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Motivations (practical)

2 Need for probabilistic modeling:
2 randomized algorithms (distributed systems)
2 message loss in protocols, stochastic delays...

2 biological systems

2 Verification:

2 is a given property almost surely satisfied by the system?

a Focus on linear time temporal properties

2 Evaluation:

2 with which probability is a given property satisfied by the system?
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LTL verification on probabilistic systems

2 The best known automata-based algorithm runs in double exponential
time [Var85

a There is a non-automata based algorithm running in single exponential
time and polynomial space [CY95]

2 Open problem [Var99]:

automata-based algorithm running in single exponential time? |
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An Optimal Automata Approach to LTL Model Checking of Probabilistic Systems #5

LTL verification on probabilistic systems

2 The best known automata-based algorithm runs in double exponential
time [Var85

a There is a non-automata based algorithm running in single exponential
time and polynomial space [CY95]

2 Open problem [Var99]:

automata-based algorithm running in single exponential time? |

s Yes

2 On-the-fly implementation
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s Cx : set of all basic cylindric sets w - X% with w € ¥*
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Measuring sets of infinite words

2 X : finite alphabet
s Cx : set of all basic cylindric sets w - X% with w € ¥*

a By, : o-algebra (on ) generated by Cs;
2 By, closed under complementation

2 By, closed under countable union (and intersection)

a2 (3%, Byy) : considered measurable space (3 will depend on the context)

a probability measure defined on Csx. and extended to By,
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Probabilistic systems

a M = <S,T,Oé,ﬁ,>\,PO,P>

1. (S, T, «a, 3, A) finite labeled graph over X
a S : states and T : transitions
sa:T—Vandg: T — V :source and target mappings (°*- and -*)
s A: T — X : transition labeling
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Probabilistic systems

a M = <S,T704,6,>\,PO,P>

1. (S, T, a, B, A) finite labeled graph over X
a S : states and T : transitions
sa:T—Vandg: T — V :source and target mappings (°*- and -*)
s A: T — X : transition labeling

2. Py:S —[0,1] : initial probability distribution s.t. >~ -5 Po(s) =1

3. P:T —]0,1] is a transition probability function s.t. >, P(t) =1
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Probabilistic systems

a M = <S,T704,6,>\,PO,P>

1. (S, T, a, B, A) finite labeled graph over X
a S : states and T : transitions
sa:T—Vandg: T — V :source and target mappings (°*- and -*)
s A: T — X : transition labeling

2. Py:S —[0,1] : initial probability distribution s.t. >~ -5 Po(s) =1

3. P:T —]0,1] is a transition probability function s.t. >, P(t) =1

3 g Probability measure over (T, Br) defined by p,(T“) = 1, and

Py(®to)P(tg)P(t1) --- P(tn) if tot1 - - tn € Path™ (M
MM(tOtl"'tn'Tw){ 0("t0) P(t0) P(t1) (tn) It Loty € Path™ (M)

0 otherwise.
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Properties

2 initial states: Sg ={s € S| Py(s) # 0}

a3 Path® (M) is measurable and pp; (Path® (M)) =1
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a3 Path® (M) is measurable and pp; (Path® (M)) =1
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Properties

2 initial states: Sg ={s € S| Py(s) # 0}

a3 Path® (M) is measurable and pp; (Path® (M)) =1

Notation. M[s] = M where Py(s) =1 (i.e. s unique initial state)

3 =D ses, Po(s) - s

s when L measurable, (i (L) = 3¢ g0 P(t) - ppsper(t L)

Proposition
a Let Path;}, ., denote the set of all finite paths ending in a maximal SCC.
We have pp;(Pathyg. - T) =1

s Let p be a finite path contained in some maximal SCC C, and let s € C.
We have iy ((T" - p)*) = 1.
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LTL

fo=a | fVITAf | Xf | fUS (with @ € X3)

2 models are in 3¢
2 vV and - interpreted as usual
g abca---E=a but bbeca---Fa

3 abca---=Xb  but  abca--- E Xe

3 aaaaaaaaabca - - - = aUb  but  aaaaaaaaabea - - - = aUc
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LTL

fo=a | fVITAf | Xf | fUS (with @ € X3)

s models are in ¥

2 vV and - interpreted as usual

g abca---E=a but bbeca---Fa

3 abca---=Xb  but  abca--- E Xe

3 aaaaaaaaabca - - - = aUb  but  aaaaaaaaabea - - - = aUc

a L(f) : set of words w € % such that w = f
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w-automata
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1. (Q,T,«a, 3, ) finite labeled graph over &
2. Qo C @ :initial locations

3. acc C 2% : acceptance condition
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An Optimal Automata Approach to LTL Model Checking of Probabilistic Systems

w-automata

1A= <Q7 T7 «, ﬁa >‘7 QO) ACC>
1. (Q,T,«a, 3, ) finite labeled graph over &
2. Qp C @ :initial locations

3. acc C 2% : acceptance condition
s arunp € Path”(A)is acceptingif {t | p € (T* - t)*} € Acc
s a word w is accepted if w = \(p) for some accepting run p

a L(A) : set of accepted words

Theorem [Var85]
For any w-automaton A, L(A) is measurable.

#12
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From LTL to w-automata

Theorem [VW94]

Given an LTL formula f, one can build a Blichi w-automaton A ¢, with at
most 20U/1) Jocations, such that L(f) = L(Aj).
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Verification and evaluation problems

a LTL probabilistic verification problem:

Given M and f, does M almost surely satisfy f? I

a2 “M = f almost surely” =
par(Path® (M) N ATH(L(f)) =1

a2 “M = f with positive probability” =
par(Path® (M) N ATH(L(f))) > 0

a LTL probabilistic verification problem is PSPACE-complete [CY95
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Verification and evaluation problems

a LTL probabilistic verification problem:

Given M and f, does M almost surely satisfy f? I

a2 “M = f almost surely” =
par (Path® (M) N ATH(L(f))) = 1

a2 “M = f with positive probability” =
par (Path® (M) N A~H(L(f))) > 0

a LTL probabilistic verification problem is PSPACE-complete [CY95

2 LTL probabilistic evaluation problem:

Given M and f, compute s (Path® (M) N A~ YH(L(f)))
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An Optimal Automata Approach to LTL Model Checking of Probabilistic Systems #16

Existing automata-based approach [Var85]

To check whether M = f with positive probability:

s compute a Blchi automaton A with L(A;) = L(f)
[Ag|in 2O(If1)

LPAR - 25 September 2003



An Optimal Automata Approach to LTL Model Checking of Probabilistic Systems #16

Existing automata-based approach [Var85]

To check whether M = f with positive probability:

s compute a Blchi automaton A with L(A;) = L(f)

2 compute a deterministic Street automaton A, with L(A’) = L(f)

LPAR - 25 September 2003



An Optimal Automata Approach to LTL Model Checking of Probabilistic Systems #16

Existing automata-based approach [Var85]

To check whether M = f with positive probability:

s compute a Blchi automaton A with L(A;) = L(f)

2 compute a deterministic Street automaton A, with L(A’) = L(f)

2 compute the probabilistic system M ®A} (synchronized product)

Mo A} ino(Mm]) - 22"

LPAR - 25 September 2003



An Optimal Automata Approach to LTL Model Checking of Probabilistic Systems #16

Existing automata-based approach [Var85]

To check whether M = f with positive probability:

s compute a Blchi automaton A with L(A;) = L(f)

2 compute a deterministic Street automaton A, with L(A’) = L(f)

2 compute the probabilistic system M ®A} (synchronized product)

Mo A} ino(Mm]) - 22"

a check whether M ® A’; has an accepted maximal SCC

in time O(|M]) - 227"

LPAR - 25 September 2003
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Overview

We use a similar approach:

a translate f into a non-deterministic w-automaton

Az in 021
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Overview

We use a similar approach:

a translate f into a non-deterministic w-automaton

Az in 021

s compute the w-automaton M ® A (synchronized product)
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4 look for a “suitable” SCC in M® A
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An Optimal Automata Approach to LTL Model Checking of Probabilistic Systems #18

Overview

We use a similar approach:

a translate f into a non-deterministic w-automaton

Az in 021

s compute the w-automaton M ® A (synchronized product)

IM®A;|in O(|M] - 211

4 look for a “suitable” SCC in M® A
in time O(|M| - 2l/1

2 based on properties of the translation from LTL to w-automaton

LPAR - 25 September 2003
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Properties of w-automata coming from LTL

s Optimized tableau based translation (slight variation of [Cou00])

Proposition

s Given an LTL formula f, one can build a multi-Blichi w-automaton A ¢
such that L(f) = L(Ay), and whose size and computation time are in

o(x|) - 200D,

a Moreover Ay is unambiguous and separated on each SCC.
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s Optimized tableau based translation (slight variation of [Cou00])

Proposition

s Given an LTL formula f, one can build a multi-Blichi w-automaton A ¢
such that L(f) = L(Ay), and whose size and computation time are in

o(x|) - 200D,

a Moreover Ay is unambiguous and separated on each SCC.
where:

a Ais unambiguous =
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Properties of w-automata coming from LTL

s Optimized tableau based translation (slight variation of [Cou00])

Proposition

s Given an LTL formula f, one can build a multi-Blichi w-automaton A ¢
such that L(f) = L(Ay), and whose size and computation time are in

o(x|) - 200D,

a Moreover Ay is unambiguous and separated on each SCC.
where:

a Ais unambiguous =
t1 Zto AN %t =%2 A Xt1) = At2) = L(A[t1°]) N L(A[t2®]) =0

s Alisseparated = q1 #q2 = L(A[lq1]) N L(Alg2]) =0
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Synchronized product of M and Ay

M®A = <S X Q, Ty, g, Bg, Az, So X QOaACC®> where:

a T ={(tar,ta) €Ty X Ta | Apr(tar) =Aa(ta)}
a *(tar,ta) = (*tar, ®ta) and (tar,t4)® = (tar®,tA°)
3 \g Is the projection from Ty to Ty,

a U € Accg iff the projection of U on Aisin Acc

#20
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Synchronized product of M and Ay

M®A = <S X Q, Ty, g, Bg, Az, So X QOaACC®> where:

a T ={(tar,ta) €Ty X Ta | Apr(tar) =Aa(ta)}
a *(tar,ta) = (*tar, ®ta) and (tar,t4)® = (tar®,tA°)
3 \g Is the projection from Ty to Ty,

a U € Accg iff the projection of U on Aisin Acc

Proposition
a L(M®A) = Path® (M) N Ay, (L(A))

#20
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Synchronized product of M and A;

M®A = <S X Q, Ty, g, Bg, Az, So X QOaACC®> where:

a T ={(tar,ta) €Ty X Ta | Apr(tar) =Aa(ta)}
a *(tar,ta) = (*tar, ®ta) and (tar,t4)® = (tar®,tA°)
3 \g Is the projection from Ty to Ty,

a U € Accg iff the projection of U on Aisin Acc

Proposition
a L(M®A) = Path® (M) N Ay, (L(A))

#20

a M = f with positive probability iff j s (L(M © Als, g])) > 0 from an initial

location (s,q) € So x Qg
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Synchronized product of M and A, (cont’d)

a2 L(s,q) = L(IM®A[s,q|)

L(Sa Q) — U(tM,tA)E(S,q)' tM . L(tM.,tA.)

- V(S7Q) — H M [s] (L(37Q))

Vi(s,q) > 0iff V(s',¢") > 0 for some (s, ¢') reachable from (s, q)
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Synchronized product of M and A, (cont’d)

s L(s,q) = LIM®A[s, q])

L(s,q) = U(tM,tA)e(s,q)° tar - L(tar®,ta°)

a V(s,q) = pargs)(L(s, )

Vi(s,q) > 0iff V(s',q") > 0 for some (s’, ¢') reachable from (s, q)

2 An SCC C of M® A is called:
a nullif V(s,q) =0forall (s,q) € C
a persistent if C'is an SCC which is maximal among the non null SCCs,

a transient otherwise.
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Synchronized product of M and A, (cont’d)

s L(s,q) = LIM®A[s, q])

L(s,q) = U(tM,tA)e(s,q)° tar - L(tar®,ta°)

a V(s,q) = pargs)(L(s, )

Vi(s,q) > 0iff V(s',q") > 0 for some (s’, ¢') reachable from (s, q)

2 An SCC C of M® A is called:
a nullif V(s,q) =0forall (s,q) € C
a persistent if C'is an SCC which is maximal among the non null SCCs,

a transient otherwise.

s Goal: check the existence of a reachable non null SCC
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Local notions on SCCs

2 M®A)|c = “restriction of M® A to C
3 Le(s,q) = LM ®A)|cls, )

- VC(37Q) = KM s] (LC(37Q))

#22
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Local notions on SCCs

4 M®A)|c = “restriction of M®@Ato C
3 Le(s,q) = LIM®A)cls; q))

- VC(37Q) = KM s] (LC(37Q))

s C'is locally positive if Vo (s,q) > 0 for all (s,q) € C
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Local notions on SCCs
4 M®A)|c = “restriction of M®@Ato C
a Le(s,q) = L((M®A)cls, q])

a Vo(s,q) = ps) (Le(s, )

a C'is locally positive if Vo (s,q) > 0forall (s,q) € C

persistent = locally positive = non null I
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Local notions on SCCs
4 M®A)|c = “restriction of M®@Ato C
a Le(s,q) = L((M®A)cls, q])

a Vo(s,q) = ps) (Le(s, )

a C'is locally positive if Vo (s,q) > 0forall (s,q) € C

persistent = locally positive = non null I

a M = f with positive probability iff there is a locally positive SCC
reachable from an initial location (s, ¢) in Sy x Qg
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Caracterisation of locally positive SCCs

a C'is accepted if its set of transitions is in Accg

a C is complete if every finite path of M starting in C' is contained in C
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Caracterisation of locally positive SCCs

a C'is accepted if its set of transitions is in Accg

a C'is complete if every finite path of M starting in C' is contained in C

Proposition
If A is multi-Bdchi or unambiguous, then

locally positive <«  accepted N complete
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Caracterisation of locally positive SCCs

a C'is accepted if its set of transitions is in Accg

a C'is complete if every finite path of M starting in C' is contained in C

Proposition
If A is multi-Bdchi or unambiguous, then

locally positive <«  accepted N complete
Proposition
a when A is multi-Buchi, acceptance checking is in O(|Acc| - |C1)

s when A is unambiguous and separated on each SCC, completeness
checking is in O(|C/)
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Main result

Theorem

Given an LTL formula f, checking whether M = f with positive probability
can be done in O(|M] - | f| - 2I71.
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Evaluation

Proposition

a If A is unambiguous then

V(s,q) = > P(tar) - V(tar®,ta®)
(tMatA)E(S7Q).
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Evaluation

Proposition
a If A is unambiguous then

V(87Q) — Z P(tM) ' V(tM.atA.)
(tMatA)E(‘S?q).

a Moreover, for every persistent SCC C,
a If C is deterministic then V (s,q) = 1 for all s,q € C

2 ifC is separated then y_ . s yec V(s,q) =1foralls € C
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Evaluation

Proposition

a If A is unambiguous then

V(87Q) — Z P(tM) ' V(tM.atA.)
(tMatA)E(S7q).

a Moreover, for every persistent SCC C,
a If C is deterministic then V (s,q) = 1 for all s,q € C

2 ifC is separated then y_ . s yec V(s,q) =1foralls € C

a2 Equation system decomposed and solved for each component
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QOutline

Introduction
Probabilistic systems
Linear Temporal Logic and w-automata

Our approach

B Conclusion

’
2
3
4. LTL verification and evaluation problems
5
6
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Experimentation: the ProbaTaf tool

2 Probabilistic systems described by bounded Petri nets

a LTL formulas on the Petri net: transitions, markings and “dead”
2 explicit description of the probabilistic system

a2 symbolic BDD-based representation of w-automata

s on-the-fly verification algorithm [Cou99]

s simple Gauss elimination algorithm for evaluation

2 application to several examples:
2 biased dice game [KY76
2 randomized election algorithm [MSZ03]
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Experimentation: the ProbaTaf tool

time (RdP Eval) = 166 ms
System :/Users/couvreur/Desktop/recup/tree4.net
state = 750, transition = 2842

time (LTL Eval) =251 ms
F("LO" && X(dead))
Probability : 0.1428571428571428

time (LTL Eval) =229 ms
F("L1" && X(dead))
Probability : 0.21428571428571425

time (LTL Eval) =243 ms
F("L2" && X(dead))
Probability : 0.2142857142857143

( Load ) (Reload) (Check) ( Eval ) F('L2" && X(dead))|
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Conclusion and perspectives

2 Optimal automata-based approach for LTL verification

1 Allows evaluation

2 Based on properties of w-automata: separation and unambiguity

2 Java implementation of the method
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Conclusion and perspectives

2 Optimal automata-based approach for LTL verification

1 Allows evaluation

2 Based on properties of w-automata: separation and unambiguity

2 Java implementation of the method

Future work

2 precision of the solver
2 infinite-state probabilistic systems

2 stochastic systems
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