
4TIN918EX 2024 – 2025

Software Verification

Wednesday, January 15th 2025, 3 hours

This assignment contains three independent parts: the first part deals with bounded
model-checking, the second part is about cartesian abstraction, and the last part addresses
abstract interpretation.

All documents are authorized during the examination
Answers can be written in French

1 Bounded Model-Checking (8pts)

This section will browse a few concepts that have been seen in the first part of the course
(Bounded Model-Checking).

1.1 Principles

We start with some questions to check your understandings of the Bounded Model-Checking
algorithms. We recall that given a transition system T , the Bounded Model-Checking at
depth n explores all executions of length at most n and checks if one of them reaches an
undesirable state (such an execution is called faulty).

Question 1 A Bounded Model-Checking search can return three answers: Counter-example
found, No counter-example found (exhaustive), No counter-example found (non-exhaustive).

For each possible answer, explain what the answer means about the presence of a faulty
execution, its size, and the size of all executions of the model.

Question 2 We have seen in the course two algorithms: Depth-First Search, and Global.
Recall briefly how the executions are explored in the two algorithms and what guarantee
they give on the faulty execution they return if they return one.

1.2 Backward versus Forward

We consider the following program:

x := 0 ;
y := 0 ;
i f (z > 2){

whi l e (z > 0){
z := z−1;
i f (∗) {

x := x + 1 ;
}
e l s e {

1

4TIN918EX 2024 – 2025

y := y + 1 ;
}

}
a s s e r t (x >= 2 | | y >= 2) ;

}

We recall that if (*) is an non-deterministic branching, meaning that both branch
are always possible to take.

Question 3 Give the control-flow automaton corresponding to that code. If you have skip
edges of the form q

skip−−→ q′ such that q has no other outgoing edge or q′ has no other
incoming edge, merge q and q′ (in order to get a smaller automaton).

In the same spirit, you might merge the two initial affectation in a single transition.
You should get an automaton with 8 states and 10 transitions, with no skip edges if you

minimise your automaton (but with two transitions having the same source and the same
target).

Question 4 Apply the bounded model-checking algorithm in forward to the previous system
up to bound 7: draw the exploration tree displaying the formulæ added (only the added one
not the complete formula) at each step in the Depth-First Search algorithm, highlight the
unreachable nodes, and give the result of the algorithm.

Is there a bound for which the answer would be different? Justify your answer.

Question 5 Apply the bounded model-checking algorithm in backward to the previous sys-
tem up to bound 7 (in the same style as the previous question).

Is there a bound for which the answer would be different?
If the results are differents in the two directions, explain why.

Question 6 Consider a control-flow automaton A. If the forward bounded model-checking
returns a counter-example at bound k, is it also the case for the backward Bounded-model
checking? Why?

Question 7 Can the forward bounded model-checking returns Exhaustive while the back-
ward one returns Non-Exhaustive? If so, give an example of such a system, if no, justify.

2

4TIN918EX 2024 – 2025

2 Monotone Completion (8pts)

We first recall some notations introduced during the lecture. We denote by B the set of
boolean values B = {false, true}. We fix a natural number n > 0. The set Bn = Bn denotes
the set of bivectors. We denote by v1, . . . , vn a sequence of distinct variables ranging over B.
We put V = {v1, . . . , vn}. Given a propositional formula ϕ over V and a bivector b ∈ Bn,
we write b |= ϕ if by replacing vi by bi for every 1 ≤ i ≤ n we get a true sentence. We say
that a set B ⊆ Bn is denoted by a formula ϕ if ϕ is a propositional formula over V such
that B = {b ∈ Bn | b |= ϕ}.

Example 1 (1, 0) |= v1 ∧ ¬v2.

We denote by v′1, . . . , v
′
n distinct variables not in V and we let V ′ = {v′1, . . . , v′n}. Given

a propositional formula ϕ over V ∪ V ′ and a pair (b, b′) ∈ Bn × Bn, we write (b, b′) |= ϕ if
by replacing vi by bi and v′i by b′i for every 1 ≤ i ≤ n we get a true sentence. We say that
a binary relation → over Bn is denoted by a formula ϕ if ϕ is a propositional formula over
V ∪ V ′ such that b→ b′ iff (b, b′) |= ϕ.

Example 2 ((1, 0), (1, 1)) |= v1 ⇔ v′1.

Question 8 Provide a propositional formula over V ∪ V ′ denoting the identify binary
relation over Bn, i.e. the binary relation →id satisfying b→id b′ iff b = b′.

Question 9 Assume that → is a binary relation over Bn denoted by a formula ϕ→ and
B,C are two subsets of Bn denoted respectively by the formulas ϕB and ϕC . Provide a
propositional formula (so without any quantifier) computable in linear time that is satisfi-
able if, and only if, there exist b ∈ B, c ∈ C such that b→ c.

We put R = B ∪ {⊤}, and Rn = Rn. Notice that Rn is the set of trivectors that does
not contain any bottom component. A vector t ∈ Rn is called a reduced trivector. Let
t be reduced trivector. We define the binary relation ⊑t over Bn defined by x ⊑t y if
xi ∈ {yi, ti} for every i ∈ {1, . . . , n}.

Question 10 Show that ⊑t is a partial order.

A set B ⊆ Bn is said to be t-monotone if for every x, y ∈ Bn such that x ⊑t y, x ∈ B
implies y ∈ B. Given a set B ⊆ Bn, we denote byMt(B) the set of y ∈ Bn such that there
exists x ∈ B satisfying x ⊑t y. This set is called the least t-monotone over-approximation
of B.

Question 11 Show that Mt(B) is t-monotone for every B ⊆ Bn.

Question 12 Show that for every B ⊆ C ⊆ Bn we have Mt(B) ⊆Mt(C).

Question 13 Assume that B = B1 ∪ . . . ∪Bm for some subsets B1, . . . , Bm ⊆ Bn. Shows
that Mt(B) =Mt(B1) ∪ . . . ∪Mt(Bm).

3

4TIN918EX 2024 – 2025

We associate with a reduced trivector r ∈ Rn the set γ(r) of bivectors x ∈ Bn such
that ri ∈ {xi,⊤} for every i ∈ {1, . . . , n}. Notice that γ is the concretization function
introduced during the lecture.

Question 14 Provide the set γ(⊤, 0,⊤).

Question 15 Let r, t ∈ Rn. We introduce s ∈ Rn defined by:

si =

{
⊤ if ri ∈ {⊤, ti}
ri otherwise

Show that Mt(γ(r)) = γ(s).

4

4TIN918EX 2024 – 2025

3 Abstract Interpretation (6pts)

This section deals with abstract interpretation, and is divided into two independent sub-
sections. The first subsection applies range analysis on an example. The second subsection
studies some properties of Galois connections.

3.1 Range analysis

We perform range analysis — this analysis was presented in the course — on the control-
flow automaton depicted in Figure 1. This control-flow automaton has two variables x

and y, both ranging over integers. The initial location is qin and the bad location is qbad.
Recall that range analysis uses the abstract domain of intervals. Like in the course, an

qin q1 q2

q3

qbad
x := 5 x < y

y > 2

y < 0

x := x + y

y := y − 1

Figure 1: Control-flow automaton of Questions 16 and 17.

analysis will be called successful when the abstract value obtained for qbad has an empty
concretization.

Warning. In the questions below, use the following order on locations for round-
robin: qin, q1, q2, q3, qbad.

Question 16 Apply the round-robin algorithm with widening. Do not use narrowing. Is
the analysis successful?

Question 17 Starting from the result of the previous question, perform a decreasing iter-
ation with narrowing. Is the analysis successful?

3.2 Some Properties of Galois connections

We start by recalling some basic notions from the course. A complete lattice is a partially-
ordered set (L,⊑) such that every subset X ⊆ L admits a greatest lower bound and a least
upper bound. We consider, for the remainder of this subsection, two complete lattices
(C,⊑) and (A,⪯). As in the course, we use the symbols ⊓ and ⊔ for the greatest lower
bound and the least upper bound in (C,⊑), and we use the symbols ∧ and ∨ for the
greatest lower bound and the least upper bound in (A,⪯).

A Galois connection between (C,⊑) and (A,⪯) is a pair (α, γ) of functions, with
α : C → A and γ : A→ C, such that the equivalence α(c) ⪯ a ⇔ c ⊑ γ(a) holds for every

5

4TIN918EX 2024 – 2025

a ∈ A and c ∈ C. The notation (C,⊑) −−−→←−−−α
γ

(A,⪯) stands for “the pair (α, γ) is a Galois
connection between (C,⊑) and (A,⪯)”.

We also recall the characterization of Galois connections that was given in the course.
Given a pair of functions α : C → A and γ : A → C, we have (C,⊑) −−−→←−−−α

γ
(A,⪯) if, and

only if, α is monotonic (c1 ⊑ c2 implies α(c1) ⪯ α(c2)), γ is monotonic (a1 ⪯ a2 implies
γ(a1) ⊑ γ(a2)), α ◦ γ is reductive (α(γ(a)) ⪯ a), and γ ◦ α is extensive (c ⊑ γ(α(c))).

Question 18 Prove that for every pair (α, γ) of functions verifying (C,⊑) −−−→←−−−α
γ

(A,⪯),
and for every a ∈ A and c ∈ C, the two following equalities hold:

α(c) = ∧{a ∈ A | c ⊑ γ(a)}
γ(a) = ⊔{c ∈ C | α(c) ⪯ a}

It follows from Question 18 that γ uniquely determines α and vice-versa. The next
question provides a characterization of the functions γ such that (C,⊑) −−−→←−−−α

γ
(A,⪯) for

some function α.

Question 19 Consider an arbitrary function γ : A → C. Prove that the following asser-
tions are equivalent:

i) γ is glb-preserving, i.e., γ(∧X) = ⊓{γ(x) | x ∈ X} for all X ⊆ A,

ii) there is a function α : C → A such that (C,⊑) −−−→←−−−α
γ

(A,⪯).

Hint. For the proof of i) =⇒ ii), show that every glb-preserving function is monotonic.

6

