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Motivations (practical)

Need for probabilistic modeling:

randomized algorithms (distributed systems)

message loss in protocols, stochastic delays...

biological systems

Verification:

is a given property almost surely satisfied by the system?

Focus on linear time temporal properties

Evaluation:

with which probability is a given property satisfied by the system?
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LTL verification on probabilistic systems

The best known automata-based algorithm runs in double exponential
time [Var85]

There is a non-automata based algorithm running in single exponential
time and polynomial space [CY95]

Open problem [Var99]:

automata-based algorithm running in single exponential time?

Yes

On-the-fly implementation
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Measuring sets of infinite words

Σ : finite alphabet

CΣ : set of all basic cylindric sets w · Σω with w ∈ Σ∗

BΣ : σ-algebra (on Σω) generated by CΣ

BΣ closed under complementation

BΣ closed under countable union (and intersection)

(Σω,BΣ) : considered measurable space (Σ will depend on the context)

probability measure defined on CΣ and extended to BΣ
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Probabilistic systems

M = 〈S, T, α, β, λ, P0, P 〉

1. 〈S, T, α, β, λ〉 finite labeled graph over Σ

S : states and T : transitions

α : T → V and β : T → V : source and target mappings (•· and ·•)

λ : T → Σ : transition labeling

2. P0 : S → [0, 1] : initial probability distribution s.t. s∈S P0(s) = 1

3. P : T →]0, 1] is a transition probability function s.t. t∈s• P (t) = 1

µM probability measure over (Tω,BT ) defined by µM (Tω) = 1, and

µM (t0t1 · · · tn·T
ω) =

P0(
•t0)P (t0)P (t1) · · ·P (tn) if t0t1 · · · tn ∈ Path∗(M)

0 otherwise.
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An Optimal Automata Approach to LTL Model Checking of Probabilistic Systems #9

Properties

initial states: S0 = {s ∈ S | P0(s) 6= 0}

Pathω(M) is measurable and µM (Pathω(M)) = 1

Notation. M [s] = M where P0(s) = 1 (i.e. s unique initial state)

µM = s∈S0
P0(s) · µM [s]

when L measurable, µM [s](L) = t∈s• P (t) · µM [t•](t
−1L)

Proposition

Let Path∗
max denote the set of all finite paths ending in a maximal SCC.

We have µM (Path∗
max · Tω) = 1

Let ρ be a finite path contained in some maximal SCC C, and let s ∈ C.
We have µM [s]((T

∗ · ρ)ω) = 1.
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LTL

f ::= a | f ∨ f | ¬f | Xf | fUf (with a ∈ Σ)

models are in Σω

∨ and ¬ interpreted as usual

abca · · · |= a but bbca · · · 6|= a

abca · · · |= Xb but abca · · · 6|= Xc

aaaaaaaaabca · · · |= aUb but aaaaaaaaabca · · · 6|= aUc

L(f) : set of words w ∈ Σω such that w |= f
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ω-automata

A = 〈Q, T, α, β, λ, Q0, Acc〉

1. 〈Q, T, α, β, λ〉 finite labeled graph over Σ

2. Q0 ⊆ Q : initial locations

3. acc ⊆ 2T : acceptance condition

a run ρ ∈ Pathω(A) is accepting if {t | ρ ∈ (T ∗ · t)ω} ∈ Acc

a word w is accepted if w = λ(ρ) for some accepting run ρ

L(A) : set of accepted words

Theorem [Var85]

For any ω-automaton A, L(A) is measurable.
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From LTL to ω-automata

Theorem [VW94]

Given an LTL formula f , one can build a Büchi ω-automaton Af , with at

most 2O(|f |) locations, such that L(f) = L(Af ).
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Verification and evaluation problems

LTL probabilistic verification problem:

Given M and f , does M almost surely satisfy f?
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Verification and evaluation problems

LTL probabilistic verification problem:

Given M and f , does M almost surely satisfy f?

“M |= f almost surely”

�

=

µM (Pathω(M) ∩ λ−1(L(f))) = 1

“M |= f with positive probability”
�

=

µM (Pathω(M) ∩ λ−1(L(f))) > 0

LTL probabilistic verification problem is PSPACE-complete [CY95]

LTL probabilistic evaluation problem:

Given M and f , compute µM (Pathω(M) ∩ λ−1(L(f)))
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An Optimal Automata Approach to LTL Model Checking of Probabilistic Systems #16

Existing automata-based approach [Var85]

To check whether M |= f with positive probability:

compute a Büchi automaton Af with L(Af ) = L(f)

|Af | in 2O(|f |)
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compute the probabilistic system M⊗A′
f (synchronized product)

|M⊗A′
f | in O(|M |) · 22O(|f|)

check whether M⊗A′
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in time O(|M |) · 22O(|f|)
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Overview

We use a similar approach:

translate f into a non-deterministic ω-automaton

|Af | in O(2|f |)
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translate f into a non-deterministic ω-automaton

|Af | in O(2|f |)
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Properties of ω-automata coming from LTL

Optimized tableau based translation (slight variation of [Cou00])

Proposition

Given an LTL formula f , one can build a multi-Büchi ω-automaton Af

such that L(f) = L(Af ), and whose size and computation time are in

O(|Σ|) · 2O(|f |).

Moreover Af is unambiguous and separated on each SCC.

where:

A is unambiguous =

t1 6= t2 ∧ •t1 = •t2 ∧ λ(t1) = λ(t2) ⇒ L(A[t1
•]) ∩ L(A[t2

•]) = ∅

A is separated = q1 6= q2 ⇒ L(A[q1]) ∩ L(A[q2]) = ∅
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Synchronized product of M and Af

M⊗A = 〈S × Q, T⊗, α⊗, β⊗, λ⊗, S0 × Q0, Acc⊗〉 where:

T⊗ = {(tM , tA) ∈ TM × TA | λM (tM ) = λA(tA)}

•(tM , tA) = (•tM , •tA) and (tM , tA)• = (tM
•, tA

•)

λ⊗ is the projection from T⊗ to TM

U ∈ Acc⊗ iff the projection of U on A is in Acc

Proposition

L(M⊗A) = Pathω(M) ∩ λ−1
M (L(A))

M |= f with positive probability iff µM [s](L(M⊗A[s, q])) > 0 from an initial
location (s, q) ∈ S0 × Q0
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Synchronized product of M and Af (cont’d)

L(s, q)

�

= L(M⊗A[s, q])

L(s, q) =

�

(tM ,tA)∈(s,q)• tM · L(tM
•, tA

•)

V (s, q)

�

= µM [s](L(s, q))

V (s, q) > 0 iff V (s′, q′) > 0 for some (s′, q′) reachable from (s, q)

An SCC C of M⊗A is called:

null if V (s, q) = 0 for all (s, q) ∈ C

persistent if C is an SCC which is maximal among the non null SCCs,

transient otherwise.

Goal: check the existence of a reachable non null SCC
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Synchronized product of M and Af (cont’d)

L(s, q)

�

= L(M⊗A[s, q])

L(s, q) =

�

(tM ,tA)∈(s,q)• tM · L(tM
•, tA

•)

V (s, q)

�

= µM [s](L(s, q))

V (s, q) > 0 iff V (s′, q′) > 0 for some (s′, q′) reachable from (s, q)

An SCC C of M⊗A is called:

null if V (s, q) = 0 for all (s, q) ∈ C

persistent if C is an SCC which is maximal among the non null SCCs,

transient otherwise.

Goal: check the existence of a reachable non null SCC

LPAR - 25 September 2003



An Optimal Automata Approach to LTL Model Checking of Probabilistic Systems #22

Local notions on SCCs

M⊗A)|C

�

= “restriction of M⊗A to C

LC(s, q) = L((M⊗A)|C [s, q])

VC(s, q) = µM [s](LC(s, q))

C is locally positive if VC(s, q) > 0 for all (s, q) ∈ C

persistent ⇒ locally positive ⇒ non null

M |= f with positive probability iff there is a locally positive SCC
reachable from an initial location (s, q) in S0 × Q0
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Caracterisation of locally positive SCCs

C is accepted if its set of transitions is in Acc⊗

C is complete if every finite path of M starting in C is contained in C

Proposition

If A is multi-Büchi or unambiguous, then

locally positive ⇔ accepted ∧ complete

Proposition

when A is multi-Büchi, acceptance checking is in O(|Acc| · |C|)

when A is unambiguous and separated on each SCC, completeness
checking is in O(|C|)
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Main result

Theorem

Given an LTL formula f , checking whether M |= f with positive probability
can be done in O(|M | · |f | · 2|f |).
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Evaluation

Proposition

If A is unambiguous then

V (s, q) =

(tM ,tA)∈(s,q)•

P (tM ) · V (tM
•
, tA

•)

Moreover, for every persistent SCC C,

if C is deterministic then V (s, q) = 1 for all s, q ∈ C

if C is separated then q:(s,q)∈C V (s, q) = 1 for all s ∈ C

Equation system decomposed and solved for each component

LPAR - 25 September 2003



An Optimal Automata Approach to LTL Model Checking of Probabilistic Systems #25

Evaluation

Proposition

If A is unambiguous then

V (s, q) =

(tM ,tA)∈(s,q)•

P (tM ) · V (tM
•
, tA

•)

Moreover, for every persistent SCC C,

if C is deterministic then V (s, q) = 1 for all s, q ∈ C

if C is separated then
�

q:(s,q)∈C V (s, q) = 1 for all s ∈ C

Equation system decomposed and solved for each component

LPAR - 25 September 2003



An Optimal Automata Approach to LTL Model Checking of Probabilistic Systems #25

Evaluation

Proposition

If A is unambiguous then

V (s, q) =

(tM ,tA)∈(s,q)•

P (tM ) · V (tM
•
, tA

•)

Moreover, for every persistent SCC C,

if C is deterministic then V (s, q) = 1 for all s, q ∈ C

if C is separated then
�

q:(s,q)∈C V (s, q) = 1 for all s ∈ C

Equation system decomposed and solved for each component

LPAR - 25 September 2003



An Optimal Automata Approach to LTL Model Checking of Probabilistic Systems #26

Outline

1. Introduction

2. Probabilistic systems

3. Linear Temporal Logic and ω-automata

4. LTL verification and evaluation problems

5. Our approach

6. Conclusion
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Experimentation: the ProbaTaf tool

Probabilistic systems described by bounded Petri nets

LTL formulas on the Petri net: transitions, markings and “dead”

explicit description of the probabilistic system

symbolic BDD-based representation of ω-automata

on-the-fly verification algorithm [Cou99]

simple Gauss elimination algorithm for evaluation

application to several examples:

biased dice game [KY76]

randomized election algorithm [MSZ03]
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Experimentation: the ProbaTaf tool
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Conclusion and perspectives

Optimal automata-based approach for LTL verification

Allows evaluation

Based on properties of ω-automata: separation and unambiguity

Java implementation of the method

Future work

precision of the solver

infinite-state probabilistic systems

stochastic systems
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