Software Verification

Wednesday, January 4th 2017, 3 hours

This assignment contains three independent parts: the first part deals with bounded model-checking, the second part is about abstract interpretation, and the last part addresses the termination problem for Petri nets.

All documents are authorized during the examination

1 Bounded Model-Checking

This section will browse a few concepts that have been seen in the first part of the course (Bounded Model-Checking).

1.1 Binary Decision Diagrams

Question 1 Given $A = (x \land y) \lor (x \land t \land \neg z) \lor (y \land z)$ and $B = (\neg x \lor y) \land (\neg x \lor z) \land (\neg t \lor y)$, two propositional logic formula, build the resulting binary decision diagrams for A, B and $(A \lor B) \land (\neg A \land B)$ (order on variables is (top) x > y > z > t (bottom)).

1.2 Slitherlink: "Look like the innocent flower, but be the serpent under't"

Slitherlink is a puzzle game similar to Sudoku which is played on a square lattice of dots. Some of the cells formed by the dots have numbers inside them. The goal of the game is to draw a single cycle without crossings along these edges, where the numbers in the cells determine how many of the four surrounding edges have to be connected (see Figure 1).

Figure 1: An example of Slitherlink grid: Unsolved (left), Solved (right).

Question 2 In fact, the "one and only one cycle" is a difficult constraint to encode. So, the point is to modelize this game with propositional logic without the constraint of having a unique cycle (you may have several independent cycles in your solution). Describe the variables that you use and the way you will store a problem instance. Then, explain the constraints that will encode the rules of the game (no crossing, satisfying cell's numbers).

Hint (Question 2) Encoding that you have only cycle(s) (one or several) can be done by adding constraints over the degree of each dot (the number of edges attached to dots).

Question 3 Think about a way to encode the "one and only one cycle" property. It might be totally inefficient and produce an exponential size formula, but do not care about efficiency!

2 Range Analysis and Simple Congruence Analysis (8pts)

In this section, we analyze by abstract interpretation the control-flow automaton depicted below. This control-flow automaton has two variables \mathbf{x} and \mathbf{y} , both ranging over the set \mathbb{Z} of integers. The initial location is q_{in} and the bad location is q_{bad} . Recall that ':=' denotes an assignment and that '=' denotes a condition. In all questions of this section, round-robin iteration shall use the following order on locations: $q_{in}, q_1, q_2, q_{bad}$.

2.1 Range Analysis

The questions of this subsection are concerned with range analysis of the control-flow automaton depicted above. This analysis was presented in the course.

Question 4 Apply the round-robin algorithm without widening and without narrowing. Stop the round-robin iteration when the abstract value obtained for q_{bad} is distinct from \perp .

Question 5 Apply the round-robin algorithm with widening and without narrowing.

2.2 Simple Congruence Analysis

Let us first introduce a few notations. The sum X + Y and product $X \cdot Y$ of two subsets Xand Y of \mathbb{Z} are, respectively, the sets $\{x + y \mid x \in X \land y \in Y\}$ and $\{x \cdot y \mid x \in X \land y \in Y\}$. We abuse notation to reduce clutter by dropping dots in products and curly braces around singletons. For instance, $a + b\mathbb{Z}$ stands for $\{a\} + (\{b\} \cdot \mathbb{Z})$. For every integers $a, b \in \mathbb{Z}$ such that b > 0, the residue of a modulo b, written $a \mod b$, is the unique integer $r \in \{0, \ldots, b-1\}$ such that $a \in (r + b\mathbb{Z})$. The following facts, which can be used without proof, directly follow from the definition.

Fact 1 For every integers $a, b \in \mathbb{Z}$ such that b > 0, it holds that $a \in (a \mod b) + b\mathbb{Z}$.

Fact 2 For every integers $a, b, r \in \mathbb{Z}$ such that $b > r \ge 0$, if $a \in (r+b\mathbb{Z})$ then $r = (a \mod b)$.

For the remainder of this subsection, we consider a fixed positive integer p > 0. Let A denote the set of all subsets of $\{0, \ldots, p-1\}$. Observe that (A, \subseteq) is a complete lattice. We define the functions $\alpha : \mathcal{P}(\mathbb{Z}) \to A$ and $\gamma : A \to \mathcal{P}(\mathbb{Z})$ as follows:

$$\alpha(X) = \{x \mod p \mid x \in X\} \qquad \qquad \gamma(M) = M + p\mathbb{Z}$$

for every $X \subseteq \mathbb{Z}$ and $M \subseteq \{0, \ldots, p-1\}$.

Question 6 Prove that $(\mathcal{P}(\mathbb{Z}), \subseteq) \xrightarrow{\gamma} (A, \subseteq)$ is a Galois connection.

By simple congruence analysis, we mean the abstract interpretation based on the above Galois connection. Observe that a widening is not required here since the abstract lattice (A, \subseteq) is finite. The following question instantiates simple congruence analysis for p = 6.

Question 7 Apply the round-robin algorithm to perform simple congruence analysis for p = 6 of the control-flow automaton depicted above.

3 Petri Nets Termination Problem (10pts)

In this section (P, T, input, output) denotes a *Petri net* where P is a finite set of *places*, T is a finite set of *transitions*, and input, $\text{output} : T \to P \to \mathbb{N}$ are the input and output functions of the Petri net. We recall that a *marking* is a function $m : P \to \mathbb{N}$, and the Petri net semantics is defined by introducing for each transition $t \in T$ the binary relation $\stackrel{t}{\to}$ over the markings defined as follows:

$$x \xrightarrow{t} y \iff \forall p \in P : x(p) \ge \operatorname{input}(t)(p) \land y(p) = x(p) - \operatorname{input}(t)(p) + \operatorname{output}(t)(p)$$

We associate to every word $\sigma = t_1 \dots t_k$ of transitions t_1, \dots, t_k in T the binary relation $\xrightarrow{\sigma}$ over the markings defined by $x \xrightarrow{\sigma} y$ if there exists a sequence m_0, \dots, m_k of markings such that:

$$x = m_0 \xrightarrow{t_1} m_1 \cdots \xrightarrow{t_k} m_k = y$$

The *reachability relation* is the binary relation $\xrightarrow{*}$ over the markings defined by $x \xrightarrow{*} y$ if there exists a word σ of transitions such that $x \xrightarrow{\sigma} y$.

We say that a Petri net is *non-terminating* from an initial marking m_{init} if there exists an infinite sequence t_1, t_2, \ldots of transitions and an infinite sequence m_0, m_1, m_2, \ldots of markings such that:

$$m_{\text{init}} = m_0 \xrightarrow{t_1} m_1 \xrightarrow{t_2} m_2 \cdots$$

Otherwise, we say that the Petri net is *terminating*. The termination problem consists in deciding if a Petri net is terminating or non-terminating from an initial marking.

The sum x + y of two markings x, y is the marking defined by (x + y)(p) = x(p) + y(p) for every place p in P.

Question 8 Prove that $x + m \xrightarrow{*} y + m$ for every markings x, y, m such that $x \xrightarrow{*} y$.

We introduce the partial order \leq over the markings defined by $x \leq y$ if $x(p) \leq y(p)$ for every place p in P.

Question 9 Assume that $m_{init} \xrightarrow{*} x \xrightarrow{*} y$ for some markings m_{init}, x, y such that $x \leq y$. Prove that the Petri net is non-terminating from m_{init} .

Question 10 Prove by induction over the cardinal of the set of places P that every infinite sequence m_0, m_1, m_2, \ldots of markings contains an infinite non-decreasing for \leq subsequence, *i.e.* $m_{i_0} \leq m_{i_1} \leq m_{i_2} \leq \cdots$ where $i_0 < i_1 < i_2 < \cdots$. This result is called Dickson's Lemma.

Question 11 Prove that if the Petri net is non-terminating from the initial marking m_{init} , then there exists two markings x, y such that $m_{init} \stackrel{*}{\to} x \stackrel{*}{\to} y$ and $x \leq y$.

Question 12 Explain in few lines how to decide the Petri net termination problem.