http://www.labri.fr/~sutre/Teaching/B

1 Assertions on Natural Numbers

Specify the following properties in a B abstract machine that only contains an ASSERTIONS clause, for instance:

```
MACHINE NatAsserts
ASSERTIONS
/* Exercise 1 */
[To be filled]
&
/* Exercise 2 */
[To be filled]
[...]
END
```

For each exercise, check with the type checker of Atelier B that formulas are correctly typed, and launch the automatic prover on the machine.

Exercise 1 There exists a least natural number.

Exercise 2 For every natural number, there exists a (strictly) larger natural number.

Exercise 3 For every pair (n,m) of natural numbers such that $n \neq m$, it holds that either n < m or n > m.

Exercise 4 Every natural number is either even or odd.

Recall that divisibility on natural numbers is defined by: $d \text{ divides } n \text{ if } n = k \cdot d$ for some $k \in \mathbb{N}$. For convenience, add a definition of the divisibility relation to your machine. This definition acts as a macro that can be used in the rest of the machine.

```
MACHINE NatAsserts
DEFINITIONS
Divides (d, n) == (#kk . (kk : NATURAL & (n) = kk*(d)))
ASSERTIONS
END
```

Exercise 5 Every natural number divides itself and zero.

Exercise 6 There exists a natural number that divides all natural numbers.

Exercise 7 For every natural numbers d and n such that $d \neq 0$, d divides n if and only if n mod d = 0.

Exercise 8 The divisibility relation is a partial order on \mathbb{N} .

2 Assertions on Sets and Functions

As for natural numbers, specify the following properties in a B abstract machine that only contains an ASSERTIONS clause.

Exercise 9 Every finite set of integers is strictly contained in another finite set of integers.

Exercise 10 Every finite set S of integers is contained in an interval of integers.

Exercise 11 For every natural number $n \neq 0$, the set of all divisors of n is finite.

Exercise 12 Every total injective function from \mathbb{N} to \mathbb{N} is bijective.

Exercise 13 For every finite subset S of \mathbb{N} , the sum of all elements of S is larger or equal to each element of S.

The following exercises specify properties on an arbitrary set. To this end, add the following declaration in your abstract machine:

MACHINE SetAsserts SETS UNIVERSE ASSERTIONS END

In the following exercises, the set UNIVERSE is shortly written U. Recall that the *cardinal* of a finite set S is the number of elements of S. We let Card(S) denote the cardinal of S.

Exercise 14 For every finite subsets S, T of \mathbb{U} , if $S \subseteq T$ then $Card(S) \leq Card(T)$

Exercise 15 For every finite subsets S, T of \mathbb{U} , $Card(S) \leq Card(T)$ if and only if there exists a total injection from S to T.

Exercise 16 For every finite subsets S, T of \mathbb{U} , $Card(S) \ge Card(T)$ if and only if there exists a total surjection from S to T.

Exercise 17 The relation \subseteq is a partial order on $\mathbb{P}(\mathbb{U})$.

Exercise 18 Every non-decreasing function $f : \mathbb{P}(\mathbb{U}) \to \mathbb{P}(\mathbb{U})$ has a fixed point.