
4TIN918EX 2020 – 2021

Software Verification

Monday, January 11th 2021, 3 hours

This assignment contains three independent parts: the first part deals with bounded
model-checking, the second part is about abstract interpretation, and the last part ad-
dresses algorithmic representations of upward-closed sets.

All documents are authorized during the examination
Answers can be written in French

1 Bounded Model-Checking (10pts)

This section will browse a few concepts that have been seen in the first part of the course
(Bounded Model-Checking).

1.1 Principles

We start with some questions to check your understandings of the Bounded Model-Checking
algorithms. We recall that given a transition system T , the Bounded Model-Checking at
depth n explore all executions of size at most n and check if one of them reach an unde-
sirable state (such an execution is called faulty).

Question 1 A Bounded Model-Checking search can return three answers: Counter-example
found, No counter-example found (exhaustive), No counter-example found (non-exhaustive).

For each possible answer, explain what the answer means about the presence of a faulty
execution, its size, and the size of all executions of the model.

Question 2 We have seen in course two algorithm : Depth-First Search, and Global.
Recall briefly how the executions are explored in the two algorithms and what guarantee
they give on the faulty execution they return if they return one.

qin q1

q2

q3

q4qbad

x := 0, y := 0

x := x + 1 x := x + 1

y := y + 1

x := x + 1

(x× y) mod 2 = 0

x mod 2 6= 0

y > x

1



4TIN918EX 2020 – 2021

Question 3 Apply the bounded model-checking algorithm to the previous system up to
bound 7: draw the exploration tree displaying the formulæ added (only the added one not
the complete formula) at each step in the Depth-First Search algorithm, highlight the un-
satisfiable ones, and give the result of the algorithm.

Is there a bound on which the algorithm would give a different answer? Justify.

1.2 Bounded Model-Checking with quantifier free FO-property

During the scope of the course, we focused on checking reachability properties, i.e., we
actually only checked properties of the form "qbad is not reachable". The objective of this
part is to prove it is equivalent to check properties expressed in quantifier free First-Order
Logic (FO).

Question 4 We consider a CFA A. In this question, we focus only on one of its states
q1. We consider the following formula ϕ(q, x1, · · · , xn) ::= (q = q1)⇒ (x1 ≤ 0).

Give a CFA A[q1, ϕ] (a drawing is perfectly acceptable) such that, if you replace the
state q1 of A with A[q1, ϕ] (precise where in it you plug the input and output transitions of
q1), you get a new CFA B such that some state qbad (of A[q1, ϕ]) is not reachable in B if
and only if every reachable configuration (q, x1, · · · , xn) of A satisfies ϕ.

Question 5 Prove the above equivalence.

Question 6 We now consider a more general formula ϕ(q, x1, · · · , xn) ::= (q = q1) ⇒
ψ(Var), where ψ is an arbitrary formula using only variables from Var.

Inductively construct a CFA A[q1, ϕ] as in question 4. To do so, do it by iterating on
the structure of the formula (you have already done the base case in question 2, so you
only need to explain the construction for conjunction and disjunction). You might need to
name some subautomata.

Question 7 Let us now consider the general case. We have a quantifier-free formula ϕ,
that, without loss of generality, we suppose of the form

∧
qa∈QA

((q = qa)⇒ ψqa(Var)).
Given a CFA A, describe a CFA Aϕ such that ϕ is satisfied on every reachable config-

uration of A if and only if a distinguished bad state is not reachable in Aϕ.

Question 8 Suppose that, in the previous case, there is bug of length k in A. With what
bound (at worst) must you run a BMC algorithm on Aϕ to find it?

2



4TIN918EX 2020 – 2021

2 Abstract Interpretation (10pts)

This section deals with precision improvement in abstract interpretation based range anal-
ysis. The first subsection applies range analysis on a simple example, using the standard
widening and narrowing operators (i.e., those presented in the course). The second sub-
section investigates a generic technique to refine widening operators and then applies this
technique on the same simple example.

2.1 Range analysis with standard widening and narrowing

We perform range analysis — this analysis was presented in the course — on the control-
flow automaton depicted below. This control-flow automaton has a single variable x,
ranging over integers. The initial location is qin and the bad location is qbad. Recall that
range analysis uses the abstract domain of intervals.

qin q1 q2 qbad
x := 0

x < 60

x := x + 3

x > 120

x := x − 5

Like in the course, an analysis is called successful when the abstract value obtained for
qbad is ⊥. Round-robin iteration shall use the following order on locations: qin, q1, q2, qbad.

Question 9 Apply the round-robin algorithm with widening. Do not use narrowing. Is
the analysis successful?

Question 10 Starting from the result of the previous question, perform a decreasing iter-
ation with narrowing. Is the analysis successful?

2.2 Widening up-to and application to range analysis

As observed in the course and in the previous subsection, a widening operator may intro-
duce too much imprecision. We shall remedy this situation using a simple technique called
widening “up-to”.

Let us first recall some notions and notations from the course. Consider a complete
lattice (L,v), with greatest lower bound written u and least upper bound written t. A
widening operator for (L,v) is a function ∇ : (L× L)→ L such that:

1. for every x, y ∈ L, it holds that (x t y) v (x∇ y), and

3



4TIN918EX 2020 – 2021

2. for every ascending chain x0 v x1 v · · · of elements of L, the ascending chain
y0 v y1 v · · · defined by{

y0 = x0

yi+1 = yi∇xi+1 for all i ∈ N

is not strictly increasing (i.e., yi+1 = yi for some i ∈ N).

The remainder of this section focuses on a generic technique to refine widening opera-
tors. Assume that we are given firstly a widening operator ∇ for a complete lattice (L,v),
and secondly a finite subsetM of L. We let ∇upto

M denote the function ∇upto
M : (L×L)→ L

defined by
x∇upto

M y = (x∇ y) u
l
{m ∈M | x v m ∧ y v m} .

The idea behind this definition is to apply the widening operator ∇ and then refine its
result by “intersecting” it with the elements of M that are greater than or equal to both
arguments x and y. The first observation is that ∇upto

M is always more precise than ∇.

Question 11 Prove that for every x, y ∈ L, it holds that (x∇upto
M y) v (x∇ y).

The second observation is that ∇upto
M verifies the first condition1 in the definition of

widening operators.

Question 12 Prove that for every x, y ∈ L, it holds that (x t y) v (x∇upto
M y).

We now restrict our attention to range analysis. This means that the complete lattice
(L,v) is assumed to be the abstract lattice of intervals (Int,v), and the widening operator
∇ is assumed to be the standard widening operator over intervals (i.e., the one that was
used in the previous subsection). Both have been presented in the course. The following
fact, which is admitted, allows us to replace ∇ by ∇upto

M in the round-robin algorithm.

Fact 1 (Admitted) For every finite subset M ⊆ Int, the function ∇upto
M is a widening

operator for (Int,v).

For the two following questions, we consider the finite set M ⊆ Int defined by

M = {(−15, 7), (−7,+∞), (−∞, 78), (−∞, 82)} .

Question 13 Compute the following abstract intervals and write the details of your com-
putations:

1. ⊥∇upto
M (0, 0),

2. (0, 0)∇upto
M (−2, 3),

3. (−10, 0)∇upto
M (−10, 5),

4. (−∞, 99)∇upto
M (−∞, 100),

Question 14 Apply the round-robin algorithm with widening ∇upto
M and without narrow-

ing on the control-flow automaton depicted in Subsection 2.1. Is the analysis successful?

1In fact, ∇upto
M is not a widening operator in general as the second condition is not necessarily satisfied.

4



4TIN918EX 2020 – 2021

3 Upward-closed Sets (10pts)

Given a natural number d, we denote by Nd the set of d-dimensional vectors over the set
of natural numbers N. We extend the total order ≤ over the natural numbers N as a
partial order, also denoted as ≤, over Nd defined by ~x ≤ ~y if there exists ~v ∈ Nd such that
~y = ~x+ ~v where the sum is defined component-wise.

Given a vector ~x ∈ Nd, we denote by ↑ ~x the set {~v ∈ Nd | ~x ≤ ~v}. Given a set ~X ⊆ Nd,
we also introduce the set ↑ ~X defined as

⋃
~x∈ ~X ↑ ~x. The set ~X is said to be upward-closed

if ~X =↑ ~X.

Question 15 Assume that ~X1 and ~X2 are two upward-closed sets. Show that ~X1∩ ~X2 and
~X1 ∪ ~X2 are upward-closed.

A basis of an upward-closed set ~U is a set ~B ⊆ ~U such that ~U =↑ ~B.

3.1 Algorithms for Inclusion, Union, and Intersection

In this section, we assume that ~B1 and ~B2 are two finite bases of two upward-closed sets
~X1 and ~X2.

Question 16 Provide an algorithm deciding ~X1 ⊆ ~X2 from ~B1 and ~B2.

Question 17 Provide an algorithm computing a finite basis of ~X1 ∪ ~X2 from ~B1 and ~B2.

Given two vectors ~b1 and ~b2 in Nd. We denote by max(~b1,~b2) the vector ~b in Nd defined
by ~b(i) = max(~b1(i),~b2(i)) for every 1 ≤ i ≤ d.

Question 18 Show that (↑ ~b1) ∩ (↑ ~b2) =↑ max(~b1,~b2).

Question 19 Provide an algorithm computing a finite basis of ~X1 ∩ ~X2 from ~B1 and ~B2.

3.2 Characteristic Bases

A vector ~m in a set ~X ⊆ Nd is said to be minimal if for every ~x ∈ ~X the relation ~x ≤ ~m
implies ~x = ~m. The set of minimal elements of ~X is denoted by min ~X. Let us recall from
the Dickson’s Lemma that min ~U is a finite basis of ~U for every upward-closed set ~U . The
set min ~U is called the characteristic basis of ~U .

Question 20 Assume that ~B1 and ~B2 are the characteristic bases of two upward-closed
sets ~U1 and ~U2. Show that the equality ~U1 = ~U2 is equivalent to the equality ~B1 = ~B2.

Question 21 Assume that ↑ ~X =↑ ~Y for two sets ~X, ~Y ⊆ Nd. Show that min ~X ⊆ min ~Y .
Deduce that min ~X = min ~Y in that case.

Question 22 Assume that ~B is a basis of an upward-closed set ~U . Show that min ~B is
the characteristic basis of ~U .

5


