
Dynamic QoS Adaptation using COPS and Network
Monitoring Feedback

Toufik Ahmed1,2, Ahmed Mehaoua1 and Raouf Boutaba2

1 University of Versailles, CNRS-PRiSM Lab.
45 av. des Etats-Unis, 78000, Versailles, France

{tad, mea}@prism.uvsq.fr
2 University of Waterloo, Dept. of Computer Science

200 University Avenue West, Waterloo,
Ont. N2L 3G1, Canada

{tad, rboutaba}@bbcr.uwaterloo.ca

Abstract. This paper presents an approach to handle out of profile traffic using
Common Open Policy Service and network monitoring feedback. The proposed
approach is based on monitoring and reporting information sent by bandwidth
monitors installed on each node of a Diffserv Domain. A monitor interacts with
Policy Decision Point. This later, depending on the network state, pushes p olicy
decision rules to the Policy Enforcement Point in order to accept, remark or
drop out -of-profile traffic dynamically. This allows a dynamic reallocation and
management of network resources based on current network state and
applications QoS requirements. An implementation and a performance
evaluation of the dynamic QoS adaptation framework using a Java COPS and a
Linux-based network testbed are also presented.

 Keywords: IP Diffserv, QoS Adaptation, COPS, Network Monitoring.

1 Introduction

Recent works on IP Quality of Service (QoS) Management led to the development
and standardization of enhanced protocols and services. The IETF has defined the
Policy-based Network Management (PBNM) architecture to configure network
services. Currently most efforts are focused on Differentiated Services (Diffserv) in
the Internet. The goal of the policy-based network management is to enable network
control and management on a high abstraction level by defining configuration rules
called policies. Policies specify how a network node must be configured in vendor-
independent, interoperable and scalable manner.

Diffserv architecture defines, at a lower level, four types of data-path elements:
traffic classifiers, actions elements, meters and queuing elements [1]. Combining
these elements into higher-level blocks creates a Traffic Condition Block (TCB),
which can be managed by policy-based network management tools. The configuration
of Diffserv TCB using PBNM involves the use of administratively prescribed rules
that specify actions in response to defined criteria. All the information needed to
perform this task such as profiles, user information, network configuration data, and
IP infrastructure data such as network addresses and name server information are

stored in a policy repository. These configurations do not change frequently because
they are not associated with specific application or traffic but with the network
management. The more difficult part in the configuration is to have the traffic
entering the network appropriately marked (audio, video and other data). Since, the
user is signed up for the service, edge devices could be configured to mark user’s
traffic with the appropriate PHB. With a known IP address and/or IP port number, the
administrator can specify a policy that refers to user application IP address and marks
traffic coming from that address appropriately.

In the actual configuration, when the user signs up for a particular service, he/she
must specify his/her traffic profile and the action that must be taken when the traffic
exceed this predefined profile (out of profile traffic). Generally, the out of profile
traffic is dropped or marked as best effort traffic. This model is static and does neither
respond to application needs nor favor an optimal utilization of network resources.

In this paper a Diffserv QoS management is explored with the objective to
overcome the limitations of the static model. In addition to the techniques described
above (i.e., PBNM, TCB, etc.), network monitors are used to make the system
reactive by making automatic and real-time decisions concerning out of profile traffic.
An architectural model allowing the configuration and dynamic management of the
Diffserv domain will be presented, experimented and evaluated.

The reminder of this paper is as follows. In section 2, we compare static and
dynamic policy decision approaches and present our proposal, which is based on
dynamic QoS adaptation through network resource monitoring and feedback
signaling. Section 3 is devoted to the implementation of the proposed QoS network
management framework. Performance evaluation and results analysis are discussed in
Section 4. Finally, we conclude in Section 5.

2 Dynamic QoS Adaptation

2.1 Static Policy Decision

In the Diffserv architecture, a particular traffic receives a predefined treatment based
on predefined policies. This treatment is interpreted as a particular PHB [2], [3]. This
task is done by the TC (Traffic Control) function, which assigns the correct DSCP [4]
for the client’s traffic according to it SLA (Service Level Agreement). Recall that
each client defines it requirements and these are translated into SLAs. The allocation
of resources (QoS) still static and can lead to bandwidth wasting and starving clients.

Some algorithms such as Time Sliding Window Three Colour Marker (TSWTCM)
[5] and a Two Rate Three Color Marker (TRTCM) [6] can be used to mark IP packets
treated by the edge router with a Diffserv PHB. These algorithms meter the traffic
stream and marks packets based on measured throughput.

To receive a particular treatment, the user must specify it profile TSpec (Traffic
Specification). TSpec specifies the temporal properties of a traffic stream selected by
a classifier. It provides rules for determining whether a particular packet is in profile
or out of profile. The Meter uses a Token Bucket to control user traffic. The following
is a non-exhaustive list of potential profile parameters:
1. Peak rate p in bits per sec (bps)

2. Token bucket rate r (bps),
3. Bucket depth b (bytes),

An Excess Treatment parameter describes how the service provider will process
excess traffic, i.e. out of profile traffic. The process takes place after Traffic
Conformance Testing. Excess traffic may be dropped, shaped and/or remarked.
Depending on the particular treatment, more parameters may be required, e.g. the
DSCP value in case of re-marking or the shapers buffer size for shaping. All these
actions are decided once the network element is configured and are not changed over
the time. Fig. 1 gives an example of how out of profile traffic is treated using static
configuration. In this Figure, user sends traffic not conforming to his Traffic
Specification. Edge router control this traffic by a token bucket. Non-conforming
traffic will be dropped always.

Drop always

Input traffic Edge router control Output traffic

fix
ed

 b
ad

wi
dt

h

Fig. 1. Static Policy Decision

For this reason, there is a great need to control dynamically the action taken by the
network element for more flexible resource allocation. For this, different conditioning
actions may be performed on the in profile packets and out of profile packets or
different accounting actions may be triggered dynamically according to current
network state. Clearly, a more flexible resource allocation can be achieved by
controlling dynamically network elements behavior.

2.2 Dynamic Policy Decision

In the static approach out of profile traffic is simply dropped, remarked or assigned a
new profile. This decision is static and is taken once for all, i.e. when the network
element is configured.

For example the Policing Rule = drop out-of profile packets can be applied to all
the packets which are out of profile regardless of whether the network is capable or
not to transmit this packet.

shows where we can dynamically decide what actions must be applied to out of
profile packets. In contrast to the static approach, these actions vary according to the
network state (network link load, traffic behavior, etc.).

2.3 Automatic Diffserv Domain Configuration

When a network element is started, its local PEP requests the PDP for all policies
concerning Diffserv traffic marking using COPS (Common Open Policy Service) [7],
[8], [9]. The policies sent by the PDP to the PEP, may concern entire router QoS
configuration or a portion of it, as an updating of a Diffserv marking filter. The PDP
may proactively provision the PEP reacting to external events generated by some
monitors such as a bandwidth monitor.

Meter

b bits

r bps

Traffic

User Profile
(Token Bucket)

In Profile

Out-Of-Profile

Dynamic
Decision

Dropping

Re-Marking (BE, AF, EF, etc)

Accepting traffic

Fig. 2. Dynamic Decision

PDP

PEP: Policy Enforcement Point
PDP: Policy Decision Point

 New policy
 decisions

Edge Router

PEP

Edge Router

LDAP

out of rofile
traffic 1

QoS
Monitor

2

3

Event

1: Installing filter
2: Monitoring event
3: Provisionning operation

Monitoring agent

Monitoring agent

Policy
decision

Fig. 3. COPS-PR with Monitoring Event

Fig. 3 shows the steps involved in the configuration of Diffserv domain. These
steps are as follow:
− Step 1: When the edge router is started, the local PEP requests all policy decisions

concerning Diffserv QoS Management (filtering, classes, queuing discipline, and
actions for out of profile traffic). All incoming traffics are processed according to
the pre-installed rules.

− Step 2: When the bandwidth monitor, installed on the core router, detects a
significant change in the amount of available bandwidth, it triggers an external
event reported to the PDP indicating the current bandwidth availability.

− Step 3: The PDP pushes to the edge router (PEP) an update of QoS Management
decision.
These steps allow configuring correctly different policies related to the same

traffic.
We introduce the following policy rule: let us On event: If <profile> then

<action>.
A Profile is used to determine when a policy rule applies, for instance given pairs

of source and destination addresses.
An Action is a performed by that the policy enforcement entity to traffic of a given

profile. Examples of actions are marking, accepting or rejecting traffic.
Example of policy rules:

• Rule 1: Mark DSCP value EF on all packets with source addresses from
193.51.25.1 to 193.51.25.255 priority 0

• Rule 2: Mark DSCP value AF11 on all packets with destination address
200.200.200.100 priority 1

2.4 Example of Application

Assume, an audio application has subscribed to a particular Diffserv class (an
Expedited Forwarding Class). Audio traffic is defined by a particular profile. In this
example Diffserv class simply mean that the audio stream will be marked with the
appropriate DSCP (EF PHB here). The Administrator of the Diffserv domain
configures the environment to support the Gold, Silver, Bronze and other services.
Such configuration can be done through a Bandwidth Broker.

Supporting different classes of service in the core network requires putting in place
classifiers, which cause the devices to examine the Diffserv mark on the packet and
then treat the traffic accordingly. These configurations do not change frequently
because they are not associated with specific application or traffic but with the
network management. Since, the application is signed up for the service, edge
devices are configured to mark application’s traffic with the appropriate PHB. Based
on the IP address and/or the port number, the administrator can set a policy that marks
traffic coming from that address with EF PHB.

In order for customized traffic going to audio application (e.g. feedback traffic,
RTCP, client commands) to receive a Diffserv treatment, policy must be deployed to
the opposite edge device of a Diffserv doma in.

When the audio application starts sending the data, the edge router must ensure; (1)
the data sent by the audio server does not exceed what the application has subscribe-
to (SLA) and (2) marking conforming traffic (in profile traffic) with the appropriate
PHB (EF PHB in our example). In case of receiving out of profile traffic, the edge
router requests a decision from the PDP. Since the PDP knows the current network
state - because it receives monitoring information from different monitors installed in
the network, it decides a new policy rule, for example dropping, marking or accepting
out of profile traffic. This decision varies according to current network state.

2.5 QoS Management Algorithm

We have configured 3 rules named Rule1, Rule2 and Rule3 to deal with out of profile
traffic. The Policy Server can choose one rule among the several depending on
information sent periodically by the monitors. The monitoring information concerns
essentially the bandwidth usage of each link in the network. The calculation of shaped
value of the bandwidth using Exponentially Weighted Moving Average (EWMA) is
presented in section 2.6. Below in Fig. 4 our algorithm, this uses the predefined policy
rules to make a decision depending on bandwidth usage in the network.

Fig. 4. Example of a simple algorithm using policies.

2.6 Calculating bandwidth usage in the network links

Our algorithm uses a low-pass filter to calculate the bandwidth usage. Bursty traffic
can cause a transient congestion. The bandwidth usage is not affected by this transient
congestion since we shape this value. The low-pass filter is an exponential weighted
moving average.

The EWMA (Exponentially Weighted Moving Average) Chart is used when it is
desirable to detect out-of-control situations very quickly. It is an Exponential
Smoothing technique that employs one exponential smoothing parameter to give more
weight to recent observations and less weight to older observations and vice-versa.

When choosing λ , it is recommended to use small values (such as 0.2) to detect
small shifts and larger values (between 0.2 and 0.4) for larger shifts [10].

Policy decision depends on the EWMA statistic calculated by each network
monitor and sent to the Policy Decision Point to be aggregated.

Initialization:
Start Bandwidth Monitor Mi for each Router i to
calculate the available bandwidth BWi
Lambda ← 0.2 // Fixed value for historical data
X ←50% link capacity // Initial value of EWMA
Min_th← 40% link capacity
Max_th← 70% link capacity
Loop:
BW ← max(BW1, BW2, …,BWi) //EWMA available bandwidth
X X← (1-lambda) * BW + lambda * X
if X < Min_th then
 Rule1: Accept out-of-profile traffic
else if Min_th<=X<Max_th then
 Rule2: Remark out-of-profile traffic with a new DSCP
else Rule3: Drop out-of-profile Traffic
End.

3 Implementation

Our prototype consists of three modules that perform Dynamic QoS adaptation in an
administrative domain; these modules are Policy-based network management tool,
Network Monitoring System, and Policy System (Policy Decision Point and Policy
Enforcement Point). Fig. 5 shows the core components of our implementation.

3.1 Tool Manager

Our policy tool management is a Policy-based Web Bandwidth Broker. It consists
essentially of a web interface installed in web application server. The administrator
uses the web interface to configure the Diffserv domain and to enter new policy or to
edit an old one. A Java Servlet engine is used to store all the information to a
repository. We have used an OpenLDAP [11] server running on Linux. Other
functions may be provided, such as validation, verification, conflict detection, etc.
which are not yet available in our system.

In the top right of Fig. 5, a simple web-based interface of the bandwidth broker is
shown. It illustrates the edge router configuration, specially the filter configuration
and how setting PHB for the traffic entering the network.

3.2 Network Monitoring Agent

Network Monitoring provides a global network status in terms of resource availability
and resource consumption, which is required for the management of the available
bandwidth on the network. It is an application that tracks on live resources
information in the network. A framework for supporting the traffic engineering of IP-
based networks is presented in [12]. Different types monitoring measurements have
been identified and are either passive or active . Passive measurement means that the
statistics of the network element are maintained in the form of a Management
Information Base (MIB), whereas in active measurement, test packets are injected
into the network (like ping test) to gather information. Information collected about
these packets are taken as representative of the behavior of the network. Metrics of
this data are described in the framework presented in [13].

Our implementation consists of an agent written in Java which collects information
on each interface of the router. The collected information consists of a real-time
traffic flow measurement in input and output of each interface. This way, the agent
augments the functionality of PEP by reporting monitoring information to the PDP in
the form of COPS Report State Message. The PDP, when it detects a significant
modification in the network state, delivers to the PEP a new policy decision in term of
new policy rules. Decision-making is based on the algorithm described in Fig. 4.

3.3 Policy Management System

This system is composed of a PDP and a PEP communicating using COPS protocol.
All system components are implemented in Java. The COPS-PR implementation is
simplified to exchange policy rule between PDP and PEP.

Simplified COPS-PR implementation is used to exchange policy rules between the
PDP and the PEP.

The PEP is associated with the interfaces to which the marking must be applied
(edge router). It is notified when the policy changes (or is newly) by a COPS
provisioning operation. The PEP receives the policy information and transforms it
into a form suitable for the device, e.g. using a Linux Diffserv Traffic Control API.
After this, all incoming packets to this device will be marked according to the new
marking policy.

The PDP is responsible for decision making and uses for that the network
monitoring agents. Our implementation is limited to one domain (there is no inter-
domain communication).

Java PEP

JNI Interface

TCAPI

Policy Store
Java PDP

Queuing Discipline

Filter

Class

Queuing
discipline

Class

Queuing
discipline

Filter

Filter
Input Output

Linux Traffic Control

Input Output

Install/Remove/Update

C
O

PS
-P

R

A Java-based Policy Client

A Java Native Interface

C-based Traffic Control API

External Event LDAP Access

PIB

Monitor Agent
 Event

web
Interface

Web
server

Web-Based Interface

Fig. 5. Our System Implementation using Dynamic Policy-Based Management

4 Performance Evaluation and Results Analysis

The network administrator uses the PBNM tool (BB) to configure the edge and core
routers according to a predefined set of policies. Suppose that the administrator’s
domain can handle EF, AF11 and BE class only. The administrator configures the
filters using also PBNM tool. The task of the filter is to mark the traffic entering the
network with the appropriate PHB according to user profile. At this step, the
administrator chooses how to handle excess of traffic (out of profile traffic) by tuning
two control thresholds (Min_th and Max_th).

4.1 Experimental Testbed

Fig. 6 depicts our experiments testbed. User transmits a customized traffic (audio
traffic) across a Differentiated Services network. The network is composed of
Diffserv capable routers. We use Linux-based IP routers with Diffserv
implementation [14], [15]. The testbed is composed of two edge routers connecting
by 10 Mb/s Ethernet links.

User Traffic

Receiver

Edge + PEP Edge + PEP

Core + PEP

Diffserv Domain

10 mb/s 10 mb/s

COPS Configuration

Monitoring
Information

out-of-profile

depending on

monitor

Rule1

Rule2

Rule3

Traffic transmitter

Traffic receiver

User Traffic
transmitter

Policy Server PDP
Bandwidth Broker

Fig. 6. Experimental Environment

By using our PBNM tool, we allocated 1.5Mbit/s for each AF class (i.e. AF1, 2, 3

and 4), all of which are bounded. We limit the amount of EF traffic to 15% of the
bandwidth capacity rate, i.e. 1.5Mbit and we allocated 3.5Mbit for the best effort
traffic that are allowed to borrow any available bandwidth. To get distinguish class of
service, we used CBQ as our packet scheduler, which is an approach proposed in [16].
For CBQ a single set of mechanisms is proposed to implement link sharing and real-
time services. In our implementation, CBQ is used to classify EF, AF, and BE traffic
so that each user can get appropriate resources based on packet marking. The
scheduler of the Diffserv core router employs GRED queuing discipline to support
multiple drop priorities as required for the AF PHB group. One physical GRED queue
is composed of multiple VQs (Virtual Queues). GRED can operate in RIO (RED with
In/Out bit) mode [17], with coupled average queue estimates from the virtual queues,
or in standard mode where each virtual queue has its own independent average queue
estimate as required for RED [18]. In our testbed, we used GRED as the queuing

discipline for AF classes, since our marking algorithm takes into account thes e
properties to give different level of QoS.

4.2 Performance Analysis

We loaded the network using n IP traffic generator. One traffic generator is composed
of a traffic transmitter and a traffic receiver. The traffic transmitter generates a UDP
packet of 1024 bytes with IP and UDP headers according to a Poisson distribution
with parameter 128=λ packet/s that gives 1Mbit/s per traffic generator. In our test,
and since our Ethernet links are 10 Mbit/s, we have taken n=5, n=7 and n=10 in
order to load the network differently each time . Each source can be either on or off

during exponentially distribution on/off period with an average of soffon 1== λλ .

We compare the different network and traffic scenario when activating the
algorithm and not activating the algorithm with an IP Diffserv network model.

Policing is performed at the edge of the network for a particular traffic, which is
identified by a couple <IP_adr, Port_number>. Policy is determined by the traffic
specification Tspec (traffic profile). Tspec takes the form of a token bucket (r,b) and
the following optional parameters : a peak rate (p), a minimum policed unit (m), and a
maximum datagram size (M).

The token bucket and peak rate parameters require that traffic obeys the rule that
over all time periods, the amount of data sent cannot exceed M+min[pT, rT+b-M]
[19]. M is the maximum datagram size, and T is the length of time period. Datagrams
which arrive at an element and cause a violation of the M+min[pT, rT+b-M] bound
are considered out of profile (non-conformant) and require a decision from the PDP.

In our experiment, we set the parameters for the token bucket to r=1Mbit/s and
b=2K, for user traffic. This means that this traffic must not exceed 1Mbit/s.

For testing purposes, we transmit an out of profile traffic (not conform to TSpec).
This traffic is at a constant bit rate of 1.5 Mbit/s. The token buckets accept only
1Mbit/s, therefore, the 0.5 Mbit/s are considered out of profile. The in profile traffic
will be marked with EF PHB whereas the out of profile traffic will be marked either
by EF or AF11 or dropped (according to our predefined policy).

Fig. 7 (a) shows the bottleneck link load during the period of the experiment
(180s). This load represents the traffic sent from the n traffic generators to the
receivers. This measure has been taken from the ingress interface of the core router.
During to first 60 seconds there are only n=5 traffic generators that can be either on or
off. From time 60s to 120s there are n=7 traffic generators. In the last 60 second (from
120s to 180s) the number of the traffic generators are n=10.

The PDP makes the decision according to the smoothing value of the bandwidth
usage (i.e., EWMA). This decision is a policy rule sent directly to the edge router of
the Diffserv network.

In our experiments, we set the value of Min_th=4Mbit and the value of
Max_th=7Mbit. The read time of the bandwidth usage performed by the bandwidth
agent is set to 1 second.

The events sent by the PDP are listed below with the corresponding timestamps

(see Table 1).

Table 1: List of policies sent by the PDP

TIME
(SECOND)

ACTION TAKEN BY THE EDGE ROUTER
(POLICY)

0 Rule1: Accept out of profile traffic (EF traffic)
12 Rule2: Remark out of profile traffic with AF11
37 Rule1: Accept out of profile traffic (EF traffic)
38 Rule2: Remark out of profile traffic with AF11
40 Rule1: Accept out of profile traffic (EF traffic)
47 Rule1: Accept out of profile traffic (EF traffic)
103 Rule3: Drop out of profile Traffic
105 Rule2: Remark out of profile traffic with AF11
107 Rule3: Drop out of profile Traffic
109 Rule2: Remark out of profile traffic with AF11
110 Rule3: Drop out of profile Traffic
111 Rule2: Remark out of profile traffic with AF11
112 Rule3: Drop out of profile Traffic
116 Rule2: Remark out of profile traffic with AF11
117 Rule3: Drop out of profile Traffic
141 Rule2: Remark out of profile traffic with AF11
144 Rule3: Drop out of profile Traffic
177 Rule2: Remark out of profile traffic with AF11
179 Rule1: Accept out of profile traffic (EF traffic)

These events show how traffic is subject to a dynamic behavior in the network.

This is an interesting function, since it allows an Internet Service Provider making
new strategies of traffic engineering easily.

 (a)

 (b)

Fig. 7. (a) Bottleneck Link Usage

 (b) Received Audio Traffic with different PHB Color

Fig. 7 (b) shows the received audio traffic with the different PHB colors. In-profile
traffic (1Mbits) is always marked as EF whereas out-of-profile traffic (0,5 Mbits) is
dynamically accepted as EF, as AF11, or dropped.

The events shown in the Table represent the time at which the policy is sent from
the PDP to the edge router. This later updates traffic policing to reflect this change.
For example in the first 60 second, bottleneck link is under load (X <Min_th), so the
edge router can accept out of profile traffic as shown in Fig. 7 (b). In the next 60
second (from time 60 to 120 s), load is between Min_th and Max_th, so we accept out
of profile but with remarking policy. From time 120 to 180 s, bottleneck link is
congestionned, in this case, out of profile traffic is dropped. See Fig. 7 (b) for more
details.

5 Conclusion

This paper address the issue of out-of-profile traffic in a Diffserv network. It
describes our proposal of using network monitoring feedback and policy decision
point. The collected monitoring information is used to manage and to adapt
dynamically QoS parameters for user traffic. The example configuration rules
described in our testbed clearly demonstrate the advantage of using our proposed
resource network management framework. Our system involves a policy-based
management system to achieve a more dynamic network behavior in handling user
traffic.

Several issues arise when using dynamic control decisions to handle out-of-profile
traffic. One problem is the pricing and charging schemes in use: Who pays for the
service (out-of-profile traffic), the sender or the receiver ? More work has to be done

in order to define accurately the amount of traffic that excesses the profile in order to
establish a payment scheme. Also, time -scale measurement of the PDP response is
important and should be evaluated in future work.

References

1. S. Blake, D. Black M. Carlson,E. Davies, Z. Wang, W. Weiss “RFC 2475: An
Architecture for Differentiated Services”, December 1998.

2. V. Jacobson, K. Nichols, K.Poduri “RFC 2598 An Expedited Forwarding PHB”, June
1999.

3. J.Heinanen, , F.Baker , W. Weiss, J. Wroclawsk “RFC 2597 : Assured Forwarding PHB
Group”, June 1999.

4. K. Nichols, S. Blake, F. Baker, D. Black “RFC 2474: Definition of the Differentiated
Services Field (DS Field) in the IPv4 and IPv6 Headers”, December 1998.

5. W. Fang, Seddigh, B. Nandy “RFC2859 - A Time Sliding Window Three Colour Marker
(TSWTCM)”, June 2000.

6. J. Heinanen, R. Guerin “RFC2698 - A Two Rate Three Color Marker (TRTCM)”,
September 1999.

7. D. Durham, Ed, J. Boyle, R. Cohen, S. Herzog, R. Rajan,w, A. Sastry “RFC 2748: The
COPS (Common Open Policy Service) Protocol”, January 2000.

8. S. Herzog, Ed., J. Boyle, R. Cohen, D. Durham, R. Rajan, A. Sastry “RFC 2749: COPS
usage for RSVP”, January 2000.

9. K. Chan, J. Seligson, D. Durham, S. Gai, K. McCloghrie, S. Herzog, F. Reichmeyer, R.
Yavatkar, A. Smith “RFC 3084: COPS Usage for Policy Provisioning (COPS-PR)”,
March 2001.

10. J. Stuart Hunter. “The Exponentially Weighted Moving Average” J Quality Technology,
Vol. 18, No. 4, pp. 203-207, 1986.

11. “OpenLDAP software” available at http://www.openldap.org/
12. W.Lai, B.Christian, R.Tibbs, S.Berghe “Framework for Internet Traffic Engineering

Measurement” Internet draft, Work in progress, November 2001.
13. V. Paxson, G. Almes, J. Mahdavi, M. Mathis “RFC2330: Framework for IP Performance

Metrics”, May 1998.
14. Werner Almesberger “Differentiated Services on Linux” Home Page

http://diffserv.sourceforge.net/
15. Werner Almesberger, Jamal Hadi Salim, Alexey Kuznetsov “Differentiated Services on

Linux”, Work in progress, June 1999.
16. S. Floyd et al. “Link-sharing and Resource Management Models for Packet Networks”

IEEE/ACM Transactions on Networking, Vol. 3, No. 4, pp. 365-386, August 1995.
17. David D. Clark and Wenjia Fang “Explicit Allocation of Best Effort Packet Delivery

Service” ACM Transactions on Networking, pp. 362-373, August 1998.
18. Sally Floyd and Van Jacobson “Random early detection gateways for congestion

avoidance”, IEEE/ACM Transactions on Networking. Vol. 1, no. 4, pp. 397-413, August
1993.

19. L. Georgiadis, R. Gu_erin, V. Peris and R. Rajan “Efficient Support of Delay and Rate
Guarantees in an Internet” in ACM SIGCOMM, volume 26, number 4, October 1996.

