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Software Verification

Monday, January 15th 2024, 3 hours

This assignment contains three independent parts: the first part deals with bounded
model-checking, the second part is about cartesian abstraction, and the last part addresses
abstract interpretation.

All documents are authorized during the examination
Answers can be written in French

1 Bounded Model-Checking (12pts)

This section will browse a few concepts that have been seen in the first part of the course
(Bounded Model-Checking).

1.1 Principles

We start with some questions to check your understandings of the Bounded Model-Checking
algorithms. We recall that given a transition system T , the Bounded Model-Checking at
depth n explores all executions of length at most n and checks if one of them reaches an
undesirable state (such an execution is called faulty).

Question 1 A Bounded Model-Checking search can return three answers: Counter-example
found, No counter-example found (exhaustive), No counter-example found (non-exhaustive).

For each possible answer, explain what the answer means about the presence of a faulty
execution, its size, and the size of all executions of the model.

Question 2 We have seen in the course two algorithms: Depth-First Search, and Global.
Recall briefly how the executions are explored in the two algorithms and what guarantee
they give on the faulty execution they return if they return one.

1.2 Backward versus Forward

We consider the following program:

y = n+1;
x = −n ;
whi l e ( y >= 0){

y = y−1;
a s s e r t ( x+y == 0 ) ;
x = x+1;

}

We suppose that n is a value that is fixed before that code, which can be any integer.
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Question 3 Give the control-flow automaton corresponding to that code. If you have skip
edges of the form q

skip−−→ q′ such that q has no other outgoing edges, merge q and q′ (in
order to get a smaller automaton).

You should get an automaton with 8 states and 8 transitions, with no skip edges.

Question 4 Apply the bounded model-checking algorithm in forward to the previous system
up to bound 7: draw the exploration tree displaying the formulæ added (only the added one
not the complete formula) at each step in the Depth-First Search algorithm, highlight the
unreachable nodes, and give the result of the algorithm.

Is there a bound for which the answer would be different? Justify your answer.

Question 5 Apply the bounded model-checking algorithm in backward to the previous sys-
tem up to bound 7 (in the same style as the previous question).

Is there a bound for which the answer would be different?
If the results are differents in the two directions, explain why.

Question 6 Consider a control-flow automaton A. If the forward bounded model-checking
returns a counter-example at bound k, is it also the case for the backward Bounded-model
checking? Why?

Question 7 Can the forward bounded model-checking returns Exhaustive while the back-
ward one returns Non-Exhaustive? If so, give an example of such a system, if no, justify.

1.3 Finite-valued systems

Question 8 Consider a control-flow automaton A that can visit only finitely many config-
urations, but still has at least one infinite execution. Suppose furthermore that automaton
cannot reach qbad.

Explain why the forward bounded model-checking returns Non-exhaustive on that sys-
tem.

Question 9 Propose a variant of forward depth-first search bounded model-checking that
would ensure that the answer of that variant can be Exhaustive provided a large enough
bound. What is the additional cost of such an approach?

How does it change the complexity of the algorithm?

Question 10 If we apply the previous approach to the backward case, what are the condi-
tions over the sets of executions so that in the backward bounded model-checking the answer
is Non-exhaustive, but is Exhaustive with the previous approach?
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2 Cartesian Abstraction (8pts)

Let X be the finite set of variables of a program. A predicate p is a formula over X,
and a valuation v is a function v ∈ ZX . We write v |= p if v is a model of p, and we
denote by JpK the set of models of p. Let p1, . . . , pd be a sequence of predicates, and let
B = {0, 1} be the set of boolean values. We associate with a valuation v the boolean vector
η(v) = (b1, . . . , bd) in Bd defined as follows for every i ∈ {1, . . . , d}:

bi =

{
1 if v |= pi

0 otherwise

The boolean abstraction αbool : (P(ZX),⊆)→ (P(Bd),⊆) and the boolean concretiza-
tion γbool : (P(Bd),⊆) → (P(ZX),⊆) are defined for every set V ⊆ ZX and B ⊆ Bd as
follows:

αbool(V ) = {η(v) | v ∈ V }

γbool(B) =
⋃
b∈B

JϕbK

where ϕb is the following predicate where b = (b1, . . . , bd):

ϕb =

d∧
i=1

{
pi if bi = 1

¬pi if bi = 0

Question 11 Prove that (αbool, γbool) forms a Galois connection.

For each i ∈ {1, . . . , d}, we introduce the projection function Πi : P(Bd) → P({0, 1})
defined by Πi(B) = {bi | (b1, . . . , bd) ∈ B} for every B ⊆ Bd.

The cartesian abstraction αcart : (P(Bd),⊆) → (P(Bd),⊆) is defined as follows for
every set B ⊆ Bd:

αcart(B) = Π1(B)× · · · ×Πd(B)

Question 12 Provide the set αcart({(0, 0), (1, 1)}).

Question 13 Provide the concretization function γcart : (P(Bd),⊆) → (P(Bd),⊆) such
that (αcart, γcart) forms a Galois connection.

We introduce the functions αbc : (P(ZX),⊆) → (P(Bd),⊆) and γbc : (P(Bd),⊆) →
(P(ZX),⊆) defined by αbc = αcart ◦ αbool and γbc = γbool ◦ γcart.

Question 14 Prove that (αcart, γcart) forms a Galois connection.

Let op be a program operation over X. We introduce the set X ′ = {x′ | x ∈ X} as
a disjoint copy of X. We denote by ψop a formula over X ∪ X ′ such that ρ ∈ ZX∪X′

is a model of ψop if, and only if, v op−→ v′ where v, v′ ∈ ZX are the valuation defined by
v(x) = ρ(x) and v′(x) = ρ(x′) for every x ∈ X.
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Question 15 Let b, b′ ∈ Bd. Provide an easily computable (in polynomial time) formula
that is satisfiable if, and only if, b′ ∈ αbc ◦ postop ◦γbc({b}).

The boolean under-approximation F (V ) of a set V ⊆ ZX is the set F (V ) = {b ∈ Bd |
γbool({b}) ⊆ V }.

Question 16 Show that F (V ) is the greatest set B of (P(Bd),⊆) satisfying γbool(B) ⊆ V .

Question 17 Let b ∈ Bd, and p be a predicate. Provide an easily computable (in polyno-
mial time) formula that is satisfiable if, and only if, b ∈ F (JpK).

3 Abstract Interpretation (10pts)

This section deals with abstract interpretation, and is divided into two independent sub-
sections. The first subsection applies range analysis on an example. The second subsection
studies and applies multi-valued constant propagation analysis, an extension of constant
propagation analysis to finite sets of values.

3.1 Range analysis

We perform range analysis — this analysis was presented in the course — on the control-
flow automaton depicted in Figure 1. This control-flow automaton has two variables x and
y, both ranging over integers. The initial location is qin and the bad location is qbad. Recall
that range analysis uses the abstract domain of intervals. Like in the course, an analysis will

qin q1

q3

q2 qbad
x := 1

y ≥ 3

x < y

y := y − x

(x + y) < 2

x := x ∗ y

Figure 1: Control-flow automaton of Questions 18 and 19.

be called successful when the abstract value obtained for qbad has an empty concretization.
Round-robin iteration shall use the following order on locations: qin, q1, q2, q3, qbad.

Question 18 Apply the round-robin algorithm with widening. Do not use narrowing. Is
the analysis successful?

Question 19 Starting from the result of the previous question, perform a decreasing iter-
ation with narrowing. Is the analysis successful?
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3.2 Multi-valued constant propagation analysis

3.2.1 Design of the analysis

Let us introduce the abstract domain (A,⪯) that will be used for the remainder of this
section. We write P(Z) the set of all subsets of Z, and we let Pf (Z) denote the set of all
finite subsets of Z. The set A of abstract elements is defined by

A = Pf (Z) ∪ {⋆}

where ⋆ is a particular element, with ⋆ ̸∈ Pf (Z), that will be used to represent infinite
subsets of Z. We define the binary relation ⪯ on A as follows:

⪯ = (A× {⋆}) ∪ {(a, b) ∈ Pf (Z)× Pf (Z) | a ⊆ b}

It is readily seen that ⪯ is a partial order on A.

Question 20 Prove that the partially-ordered set (A,⪯) is a complete lattice with greatest
lower bound ∧ and least upper bound ∨ verifying

∧X =

{
⋆ if X ⊆ {⋆}
∩(X \ {⋆}) otherwise

∨X =

{
∪X if X ⊆ Pf (Z) and ∪X is finite
⋆ otherwise

for every subset X ⊆ A.

Question 21 Provide the least element of A and the greatest element of A.

We consider the abstraction function α : P(Z) → A and the concretization function
γ : A→ P(Z) defined as follows:

α(c) =

{
c if c is finite
⋆ otherwise

γ(a) =

{
a if a ̸= ⋆

Z otherwise

Question 22 Prove that (P(Z),⊆) −−−→←−−−α
γ

(A,⪯) is a Galois connection.

Recall that a partially-ordered set satisfies the ascending (resp. descending) chain
condition if it does not contain any strictly increasing (resp. decreasing) infinite sequence
of elements.

Question 23 Does (A,⪯) satisfy the ascending chain condition? Does (A,⪯) satisfy the
descending chain condition? Justify your answers.

We introduce the functions ∇ : (A×A)→ A and ∆ : (A×A)→ A defined by:

a∇b =

{
a ∪ b if a ∈ Pf (Z) and b ∈ Pf (Z) and |a ∪ b| ≤ 3

⋆ otherwise
a∆b = b

In the above definition, |X| denotes the cardinal of a set X.

Question 24 Prove that the function ∇ is a widening operator for (A,⪯).

Question 25 Prove that the function ∆ is a narrowing operator for (A,⪯).

By multi-valued constant propagation analysis, we mean the abstract interpretation
based on the Galois connection (P(Z),⊆) −−−→←−−−α

γ
(A,⪯) defined above, and using the widen-

ing and narrowing operators ∇ and ∆ defined above.

5



4TIN918EX 2023 – 2024

3.2.2 Application of the analysis

To conclude this subsection, we apply multi-valued constant propagation analysis to the
control-flow automaton depicted in Figure 2. This control-flow automaton has a single
variable x, which ranges over integers. The initial location is qin and the bad location
is qbad. Like in the course, an analysis will be called successful when the abstract value

qin

q1

q2

q3 qbad

x := 5

x := −5

x := x − 3x := x + 3

x := x − 2

x := x + 2

x == 0

Figure 2: Control-flow automaton of Questions 26 and 27.

obtained for qbad has an empty concretization. Round-robin iteration shall use the following
order on locations: qin, q1, q2, q3, qbad.

Warning. In the questions below, we use the Galois connection (P(Z),⊆) −−−→←−−−α
γ

(A,⪯)
and the widening and narrowing operators ∇ and ∆ defined in § 3.2.1.

Question 26 Apply the round-robin algorithm with widening. Do not use narrowing. Is
the analysis successful?

Question 27 Starting from the result of the previous question, perform a decreasing iter-
ation with narrowing. Is the analysis successful?
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