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Software Verification

Wednesday, January 4th 2017, 3 hours

This assignment contains three independent parts: the first part deals with bounded
model-checking, the second part is about abstract interpretation, and the last part ad-
dresses the termination problem for Petri nets.

All documents are authorized during the examination

1 Bounded Model-Checking (8pts)

This section will browse a few concepts that have been seen in the first part of the course
(Bounded Model-Checking).

1.1 Binary Decision Diagrams

Question 1 Given A = (x∧y)∨(x∧t∧¬z)∨(y∧z) and B = (¬x∨y)∧(¬x∨z)∧(¬t∨y),
two propositional logic formula, build the resulting binary decision diagrams for A, B and
(A ∨B) ∧ (¬A ∧B) (order on variables is (top) x > y > z > t (bottom)).

1.2 Slitherlink: “Look like the innocent flower, but be the serpent under’t”

Slitherlink is a puzzle game similar to Sudoku which is played on a square lattice of dots.
Some of the cells formed by the dots have numbers inside them. The goal of the game is
to draw a single cycle without crossings along these edges, where the numbers in the cells
determine how many of the four surrounding edges have to be connected (see Figure 1).

Figure 1: An example of Slitherlink grid: Unsolved (left), Solved (right).
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Question 2 In fact, the “one and only one cycle” is a difficult constraint to encode. So,
the point is to modelize this game with propositional logic without the constraint of having
a unique cycle (you may have several independant cycles in your solution). Describe the
variables that you use and the way you will store a problem instance. Then, explain the
constraints that will encode the rules of the game (no crossing, satisfying cell’s numbers).

Hint (Question 2) Encoding that you have only cycle(s) (one or several) can be done
by adding constraints over the degree of each dot (the number of edges attached to dots).

Question 3 Think about a way to encode the “one and only one cycle” property. It might be
totally inefficient and produce an exponential size formula, but do not care about efficiency!

2 Range Analysis and Simple Congruence Analysis (8pts)

In this section, we analyze by abstract interpretation the control-flow automaton depicted
below. This control-flow automaton has two variables x and y, both ranging over the set
Z of integers. The initial location is qin and the bad location is qbad. Recall that ‘:=’
denotes an assignment and that ‘=’ denotes a condition. In all questions of this section,
round-robin iteration shall use the following order on locations: qin, q1, q2, qbad.

qin q1 q2 qbad
x := 1 y := 0

x := (x ∗ y) + 2

y := y + 3

x = 40

2.1 Range Analysis

The questions of this subsection are concerned with range analysis of the control-flow
automaton depicted above. This analysis was presented in the course.

Question 4 Apply the round-robin algorithm without widening and without narrowing.
Stop the round-robin iteration when the abstract value obtained for qbad is distinct from ⊥.

Question 5 Apply the round-robin algorithm with widening and without narrowing.

2.2 Simple Congruence Analysis

Let us first introduce a few notations. The sum X+Y and product X ·Y of two subsets X
and Y of Z are, respectively, the sets {x+ y | x ∈ X ∧ y ∈ Y } and {x · y | x ∈ X ∧ y ∈ Y }.
We abuse notation to reduce clutter by dropping dots in products and curly braces around
singletons. For instance, a+ bZ stands for {a}+ ({b} ·Z). For every integers a, b ∈ Z such

2



4TIN907U 2016 – 2017

that b > 0, the residue of a modulo b, written amod b, is the unique integer r ∈ {0, . . . , b−1}
such that a ∈ (r + bZ). The following facts, which can be used without proof, directly
follow from the definition.

Fact 1 For every integers a, b ∈ Z such that b > 0, it holds that a ∈ (amod b) + bZ.

Fact 2 For every integers a, b, r ∈ Z such that b > r ≥ 0, if a ∈ (r+bZ) then r = (amod b).

For the remainder of this subsection, we consider a fixed positive integer p > 0. Let A
denote the set of all subsets of {0, . . . , p − 1}. Observe that (A,⊆) is a complete lattice.
We define the functions α : P(Z)→ A and γ : A→ P(Z) as follows:

α(X) = {xmod p | x ∈ X} γ(M) = M + pZ

for every X ⊆ Z and M ⊆ {0, . . . , p− 1}.

Question 6 Prove that (P(Z),⊆) −−−→←−−−α
γ

(A,⊆) is a Galois connection.

By simple congruence analysis, we mean the abstract interpretation based on the above
Galois connection. Observe that a widening is not required here since the abstract lattice
(A,⊆) is finite. The following question instantiates simple congruence analysis for p = 6.

Question 7 Apply the round-robin algorithm to perform simple congruence analysis for
p = 6 of the control-flow automaton depicted above.

3 Petri Nets Termination Problem (10pts)

In this section (P, T, input, output) denotes a Petri net where P is a finite set of places,
T is a finite set of transitions, and input, output : T → P → N are the input and output
functions of the Petri net. We recall that a marking is a function m : P → N, and the
Petri net semantics is defined by introducing for each transition t ∈ T the binary relation
t−→ over the markings defined as follows:

x
t−→ y ⇐⇒ ∀p ∈ P : x(p) ≥ input(t)(p) ∧ y(p) = x(p)− input(t)(p) + output(t)(p)

We associate to every word σ = t1 . . . tk of transitions t1, . . . , tk in T the binary relation
σ−→ over the markings defined by x σ−→ y if there exists a sequence m0, . . . ,mk of markings
such that:

x = m0
t1−→ m1 · · ·

tk−→ mk = y

The reachability relation is the binary relation ∗−→ over the markings defined by x ∗−→ y
if there exists a word σ of transitions such that x σ−→ y.

We say that a Petri net is non-terminating from an initial marking minit if there exists
an infinite sequence t1, t2, . . . of transitions and an infinite sequence m0,m1,m2, . . . of
markings such that:

minit = m0
t1−→ m1

t2−→ m2 · · ·
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Otherwise, we say that the Petri net is terminating. The termination problem consists in
deciding if a Petri net is terminating or non-terminating from an initial marking.

The sum x+ y of two markings x, y is the marking defined by (x+ y)(p) = x(p) + y(p)
for every place p in P .

Question 8 Prove that x+m
∗−→ y +m for every markings x, y,m such that x ∗−→ y.

We introduce the partial order ≤ over the markings defined by x ≤ y if x(p) ≤ y(p) for
every place p in P .

Question 9 Assume that minit
∗−→ x

∗−→ y for some markings minit, x, y such that x ≤ y.
Prove that the Petri net is non-terminating from minit.

Question 10 Prove by induction over the cardinal of the set of places P that every infinite
sequence m0,m1,m2, . . . of markings contains an infinite non-decreasing for ≤ subsequence,
i.e. mi0 ≤ mi1 ≤ mi2 ≤ · · · where i0 < i1 < i2 < · · · . This result is called Dickson’s
Lemma.

Question 11 Prove that if the Petri net is non-terminating from the initial marking minit,
then there exists two markings x, y such that minit

∗−→ x
∗−→ y and x ≤ y.

Question 12 Explain in few lines how to decide the Petri net termination problem.
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