(q, x)
∗
−→ (q1, c)

| {z }

∈R∗|I

and (q1, c)
∗
−→ (q′, x′)

| {z }

∈R∗|I∞

Hence:
R∗ ⊆

`
R∗|I ∪R

∗|I∞
´2
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Flatness of 1-dim VASS

Simplification: assume that δ : T → {−1, 0, 1}n

I = [0 .. c] and I∞ = [c ..∞[

R∗|I and R∗|I∞ are flat

Consider (q, x)
∗
−→ (q′, x′) with x ≤ c and x′ > c

(q, x)
∗
−→ (q1, c)

| {z }

∈R∗|I

and (q1, c)
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| {z }

∈R∗|I∞

Hence:
R∗ ⊆

`
R∗|I ∪R

∗|I∞
´2
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On Flatness for 2-dimensional Vector Addition Systems with States #16

Flatness of 2-dim VASS

Simplification: assume that δ : T → {−1, 0, 1}n

I = [0 .. c] and I∞ = [c ..∞[

R∗|I×I and R∗|I∞×I∞ are flat

By reduction to 1-dim VASS, (R|I×N)∗ and (R|N×I)∗ are flat

Decomposition of R∗ as for 1-dim VASS
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Simplification: assume that δ : T → {−1, 0, 1}n

I = [0 .. c] and I∞ = [c ..∞[

R∗|I×I and R∗|I∞×I∞ are flat

By reduction to 1-dim VASS, (R|I×N)∗ and (R|N×I)∗ are flat

Decomposition of R∗ as for 1-dim VASS
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On Flatness for 2-dimensional Vector Addition Systems with States #17

Conclusion and Perspectives

2-dim VASS are flat

2-dim VASS have an effectively semilinear binary reachability relation

Previously: post∗ / pre∗ effectively semilinear [HP79]

R∗, post∗ and pre∗ computed with generic acceleration techniques

accelerated symbolic model checkers terminate on 2-dim VASS

Future work

Investigate flatness of other decidable classes

Better acceleration framework for Fifo systems
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Conclusion and Perspectives

2-dim VASS are flat

2-dim VASS have an effectively semilinear binary reachability relation

Previously: post∗ / pre∗ effectively semilinear [HP79]

R∗, post∗ and pre∗ computed with generic acceleration techniques

accelerated symbolic model checkers terminate on 2-dim VASS

Practical applications for the effective semilinearity of R∗ :

check relationships between input values and output values

replace some flat subsystems by semilinear meta-transitions

parameter synthesis
compute the set of initial states such that the counters stay
bounded

Future work

Investigate flatness of other decidable classes

Better acceleration framework for Fifo systems
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Conclusion and Perspectives

2-dim VASS are flat

2-dim VASS have an effectively semilinear binary reachability relation

Previously: post∗ / pre∗ effectively semilinear [HP79]

R∗, post∗ and pre∗ computed with generic acceleration techniques

accelerated symbolic model checkers terminate on 2-dim VASS

Future work

Investigate flatness of other decidable classes

Better acceleration framework for Fifo systems
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On Flatness for 2-dimensional Vector Addition Systems with States #18
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