
4TIN918EX 2022 – 2023

Software Verification

Monday, January 9th 2023, 3 hours

This assignment contains three independent parts: the first part deals with bounded
model-checking, the second part is about trivector abstraction, and the last part addresses
abstract interpretation.

All documents are authorized during the examination
Answers can be written in French

1 Bounded Model-Checking (10pts)

This section will browse a few concepts that have been seen in the first part of the course
(Bounded Model-Checking).

1.1 Principles

We start with some questions to check your understandings of the Bounded Model-Checking
algorithms. We recall that given a transition system T , the Bounded Model-Checking at
depth n explores all executions of length at most n and checks if one of them reaches an
undesirable state (such an execution is called faulty).

Question 1 A Bounded Model-Checking search can return three answers: Counter-example
found, No counter-example found (exhaustive), No counter-example found (non-exhaustive).

For each possible answer, explain what the answer means about the presence of a faulty
execution, its size, and the size of all executions of the model.

Question 2 We have seen in the course two algorithms: Depth-First Search, and Global.
Recall briefly how the executions are explored in the two algorithms and what guarantee
they give on the faulty execution they return if they return one.

1.2 Executing on an example

qin q1

q2

q3 qbad
x := 2

x <= p ∗ q

x >= p ∗ q

x := x + 1

x mod p = 0

∧ x mod q = 0

1



4TIN918EX 2022 – 2023

Observe that in the system depicted above, we have allowed to test two conditions at
the same time (to shorten the model for making the paper exploration easier). You will of
course use formulæ that do the two at the same time.

The state q2 is considered to be the ending state of the program. qbad is of course the
error state that we want to test if it is reachable or not.

p and q are constants in the whole program (they can be seen as arguments). In all this
exercise, we will suppose they are strictly bigger than 1 (as otherwise, the system makes
little sense).

Question 3 We consider in this question that p = 2 and q = 3.
Apply the bounded model-checking algorithm to the previous system up to bound 6: draw

the exploration tree displaying the formulæ added (only the added one not the complete
formula) at each step in the Depth-First Search algorithm, highlight the unreachable nodes,
and give the result of the algorithm.

Question 4 Is there a bound on which the algorithm would give a different answer (still
with p = 2 and q = 3)? Justify (either explain why the algorithm will always answer
correct, or give a failing execution).

In case there is a faulty execution, propose a modifications to the tests starting in q1
that will ensure the system is correct (still with p = 2 and q = 3)

Question 5 We now consider arbitrary values for p and q. Is the system correct in that
case (taking into account your previous correction)?

If not, for which values of p and q is the system incorrect, and for which one is it
correct? Justify your answer.

1.3 The Bounded Variable Case

In this section, we suppose that we work on a system with states Q and n variables on
which it has already be proven that the values of the variables are at any time between 0
and m, for some integer m.

Question 6 Prove that in that setting, the Bounded Model-Checking is complete, i.e. there
exists a bound k for which if the algorithm has not found a counter-example, we know there
is none, even for longer executions (even if the algorithm answered Non-exhaustive).

You will precise the bound for which we can be certain the algorithm is complete, by
expressing it with respect to |Q|, n and m.

What is thus the worst-case complexity of BMC in this case?

Question 7 The goal of this question is to explore a trade-off of on time and space com-
plexity we can make, if we throw the Bounded Model-Checking to the trash and try to
directly solve model-checking.

We consider we have access to a hashtable structure that can associate to every con-
figuration a boolean, and have (amortised) constant cost of accessing and modifying values
(which is a realistic assumption: it is the case for the module Hashtbl in OCaml). Suppose
that on this structure, you have two functions : add(table,key,value) that associates

2



4TIN918EX 2022 – 2023

value to key in table, and find(table,key) that returns the value associated to key in
table (and returns false if the key is absent).

With that in mind, propose an algorithm for Model-Checking that uses a hashtable,
and no SMT-solver, and explores the descendants of any configuration at most once. Give
a detailed pseudo-code of it, where you suppose that (as in the project) you can access
every useful element of your automaton (like the successors of a node), and you can iterate
over arbitrary structures (like lists or sets). This pseudo-code can be pseudo-imperative or
pseudo-OCaml (as you prefer).

What is the time complexity of your algorithm (in the number of configurations, that
you will express with respect to |Q|, n and m)?

What is its space complexity?
If we suppose (as it is reasonable) that m is given in binary, what is the complexity of

this algorithm (both time and space) with respect to its input size? Is it thus a reasonable
algorithm (your answer should be nuanced)?

3



4TIN918EX 2022 – 2023

2 Trivector Abstraction (8pts)

We consider the control-flow automaton depicted in Figure 1 where variables {x, b} are
valued over the integers. We are interested in proving that whatever the initial valuation
of x and b, the location qbad is not reachable from qin.

qin q1 q2 q3

qbad

b := 1 x := x ∗ 2

b := 1− b

x := x+ 1

x = b

Figure 1: A control-flow automaton.

Question 8 Let us first consider the control-flow automaton depicted in Figure 1 but with
the assignment x := x+ 1 replaced by x := x+ b. Provide a concrete trace explaining why
the location qbad is reachable from qin in that case.

Now, we come back to the control-flow automaton depicted Figure 1.

Question 9 Provide an unsatisfiable logical formula explaining why the trace qin
b:=1−−−→

q1
x:=x∗2−−−−→ q2

x=b−−→ qbad is spurious.

Question 10 Provide a path invariant (ϕ0, ϕ1, ϕ2, ϕ3) for the trace of the previous question
based on a weakest precondition computation. Justify that ϕ0 is equivalent to true.

Question 11 We consider the predicates p1 = (b = 1) and p2 = (x− b is even). Provide
the (reachable part) of the abstract transition system for the trivector abstraction starting
from the node (qin, (⋆, ⋆)).

Question 12 Deduce for each location q a predicate ϕq in such a way ϕqin is true, ϕqbad

is false, and such that for every transition p
op−→ q, we have:

postop(JϕpK) ⊆ JϕqK

4



4TIN918EX 2022 – 2023

3 Abstract Interpretation (12pts)

The main objective of this section is to show that abstract interpretation, which was
presented using Galois connections in the course, can also be phrased in terms of so-called
closure operators.

3.1 Abstract interpretation with closure operators

We start by recalling some basic notions. A complete lattice is a partially-ordered set (L,⊑)
such that every subset X ⊆ L admits a greatest lower bound and a least upper bound. A
function f : L→ L on a complete lattice (L,⊑) is called

• monotonic if (x ⊑ y =⇒ f(x) ⊑ f(y)) for every x, y ∈ L,

• reductive if f(x) ⊑ x for every x ∈ L,

• extensive if f(x) ⊒ x for every x ∈ L,

• idempotent if f(x) = f(f(x)) for every x ∈ L.

We also recall the characterization of Galois connections that was given in the course. Given
two complete lattices (C,⊑) and (A,⪯), a pair of functions α : C → A and γ : A→ C forms
a Galois connection, written (C,⊑) −−−→←−−−α

γ
(A,⪯), if, and only if, α and γ are monotonic,

α ◦ γ is reductive, and γ ◦ α is extensive.

We now introduce the notion of closure operator and show that every Galois connection
induces a closure operator. A closure operator on a complete lattice (L,⊑) is a function
σ : L→ L that is monotonic, extensive and idempotent.

Question 13 Assume that (C,⊑) and (A,⪯) are two complete lattices. Prove that, for
every Galois connection (C,⊑) −−−→←−−−α

γ
(A,⪯), the function γ ◦ α is a closure operator.

The proof that every closure operator induces a Galois connection will require more
work. For the remainder of this subsection, we fix a complete lattice (C,⊑) and a closure
operator σ on C. The greatest lower bound and least upper bound of (C,⊑) are written
⊓ and ⊔, respectively.

An element c ∈ C is called closed if σ(c) = c. Let A denote the set of all closed
elements of C. Observe that, by idempotence, we have A = {σ(c) | c ∈ C}. Let ⪯ denote
the restriction to A of the partial order ⊑ on C. Formally, ⪯ is the intersection of ⊑ and
(A × A). Observe that ⪯ is a partial order on A. Our first objective is to show that the
partially-ordered set (A,⪯) is a complete lattice.

Question 14 Let X ⊆ A. Prove that σ(⊔X) is the least upper bound of X in (A,⪯).

Question 15 Let X ⊆ A. Prove that ⊓X is closed (i.e., σ(⊓X) = ⊓X). Deduce that ⊓X
is the greatest lower bound of X in (A,⪯).

We have shown that (A,⪯) is a complete lattice with greatest lower bound ∧ and least
upper bound ∨ verifying ∧X = ⊓X and ∨X = σ(⊔X), for every subset X ⊆ A.

Question 16 Prove that (C,⊑) −−−→←−−−σ
id

(A,⪯) is a Galois connection.1
1The function id : A → C is the identity function (i.e., id(a) = a for all a ∈ A).

5



4TIN918EX 2022 – 2023

qin q1 q2 qbad
x := 0

x > 1

x := x − 2

x < 2

x := x + 4

Figure 2: Control-flow automaton of Question 19.

3.2 Application to program analysis

We now apply the results of the previous subsection to program analysis by abstract
interpretation. Assume a fixed parameter t ∈ N which shall serve as a threshold. Consider
the function θ : P(Z)→ P(Z) defined by θ(S) = S− ∪ S0 ∪ S+ where S0 = S ∩ [−t, t] and

S− =

{
]−∞,−t[ if ∃s ∈ S : s < −t
∅ otherwise

S+ =

{
]t,+∞[ if ∃s ∈ S : s > t

∅ otherwise

For instance, assuming that the threshold t is 5, we have θ({−1, 2, 4}) = {−1, 2, 4} and
θ({−7, 2, 4}) = ]−∞,−5[∪{2, 4}.

Question 17 Prove that θ is a closure operator on the complete lattice (P(Z),⊆).

As in subsection 3.1, we let A = {θ(S) | S ⊆ Z} denote the set of closed elements of
P(Z), and we write ⪯ the restriction to A of the partial order ⊆ on P(Z). The results of
subsection 3.1 ensure that (A,⪯) is a complete lattice and that (P(Z),⊆) −−−→←−−−

θ

id
(A,⪯) is

a Galois connection.

Question 18 Does the abstract lattice (A,⪯) satisfy the ascending chain condition? Jus-
tify your answer.

Consider the control-flow automaton depicted in Figure 2. This control-flow automaton
has a single variable x, which ranges over integers. The initial location is qin and the bad
location is qbad. Like in the course, an analysis will be called successful when the abstract
value obtained for qbad has an empty concretization. Round-robin iteration shall use the
following order on locations: qin, q1, q2, qbad.

Question 19 Apply the round-robin algorithm to analyze the control-flow automaton de-
picted in Figure 2 using the Galois connection (P(Z),⊆) −−−→←−−−

θ

id
(A,⪯), assuming that the

threshold t is 5. Is the analysis successful?

6


