
Project Formal Design with B, Master 1, 2011–2012 1

http://www.labri.fr/~sutre/Teaching/B

This project is devoted to the specification and implementation of a utility module for
collections, similar to what can be found in standard libraries (stacks and queues).

1 Project Requirements

The development shall be realized, and proved, within Atelier B. All components must pass
type-checking, as well as B0 checking. It is not required to prove all proof obligations. However,
the remaining unproved obligations must be analyzed and checked for validity. Recall that you
may add assertions in your components to simplify the proof process. It is also recommended
to animate your components with ProB in order to spot obvious bugs before attempting proofs.

Projects must be sent to gregoire.sutre@labri.fr by Friday, 9 December 2011.
Send an archive of your Atelier B project (including the bdp sub-directory), along with a small
report presenting your B development. The report should, in particular, provide an informal
proof sketch for each unproved obligation.

2 Specification of a Collection

The specification models the collection as a multiset of elements. Those elements are taken
in a deferred set UNIVERSE, which is given as parameter of the specification. The multiset is
specified by a total function bag ∈ UNIVERSE → N, that maps each element e ∈ UNIVERSE to
the number of copies of e in the bag.

A template of the Collection abstract machine is provided in the Collection.mch file.
In addition to the bag variable, this template also specifies a bagsize variable that counts the
number of elements in the multiset bag.

Exercise 1 Fill the parts marked “To be completed” in the abstract machine Collection. This
abstract machine should be entirely proved by the automatic prover in force 0.

3 Intermediate Refinement

The first refinement of the Collection abstract machine is an intermediate refinement to
factorize and simplify the development of the Stack and Queue refinements. A template for
this first refinement is provided in the Collection_r.ref file. Here, the multiset is replaced
by a partial function list ∈ N 7→ UNIVERSE, that, intuitively, distinguishes copies by numbering
each element in the multiset.

Example. Assuming that the set UNIVERSE contains {a, b}, the multiset {a 7→ 2, b 7→ 3} may
be represented, for instance, by the partial function {0 7→ a, 5 7→ b, 7 7→ b, 16 7→ a, 25 7→ b}.

Exercise 2 Fill the parts marked “To be completed” in the refinement Collection_r. Prove
as many proof obligations as possible.



Project Formal Design with B, Master 1, 2011–2012 2

4 Stack Refinement

The intermediate refinement Collection_r is now refined into a stack: the operation pop

becomes deterministic, and returns the element in the collection that was pushed last. A
template of the Stack refinement is provided in the Stack.ref file. Here, the stack is specified
as a total function sequence ∈ 1..length→ UNIVERSE, where length is the size of the stack.

Exercise 3 Fill the parts marked “To be completed” in the refinement Stack. Prove all proof
obligations.

5 Queue Refinement

The intermediate refinement Collection_r is now refined into a queue: the operation pop

becomes deterministic, and returns the element in the collection that was pushed first. A
template of the Queue refinement is provided in the Queue.ref file. Here, the queue is specified
as a total function window ∈ start..(end−1)→ UNIVERSE, that models the queue as a sliding
window.

Exercise 4 Fill the parts marked “To be completed” in the refinement Queue. Prove all proof
obligations.


