
4TIN907U 2018 – 2019

Software Verification

Wednesday, January 9th 2019, 3 hours

This assignment contains three independent parts: the first part deals with bounded
model-checking, the second part is about abstract interpretation, and the last part ad-
dresses predicate abstraction.

All documents are authorized during the examination
Answers can be written in French

1 Bounded Model-Checking (10pts)

This section will browse a few concepts that have been seen in the first part of the course
(Bounded Model-Checking).

1.1 Principles

We start with some questions to check your understandings of the Bounded Model-Checking
algorithms. We recall that given a transition system T , the Bounded Model-Checking at
depth n explore all executions of size at most n and check if one of them reach an unde-
sirable state (such an execution is called faulty).

Question 1 A Bounded Model-Checking search can return three answers: Counter-example
found, No counter-example found (exhaustive), No counter-example found (non-exhaustive).

For each possible answer, explain what the answer means about the presence of a faulty
execution, its size, and the size of all executions of the model.

Question 2 We have seen in course two algorithm : Depth-First Search, and Global.
Recall briefly how the executions are explored in the two algorithms and what guarantee
they give on the faulty execution they return if they return one.

1.2 Wolf, Goat and Cabbage

The goal of this exercise is to model the following problem and use the Bounded-Model
Checking to solve it. Of course, here, the “counter-example” will represent the desired
output and not a faulty execution.

“A farmer travels with a cabbage, a goat and a wolf. He wants to cross a river
but there is only a small boat which can only carry himself plus one of its animal
or vegetable (the cabbage is very big). The problem is, if he leaves the goat with
the cabbage, or the wolf with the goat without him being present, there will be
casualties. How can the river can be crossed without anyone being eaten? ”

1

4TIN907U 2018 – 2019

Question 3 Give an automaton representing the problem (it should contain 16 states if
you represent everything), and mark the goal state (everybody is at the other side of the
river). Use clear and short names for the states. Don’t put outgoing transitions on the
states where someone gets eaten. For the sake of simplicity, you can merge all the states
where someone gets eaten.

Question 4 Perform the Bounded Model-Checking with the Depth-First Search algorithm,
with the exploration order nobody < cabbage < goat < wolf and max depth 10. You should
represent the algorithm as a tree (you can stop at the first solution found).

Question 5 Is there a shorter solution? If so, give it. How could you prove that a solution
is the shortest one?

2 Abstract Interpretation with Closure Operators (10pts)

The main objective of this section is to show that abstract interpretation, which was
presented using Galois connections in the course, can also be phrased in terms of closure
operators.

We start by recalling some basic notions. A function f : L → L on a complete lattice
(L,v) is called

• monotonic if (x v y =⇒ f(x) v f(y)) for every x, y ∈ L,

• reductive if f(x) v x for every x ∈ L,

• extensive if f(x) w x for every x ∈ L,

• idempotent if f(x) = f(f(x)) for every x ∈ L.

We also recall the characterization of Galois connections that was given in the course. Given
two complete lattices (C,v) and (A,�), a pair of functions α : C → A and γ : A→ C forms
a Galois connection, written (C,v) −−−→←−−−α

γ
(A,�), if, and only if, α and γ are monotonic,

α ◦ γ is reductive, and γ ◦ α is extensive.

We now introduce the notion of closure operator and show that every Galois connection
induces a closure operator. A closure operator on a complete lattice (L,v) is a function
cl : L→ L that is monotonic, extensive and idempotent.

Question 6 Prove that, for every Galois connection (C,v) −−−→←−−−α
γ

(A,�), the function γ◦α
is a closure operator.

The proof that every closure operator induces a Galois connection will require more
work. For the remainder of this section, we fix a complete lattice (L,v) and a closure
operator cl on L. The greatest lower bound and least upper bound of (L,v) are written
u and t, respectively.

An element x ∈ L is called closed if cl(x) = x. Observe that, by idempotence, the set
cl(L)

def
= {cl(x) | x ∈ L} is the set of all closed elements of L. The following lemma is

admitted without proof, and can be used to solve the next question.

2

4TIN907U 2018 – 2019

qin q1

q2

qbad
x := 1

x ≤ 100 x := x + 3

x = 0

Figure 1: Control-flow automaton of Question 9.

Lemma 1 Let M be a subset of L. If uX is in M for every subset X ⊆M , then (M,v)
is a complete lattice.

Question 7 Prove that that (cl(L),v) is a complete lattice.

Question 8 Prove that (L,v) −−−→←−−−
cl

id
(cl(L),v) is a Galois connection.1

We conclude this section with an application to program analysis by abstract interpre-
tation. Consider the function θ : P(Z)→ P(Z) defined by

θ(X) =

{
X if X is finite and |X| ≤ 3

Z otherwise

In the above definition, |X| denotes the cardinal of X. It is easily seen that θ is a closure
operator on the complete lattice (P(Z),⊆). Therefore, (θ(P(Z)),⊆) is a complete lattice
by Question 7 and (P(Z),⊆) −−−→←−−−

θ

id
(θ(P(Z)),⊆) is a Galois connection by Question 8.

Consider the control-flow automaton depicted in Figure 1. This control-flow automaton
has one variable x, which ranges over integers. The initial location is qin and the bad
location is qbad. Recall that ‘:=’ denotes an assignment and that ‘=’ denotes a condition.
Like in the course, an analysis will be called successful when the abstract value obtained
for qbad has an empty concretization. Round-robin iteration shall use the following order
on locations: qin, q1, q2, qbad.

Question 9 Apply the round-robin algorithm to analyze the control-flow automaton de-
picted in Figure 1 using the Galois connection (P(Z),⊆) −−−→←−−−

θ

id
(θ(P(Z)),⊆). Is the anal-

ysis successful?

3 Predicate Abstraction (10pts)

In the sequel, X is a finite set of variables of a program, and a valuation is a mapping
ρ : X → Z. A predicate p is a formula over X. We denote by JpK the set of valuations

1The function id : cl(L) → L is the identity function (i.e., id(x) = x for all x ∈ cl(L)).

3

4TIN907U 2018 – 2019

satisfying p. We denote by T the four-values domain {>,⊥, false, true} equipped with the
partial order v defined by s v t if s = ⊥ ∨ t = > ∨ s = t.

Let P be a finite set of predicates. We introduce the set of trivectors P → T partially
ordered by the component-wise extension vP of v defined by s vP t if s(p) v t(p) for
every p ∈ P . We also introduce the Galois connection (P(X → Z),⊆) −−−−→←−−−−

αP

γP
(TP ,vP)

where αP is defined for every set V of valuations and for every predicate p in P by:

αP (V)(p) =

⊥ if V = ∅
true if ∅ 6= V ⊆ JpK
false if ∅ 6= V ⊆ J¬pK
> otherwise

Question 10 Explain the following inclusion:

{αP (V) | V ∈ P(X → Z)} ⊆ {P → {⊥}} ∪ {P → {true, false,>}}

Question 11 Provide a formula over X that is unsatisfiable if, and only if, γP (t) is empty
where t : P → T is a trivector. An answer without a proof will not be considered.

We introduce a set X ′ of disjoint copies of X. The copy of a variable x in X is the
variable x′ in X ′. Given a predicate p, we denote by p′ the formula obtained from p by
replacing every variable x by its copy x′.

We denote by Op the set of operations over X. Given an operation op in Op, we denote
by op−→ the binary relation over the valuations defined by ρ

op−→ ρ′ if ρ′ is the valuation
obtained from ρ after executing op. We also denote by φop the formula over X ∪X ′ such
that a mapping µ : X ∪X ′ → Z is satisfying φop if, and only if, ρ op−→ ρ′ where ρ, ρ′ are the
valuations defined by ρ(x) = µ(x) and ρ′(x) = µ(x′) for every x ∈ X.

We are interested in analyzing programs with trivectors. During the lecture, we as-
sociated a finite set of predicates to a program. In order to improve the scalability of
the analysis, we are interested in associating a finite set of predicates to each location of
the program. In order to perform an analysis, we must provide the effect in the trivector
abstract domain of a transition labeled by an operation op from a location with a set P of
predicates to a location with a set Q of predicates.

To do so, let s : P → T be a trivector and let us introduce the trivector t : Q → T
defined as follows:

t = αQ({ρ′ : X → Z | ∃ρ ∈ γP (s) | ρ
op−→ ρ′})

Let q be a predicate in Q.

Question 12 Provide a formula over X ∪ X ′ that is unsatisfiable if, and only if t(q) ∈
{⊥, true}. An answer without a proof will not be considered.

Question 13 Provide a formula over X ∪ X ′ that is unsatisfiable if, and only if t(q) ∈
{⊥, false}. An answer without a proof will not be considered.

4

4TIN907U 2018 – 2019

Question 14 Deduce an algorithm for computing t.

Question 15 Explain how to modify the CEGAR loop in order to perform an analysis
such that the sets of predicates depend on the locations.

Question 16 Explain why the new algorithm is progressing at each iteration of the CE-
GAR loop.

5

