
Software Verification 2024 – 2025

Exercises on Range Analysis with Widening/Narrowing, with Solutions

Grégoire Sutre

http://www.labri.fr/~sutre/Teaching/SV/

1 A Classical Example

We start this lab session with a classical example, which corresponds to the following C
source code snippet:

int x;
for (x = 1; x <= 100; x++);
assert (x < 150);

Exercise 1 Translate this program into a control-flow automaton, and perform, manu-
ally, range analysis on it, with widening and narrowing. Is the analysis successful?

Solution. The control-flow automaton is depicted below. Its set of variables is X = {x},
where x ranges over integers.

qin q1

q2

q3 qbad
x := 1

x ≤ 100 x := x + 1

x > 100 x ≥ 150

Let us analyze this control-flow automaton with the interval abstract domain. The widen-
ing ∇ is applied without delay (and at each location). Round-robin iteration proceeds as
follows. Locations are processed in this order: qin, q1, q2, q3, qbad.

x x x x

qin ⊥ (−∞,+∞) (−∞,+∞) (−∞,+∞)

q1 ⊥ (1, 1) (1,+∞)1 (1,+∞)3

q2 ⊥ (1, 1) (1,+∞)2 (1,+∞)

q3 ⊥ ⊥ (101,+∞) (101,+∞)

qbad ⊥ ⊥ (150,+∞) (150,+∞)

Let us explain how these abstract values are computed:

(1, 1)∇ ((1, 1) ⊔ (2, 2)) = (1, 1)∇ (1, 2) = (1,+∞) (1)
(1, 1)∇ (1, 100) = (1,+∞) (2)

(1,+∞)∇ ((1, 1) ⊔ (2,+∞)) = (1,+∞)∇ (1,+∞) = (1,+∞) (3)

1



Software Verification 2024 – 2025

From the previously computed abstract value, a descending iteration with narrowing (and
without delay) is performed as follows:

x x x x

qin (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)

q1 (1,+∞) (1,+∞)4 (1, 101)7 (1, 101)

q2 (1,+∞) (1, 100)5 (1, 100) (1, 100)

q3 (101,+∞) (101,+∞)6 (101, 101)8 (101, 101)

qbad (150,+∞) (150,+∞) ⊥9 ⊥

(1,+∞)∆ ((1, 1) ⊔ (2,+∞)) = (1,+∞)∆ (1,+∞) = (1,+∞) (4)
(1,+∞)∆ (1, 100) = (1, 100) (5)

(101,+∞)∆ (101,+∞) = (101,+∞) (6)
(1,+∞)∆ ((1, 1) ⊔ (2, 101)) = (1,+∞)∆ (1, 101) = (1, 101) (7)

(101,+∞)∆ (101, 101) = (101, 101) (8)
(150,+∞)∆⊥ = ⊥ (9)

The abstract value in location qbad is ⊥, meaning that qbad is not reachable, as the con-
cretization of ⊥ is the empty set. So the analysis is successful. The crucial point is that
the analysis is able to infer that x is equal to 101 after the loop.

Exercise 2 Implement the functions widen and narrow of the modules DomConstant,
DomSign and DomInterval. Run make test-dom to check your implementation.

Exercise 3 Analyze the above program with sai, and compare the result with your manual
analysis.

Solution. The range analysis performed by sai coincides with the manual analysis
performed in the previous exercise.

2 Analysis of the Lecture’s Running Example

In this section, sai is applied to the lecture’s running example, which is provided in the
file examples/aut/running_example.aut. Various options are passed to sai in order to
obtain the analyses presented in the lecture.

Exercise 4 Use widening without delay. Is the analysis successful before descending iter-
ations?

Solution. The command to use is:

./sai.byte -v -domain interval examples/aut/running_example.aut

The analysis is not successful before descending iterations.

2



Software Verification 2024 – 2025

Exercise 5 Still before descending iterations, find the least widening delay that makes the
analysis successful. Is the analysis successful without widening?

Solution. The command to use is:

./sai.byte -v -domain interval -widening-delay 11 .../running_example.aut

The analysis is successful before descending iterations with this delay. With smaller delays,
the analysis is not successful before descending iterations.

Exercise 6 Use widening and narrowing, both without delay. Is the analysis successful?

Solution. The command to use is:

./sai.byte -v -domain interval .../running_example.aut

The analysis is successful (after descending iterations).

Exercise 7 Use widening without delay and disable narrowing. Does the analysis con-
verge? Is it successful?

Solution. The command to use is:

./sai.byte -v -domain interval -narrowing-delay -1 .../running_example.aut

The analysis converges and is successful (after descending iterations).

3 Analysis of Another Example

We consider the control-flow automaton depicted below, with variables X = {x, y}, both
ranging over integers, with initial location qin and bad location qbad.

qin q1 q2

q3 q4

qbad
x := 3 y := 0

x > y

y := y + x

x := x − 1

x < 0

This section performs range analysis of this control-flow automaton. As usual, an
analysis will be called successful when the abstract value obtained for qbad is ⊥. Round-
robin iteration shall use the following order on locations: qin, q1, q2, q3, q4, qbad. The first
two exercises are independent. The third exercise depends on the result of the second
exercise.

3



Software Verification 2024 – 2025

Exercise 8 Apply the round-robin algorithm to compute the minimal fixpoint solution. Do
not use widening and do not perform descending iterations. Is the analysis successful?

Solution. We simply write ⊤ in place of (−∞,+∞) to gain space.

x y x y x y x y x y x y

qin ⊥ ⊥ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
q1 ⊥ ⊥ (3, 3) ⊤ (3, 3) ⊤ (3, 3) ⊤ (3, 3) ⊤ (3, 3) ⊤
q2 ⊥ ⊥ (3, 3) (0, 0) (2, 3) (0, 3) (1, 3) (0, 5) (0, 3) (0, 5) (0, 3) (0, 5)

q3 ⊥ ⊥ (3, 3) (0, 0) (2, 3) (0, 2) (1, 3) (0, 2) (1, 3) (0, 2) (1, 3) (0, 2)

q4 ⊥ ⊥ (3, 3) (3, 3) (2, 3) (2, 5) (1, 3) (1, 5) (1, 3) (1, 5) (1, 3) (1, 5)

qbad ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

The abstract value in location qbad is ⊥, meaning that qbad is not reachable, as the con-
cretization of ⊥ is the empty set. So the analysis is successful.

Exercise 9 Apply the round-robin algorithm with widening applied in location q2 only. Do
not perform descending iterations. Is the analysis successful?

Solution. We simply write ⊤ in place of (−∞,+∞) to gain space. The superscript ⋆
indicates the values that would have been larger (w.r.t. the partial order on intervals) if
they had been widened.

x y x y x y x y

qin ⊥ ⊥ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
q1 ⊥ ⊥ (3, 3) ⊤ (3, 3) ⊤ (3, 3) ⊤
q2 ⊥ ⊥ (3, 3) (0, 0) (−∞, 3) (0,+∞) (−∞, 3) (0,+∞)

q3 ⊥ ⊥ (3, 3) (0, 0) (1, 3)⋆ (0, 2)⋆ (1, 3) (0, 2)

q4 ⊥ ⊥ (3, 3) (3, 3) (1, 3) (1, 5) (1, 3) (1, 5)

qbad ⊥ ⊥ ⊥ ⊥ (−∞,−1) (0,+∞) (−∞,−1) (0,+∞)

The abstract value in location qbad concretizes to a non-empty set of environments (i.e.,
a non-empty subset of ZX), meaning that qbad might be reachable. So the analysis is not
successful.

Exercise 10 Starting from the result of the previous exercise, perform a descending iter-
ation with narrowing. Is the analysis successful?

Solution.
x y x y x y

qin ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
q1 (3, 3) ⊤ (3, 3) ⊤ (3, 3) ⊤
q2 (−∞, 3) (0,+∞) (0, 3) (0, 5) (0, 3) (0, 5)

q3 (1, 3) (0, 2) (1, 3) (0, 2) (1, 3) (0, 2)

q4 (1, 3) (1, 5) (1, 3) (1, 5) (1, 3) (1, 5)

qbad (−∞,−1) (0,+∞) ⊥ ⊥ ⊥ ⊥
The abstract value in location qbad concretizes to an empty set of environments, meaning
that qbad is not reachable. So the analysis is successful.

4



Software Verification 2024 – 2025

4 Example Hunt

Exercise 11 Find a control-flow automaton (or a program) that can be successfully verified
with the sign domain and that cannot be verified with the interval domain (regardless of
widening/narrowing use).

Solution. The following program is successfully verified with the sign domain.

int x;
if (x != 0)

assert (x != 0);

At the third line, just before the assertion, the concrete environments {x 7→ −1} and
{x 7→ 1} are reachable. By convexity of intervals, this entails that every interval containing
all reachable concrete environments before the assertion also contains the environment
{x 7→ 0} which violates the assertion. So this program cannot be verified with the interval
domain.

Exercise 12 Find a control-flow automaton (or a program) that can be successfully verified
backwards with the sign and interval domains and that cannot be verified forwards with
these domains.

Solution. The control-flow automaton examples/aut/pre_only.aut works.

Exercise 13 Find a control-flow automaton (or a program) for which interval analysis
with widening enabled and with narrowing disabled1 has a diverging descending iteration.

Solution. The control-flow automaton examples/aut/infinite_descent.aut works.

1The corresponding command is ./sai.byte -v -domain interval -narrowing-delay -1 <file>.

5


