
4TIN907EX 2019 – 2020

Software Verification

Monday, January 13th 2020, 3 hours

This assignment contains three independent parts: the first part deals with bounded
model-checking, the second part is about abstract interpretation, and the last part ad-
dresses an interpolation problem.

All documents are authorized during the examination
Answers can be written in French

1 Bounded Model-Checking (14pts)

This section will browse a few concepts that have been seen in the first part of the course
(Bounded Model-Checking).

1.1 Principles

We start with some questions to check your understandings of the Bounded Model-Checking
algorithms. We recall that given a transition system T , the Bounded Model-Checking at
depth n explore all executions of size at most n and check if one of them reach an unde-
sirable state (such an execution is called faulty).

Question 1 A Bounded Model-Checking search can return three answers: Counter-example
found, No counter-example found (exhaustive), No counter-example found (non-exhaustive).

For each possible answer, explain what the answer means about the presence of a faulty
execution, its size, and the size of all executions of the model.

Question 2 We have seen in course two algorithm : Depth-First Search, and Global.
Recall briefly how the executions are explored in the two algorithms and what guarantee
they give on the faulty execution they return if they return one.

qin q1

q3

q2 qbad
x := 0, y := 0

x := 1

x := 0, y := y + 1

y := y + 1

(y mod 2) = 1

x = 1

1



4TIN907EX 2019 – 2020

Question 3 Apply the bounded model-checking algorithm to the previous system up to
bound 7: draw the exploration tree displaying the formulæ added (only the added one not
the complete formula) at each step in the Depth-First Search algorithm, highlight the un-
satisfiable ones, and give the result of the algorithm.

Is there a bound on which the algorithm would give a different answer? Justify.

1.2 Proof of correctness

Bounded Model Checking is intrinsically a semi-algorithm, as the Model-Checking is un-
decidable in general. In fact, except for simple systems, it is unlikely such a procedure
asserts a program is correct. The goal of this section is to provide a way to prove that for
some program, we have a bound b such that if the BMC didn’t find a bug at depth b, then
there is no bug. It will rely on the determination of an inductive invariant of the program.

We fix a transition system T = (S,∆, I,Bad), where S is the set of configuration, ∆
its successor relation, which we suppose total, I its initial set of configurations, and Bad
the set of bad configurations (in the course, Bad was always the set of configurations with
the bad state, but the algorithm would work for any set).

We recall that a sequence of configurations s0, · · · , sk is an execution if and only if the
following formula is true:

s0 ∈ I ∧
k−1∧
i=0

∆(si, si+1)

and that it is a faulty execution if and only if the following formula is true:

s0 ∈ I ∧
k−1∧
i=0

∆(si, si+1) ∧ sk ∈ Bad

Given an integer n and a set of configurations C, we say that C is n-inductive for T if,
for every s0, s1, · · · , sn−1 ∈ C, and sn ∈ S, if s0 → s1 → · · · → sn is a path of T , then sn
is in C. Informally, that means that there is no path in T such that the first n elements
are in C and the nth is not in C.

We call Good the complement of Bad.
We call n-GoodInd the property "Good is n-inductive", and n-Init the property "all

configurations reachable in at most n steps from a configuration of I are in Good".

Question 4 Prove that, for any transition system T , and set Bad, if there is a n such
that both n-Init and n-GoodInd hold, then the set Bad is not reachable in T .

Question 5 What formula(s) can you give to a SMT-solver to check if a transition system
T satisfy n-Init and n-GoodInd for a given n. You will suppose that ∆, Bad and I are
predicates over configurations you can directly use in the formula, and that you quantify
over configurations of T . Do not hesitate to cut your formulæ in sub-formulæ if needed.

Question 6 Deduce a variant of Bounded Model Checking which, given a transition system
T and a bound n checks if it is possible to prove the system to be correct using induction.

Is it closer to the Depth-First Search algorithm or the Global algorithm?

2



4TIN907EX 2019 – 2020

Question 7 Prove that the system of question 3 is correct using the procedure described
earlier, supposing Bad is the set of all configurations containing qbad.

qin q1

qbad

q2
x := 0, y := 0

x := 1

x := 0, y := y + 1

y = −1x = 1

Question 8 Will the process described earlier prove the previous system, where Bad is
the set of configurations containing qbad, to be correct? Why (we expect at least a detailed
explanation, or a proof)?

Question 9 Can you find a subset of Good which would satisfy n-Init and would be
n-inductive for some n? Does that suffices to prove the system to be correct?

2 Abstract Interpretation (6pts)

This section deals with abstract interpretation, and is divided into two independent subsec-
tions. The first subsection applies range analysis on an example and the second subsection
proves a property (mentioned in the course) on least fixpoint approximation.

2.1 Range analysis

We perform range analysis — this analysis was presented in the course — on the control-
flow automaton depicted below. This control-flow automaton has two variables x and y,
both ranging over integers. The initial location is qin and the bad location is qbad. Recall
that range analysis uses the abstract domain of intervals.

qin q1

q3

q2 qbad
x := 1

y ≥ 3

x < y

y := y − x

(x + y) < 2

x := x ∗ y

3



4TIN907EX 2019 – 2020

Like in the course, an analysis will be called successful when the abstract value ob-
tained for qbad is ⊥. Round-robin iteration shall use the following order on locations:
qin, q1, q2, q3, qbad.

Question 10 Apply the round-robin algorithm with widening. Do not use narrowing. Is
the analysis successful?

Question 11 Starting from the result of the previous question, perform a decreasing iter-
ation with narrowing. Is the analysis successful?

2.2 Least fixpoint approximation

We first recall some notions and notations from the course. For the remainder of this
subsection, we consider a complete lattice (L,v), with greatest lower bound written u
and least upper bound written t. A function f : L → L is called non-decreasing when
it satisfies (x v y =⇒ f(x) v f(y)) for every x, y ∈ L. The least fixpoint of a function
f : L→ L, if it exists, is denoted by lfp(f).

By the theorem of Knaster-Tarski, every non-decreasing function f : L → L on a
complete lattice (L,v) has a least fixpoint that satisfies lfp(f) =

d
{x ∈ L | f(x) v x}.

Question 12 Prove that for every subsets X ⊆ L and Y ⊆ L,

if X ⊆ Y then (
d
X) w (

d
Y ) .

Question 13 Prove that for every non-decreasing functions f : L→ L and g : L→ L,

if ∀x ∈ L : f(x) v g(x) then lfp(f) v lfp(g) .

3 TWO-SAT Interpolation (10pts)

A TWO-SAT formula is a SAT formula given as a conjunction of clauses that contain
only two literals. For instance (x1 ∨ ¬x2) is a TWO-SAT with literals x1 and ¬x2, and
(x1 ∨ ¬x2 ∨ x3) is not a TWO-SAT since this last clause involves three literals. In this
section, if l is a literal of the form ¬x for some variable x, then we identify ¬l with x.
Intuitively, ¬¬x = x.

Question 14 Provide a resolution tree proving that the TWO-SAT formula (x1 ∨ ¬x2) ∧
(¬x1 ∨ ¬x2) ∧ (x2 ∨ x3) ∧ (x2 ∨ ¬x3) is unsat.

Question 15 From the previous resolution tree, provide an interpolant for the decom-
position of the formula into the left part (x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x2) and the right part
(x2 ∨ x3) ∧ (x2 ∨ ¬x3).

We associate to a TWO-SAT formula φ the directed graph Gφ = (Vφ,→φ) defined as
follows:

• Vφ is the set of literals x or ¬x where x ranges over the variables occuring in φ, and

4



4TIN907EX 2019 – 2020

• →φ is a binary relation over Vφ defined by l→φ l
′ if ¬l ∨ l′ is a clause of φ.

Example 1 The directed graph associated to the formula (x1 ∨ ¬x2) is the following one:

x1 x2

¬x1 ¬x2

Question 16 Draw the directed graph associated to (x1 ∨¬x2)∧ (¬x1 ∨¬x2)∧ (x2 ∨x3)∧
(x2 ∨ ¬x3).

We introduce the binary relation ∗−→φ over the literals in Vφ defined by l ∗−→φ l
′ if there

exists a directed path in Gφ from l to l′.

Question 17 Prove that if l ∗−→φ l
′ then φ implies ¬l ∨ l′.

Question 18 Prove that if a cycle of Gφ contains a variable and its negation then φ is
unsat.

Now, let φL and φR be two TWO-SAT formulas, and let us introduce φ = φL ∧ φR.
Variables that occur both in φL and φR are called global variables. A literal x or ¬x where
x is a global variable is called a global literal. We assume that there exists a cycle in
Gφ that contains a variable and its negation. We introduce the TWO-SAT formula φI
obtained as the conjunction of the clauses ¬l∨ l′ for every pair (l, l′) of global literals such
that l ∗−→φL l

′.

Question 19 Prove that φL implies φI .

Question 20 Prove that φI ∧ φR is unsat.

Question 21 Deduce that φI is an interpolant for (φL, φR).

Question 22 The formula φI can be quadratic in size in the worst case. Provide some
intuitions on how to modify the construction of φI in order to obtain formulas of linear
sizes.

5


