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Abstract—Energy-efficiency in target tracking applications has
been extensively studied in the literature of Wireless Sensor
Networks (WSN). However, there is little work which has been
done to survey and summarize this effort. In this paper, we
address the lack of these studies by giving an up-to-date State-
of-the-Art of the most important energy-efficient target tracking
schemes. We propose a novel classification of schemes that are
based on the interaction between the communication subsystem
and the sensing subsystem on a single sensor node. We are
interested in collaborative target tracking instead of single-
node tracking. In fact, WSNs are often of a dense nature, and
redundant data that can be received from multiple sensors help
at improving tracking accuracy and reducing energy consump-
tion by using limited sensing and communication ranges. We
show that energy-efficiency in a collaborative WSN-based target
tracking scheme can be achieved via two classes of methods:
sensing-related methods and communication-related methods.
We illustrate both of them with several examples. We show
also that these two classes can be related to each other via
a prediction algorithm to optimize communication and sensing
operations. By self-organizing the WSN in trees and/or clusters,
and selecting for activation the most appropriate nodes that
handle the tracking task, the tracking algorithm can reduce the
energy consumption at the communication and the sensing layers.
Thereby, network parameters (sampling rate, wakeup period,
cluster size, tree depth, etc.) are adapted to the dynamic of
the target (position, velocity, direction, etc.). In addition to this
general classification, we discuss also a special classification of
some protocols that put specific assumptions on the target nature
and/or use a “non-standard” hardware to do sensing. At the end,
we conduct a theoretic comparison between all these schemes
in terms of objectives and mechanisms. Finally, we give some
recommendations that help at designing a WSN-based energy
efficient target tracking scheme.

Index Terms—Energy conservation, prediction, state estima-
tion, network self-organization, target tracking, collaborative
signal processing, WSN.

I. INTRODUCTION

A Wireless Sensor Network (WSN) consists of hundreds
or thousands of tiny low-cost energy-limited nodes that have
small capacities of sensing, processing and communicating via
radio medium. Typically, these nodes report sensed data to a

base station for further processing. They are equipped with
low-cost small-capacity batteries which are, in most cases,
non-rechargeable and irreplaceable. Therefore, network life-
time is considered as an important issue for many applications
such as: target tracking [1].

In contrast to sophisticated surveillance technologies such
as RADARS, which are in fact reliable, robust and accurate
but expensive, WSNs enable cheap technology that do not rely
on any centralized infrastructure.

This technology which aims at performing and providing
accurate data in a timely manner like traditional systems,
brings-up new challenges related to data processing algo-
rithms, communication systems and network organization. In
many cases, cooperation between nodes helps solving these
challenging open-issues.

On the contrary of single-node tracking systems, collabo-
rative target tracking fuses data transmitted by many nodes
and produces state-estimation of the target(s). However, these
measurements are noisy, redundant and non-synchronized, and
the inter-node communication is an energy-consuming task.
Furthermore, neither reliable communication protocols nor
complex data processing algorithms can be implemented on
a sensor node because of its limited processing and commu-
nication capacities.

From this point of view, energy conservation in target
tracking is a key issue and it can be achieved using differ-
ent methods [2]–[4]. Prediction-based scheme coupled with
selective activation of nodes is one of such methods. Figure
1 shows an example of a target tracking scenario in an event-
driven WSN, where nodes are waked-up on-demand following
the target path. Previous active nodes predict the activation
zone in which not all nodes can effectively detect the target but
only a subset of them. These active nodes collaborate between
each other to generate an accurate estimation of the target
state using a in-network light-weight data fusion algorithm.
The gain of such algorithms is two-fold: (i) it generates state-
estimates of the target, and (ii) it produces state-predictions
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Fig. 1. Example of a Prediction-Based Scheme.

for the next sampling period.
Hence, these predictions serve as a basis for choosing

nodes; this is called the Sensor Selection Problem (SSP) [5].
Roughly speaking, it consists at finding the the subset of nodes
with minimum cost that provide the maximum information
utility among all the network’s sensor nodes. In case of target
tracking problem, the cost and the information utility can
be defined respectively as: the energy consumption and the
tracking data accuracy [6].

Another energy conservation technique consists of defining
a schedule or a plane for nodes’ activation and/or sleeping.
Following the target trajectory predicted by the prediction
algorithm, nodes are waked-up to execute some sensing and
communication tasks for a determined period of time, and then
they put themselves in a deep-sleep state. The other nodes that
are not involved in the tracking task are put in the sleep state to
preserve their energy resources. However, the schedule should
not miss the target while it passes through the sensing zones of
sensors and it should concern the ones with maximum energy
resources.

This procedure requires collaboration between nodes and
coordination between communication-related and sensing-
related operations because of several reasons: first, the sensing
measurements are redundant and noisy, and the multi-node
target detection in contrast to single-node detection gener-
ates correlated measurements that can be fused. Second, the
communication links are lossy which can be overcome by
using collaborative protocols to deal with messages’ loss. And
finally, the dense nature of a WSN requires self-organization
to reduce energy consumption. This can be achieved by
structuring the network into clusters and/or trees that follows
the target trajectory. In the following, we will draw a taxonomy
of all these approaches to extract general recommendations for
designing an energy-efficient target tracking scheme.

Nonetheless, we do not consider MAC-layer communication
mechanisms such as duty-cycling [7] because they out of scope
of this paper that is organized as follows:

In section II, we present our proposed classification with
a brief description of each class. In section III, we describe
the first class of schemes that are sensing-related. In section
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Fig. 2. Target Tracking Scheme Components.

IV, we study in more depth the other class of approaches
that are related to the communication subsystem. In section
V, we present another class of methods that do not fit into
our proposed classification. We discuss and compare all these
schemes in section VI and finally we conclude the paper in
section VII.

II. SCHEMES CLASSIFICATION

Before presenting our proposed classification, we give in
the following subsection some definitions that help at charac-
terizing a typical target tracking scheme.

A. Target Tracking Schemes Characterization

Typically, a target tracking scheme consists of three subsys-
tems, namely: the sensing subsystem, the estimation/prediction
subsystem, and the communication subsystem. Figure 2 shows
the relationship between the sensing and the communication
subsystems. The estimation/prediction scheme extracts useful
information from redundant and heterogeneous data transmit-
ted by active nodes. It uses this information to extrapolate the
target position in the future and then organizes the network
to follow-up the target’s path. The communication subsystem
creates and maintains the cluster and/or the tree structure
to minimize messages exchanges. In addition, the prediction
algorithm predicts the target state for the next sampling
period based on which, instants and durations of the sensing
operations can be optimized.

In this paper, we consider that in an energy-efficient WSN-
based target tracking scheme, all nodes should be initially
in a sleep state, except nodes that are on the borders of
the surveillance area. These nodes do the first target detec-
tion/identification operations, then they activate other nodes
via external activation messages transmitted over a low-power
channel called paging channel.

A tracking process is generally divided into successive
tracking steps whose durations are constant or variable depend-
ing on the estimation/prediction algorithm. In each tracking
step, the activation message is disseminated in a zone called
activation zone whose range depends on the estimated target
velocity and the measurements’ error in the current tracking
step.

After network initialization, the estimation/prediction al-
gorithm computes a reliable estimation of the target state.



The filtering algorithm generates an estimation for the current
tracking step and one or more predictions for the next tracking
steps. If the target has a dynamic behavior during the current
tracking step, then a cluster and/or a tree reorganization is
triggered to follow-up the target trajectory. It is the current
leader or the current root that generates target estimation and
reports data to the sink.

A typical target tracking scheme should consider the fol-
lowing elements to be energy efficient:

1) Quality of detection: depending on the percentage of
network coverage (which is related to the network initial
deployment, nodes’ sensing ranges, network density,
etc.), target can be watched by one or more nodes that
generate correlated readings about its state. A target
tracking scheme should be able to measure the infor-
mation utility of these data to decide about which nodes
to select for the next tracking step? How long should
be the activation range? How many nodes should be
selected? etc. This measure helps also computing the
current estimation error.

2) Estimation/prediction algorithm: the prediction algo-
rithm should be distributed and light-weight depending
on the equation state model of the target (linear or non-
linear), the noise model of the sensors readings (Gaus-
sian, non-Gaussian), the target sensing modalities (single
modality, multiple modalities), and given the limited
resources of sensor nodes, The Kalman Filter algorithm
(KF) [8] is an accepted solution for estimation/prediction
since it is easy to implement its distributed version such
as in Distributed Kalman Filter (DKF) [9] and Kalman
Consensus Filter (KCF) [10]. The algorithm is based
on a two-step recursive procedure, namely: update step
and prediction step and it converges for linear systems.
However, for more complex equation state models, there
exist other data filtering algorithm such as: Particle Filter
(PF) [11], Variational Filter (VF) [12], Extended Kalman
Filter (EKF) [13], Unscented Kalman Filter (UKF) [14],
etc.

3) Data reporting mechanism: after target state estima-
tion and prediction, choosing the data reporter node is
another issue. Typically, when connectivity is provided,
nodes that are close to the target with maximum energy
resources should be selected. However, network recon-
figuration may lead to a situation where the reporter
node is far away from the sink and/or the target. Solu-
tions such as the selection of backup reporter nodes or
the establishment of a hybrid (static/dynamic) network
structure can be applied.

4) Activation mechanism: the activation range depends on
the target velocity. To avoid target loss, a multi-step
activation mechanism with dynamic activation range
can be applied. The activation plan can be static (pre-
established at the beginning) or dynamic depending on
the current estimated measurements’ error.

5) Logical network structure: to optimize communica-

tions, a flat network structure is not the better solution.
Clusters or trees can be temporarily constructed to
localize the data fusion process. However, the target
tracking scheme should tackle some problems related
to the dynamic nature of WSN such as: leader election,
cluster/tree reconfiguration, clusters boundary determi-
nation, etc.

B. General Classification

Figure 3 depicts our proposed classification that is based
on two complementary aspects regarding target tracking ap-
plications, namely: sensing-related and communication-related
aspects.

In this general classification, we divide the sensing-related
approaches into two subclasses: Single-node Signal Process-
ing approaches (SP) and Collaborative Signal Processing
approaches (CSP). The first class is out of scope of this
paper. We are interested in the CSP class that is split into
two other subclasses, namely: information-driven subclass and
data filtering subclass. Information-driven techniques exploit
the data content to optimize future readings. Whereas data
filtering techniques generate precise information from noisy
readings.

Communication-related approaches are also decomposed
into two subclasses: Routing/Aggregation subclass and Net-
work Self-organization subclass. Since routing and aggregation
techniques are common to all WSN-based applications and
they are well surveyed in the literature [15], we omit this
subclass and we look to the other one which is directly
related to target tracking applications. We divide it into three
subclasses: node selection, sleep scheduling, and dynamic
clustering.

Node selection techniques estimate nodes’ resources and
target detection probability of each node for the next sampling
period. It estimates also nodes’ contributions in the target
belief state [16] and decide which node to activate and which
one to put in the sleep state.

Since the sleep scheduling subclass is more important, it
is also devided into three subclasses which are: geometric-
based, biological-based and coverage-based techniques. These
subclasses differ between each other according to the strategy
adopted by each method to activate and deactivate nodes.

Note here that coverage-based approaches concentrate on
preserving converge requirements while keeping nodes in the
sleeping state. An in-depth description of each approach is
given in sections III and IV.

An approach that merges Distributed Predictive Tracking
(DPT) with regional Collaborative Signal Processing (CSP)
and uses them alternately to track group of objects is proposed
in [17]. It is based on the same concept that rules our
classification.

III. COLLABORATIVE SIGNAL PROCESSING METHODS

In collaborative signal processing techniques (called also
distributed in-network data processing), instead of sending
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Fig. 3. General Classification.

data to the sink node to be processed by the end-user appli-
cation, nodes collaborate between them to retrieve required
information. They decide about which data to deliver and
which one to aggregate or to compress. The goal here is to
optimize network communications and reduce the number of
nodes involved in the tracking process and the volume of mes-
sages exchanged between them. In the following subsections,
two different techniques are shown: information-driven based
techniques and data filtering based techniques.

A. Information-Driven Techniques

To our best knowledge, Information-Driven Sensor Query-
ing (IDSQ) had been first proposed in [16]. The basic idea be-
hind this approach is to explore the content of the data captured
by sensors to optimize the future readings. Specifically, it aims
at determining which sensor should take the measurements,
and to whom it should send them. IDSQ requires collaboration
among sensor nodes because the targets may have sparse spa-
tiotemporal distribution. Given this hypothesis, target tracking
in IDSQ is seen as a sequential Bayesian estimation problem
where different measures of the information-utility of the
sensor readings are proposed such as: Mahalanobis distance
and entropy-based utility measure.

The activation mechanism defined in [18] selects an in-
formative sensor such that the fusion of the selected sensor
observation with the prior target location distribution would
yield, on average, the greatest or nearly the greatest reduction
in the entropy of the target location distribution. The problem
addressed by the authors in [18] is how to efficiently evaluate
the expected information gain attributable to each candidate
node to selection without actually retrieving sensor data. They
define the entropy-based heuristic to measure the quality of
detection using the sensor’s view about the target location
(which is the geometric projection of the target location onto
that of the sensor’s observation perspective). This metric is a
function of both target and sensor locations, and it is simpler
than mutual-information method [19]. The main difference
between the method proposed in [18] and the one in [20] is

that, the former involves only one sensor, whereas the later
selects many sensors.

The Distributed Kalman Filter (DKF) algorithm with
information-driven extension used as an estimation algorithm
is proposed in [21]. R. Ofati-Saber showed in [21] that
the common objective of improving individual information
value of the sensors would force to perform an unplanned
moving rendezvous near the mobile target. Collision avoidance
between agents leads to a flocking behavior. He proposed
a metric that measures the information value similar to the
Fisher Information [22]. He showed also that adding the agent-
target interaction to the flocking algorithm ( [23] [24]) is a way
of taking the information value of sensor measurements into
account in motion planning of agents toward the target.

Another problem related to computational efficiency should
be considered when we have to activate nodes with maximum
information-utility. This problem can be non-trivial because
the function of the next-step error covariance matrix can be
non-convex. Authors in [25] propose to minimize the trace of
the next step error covariance matrix to find the maximum
of the function. They propose a relaxation approach that
finds a computationally feasible sub-optimal solution. Thus,
the trace of the next step error covariance matrix becomes
a convex function and its minimum can be easily computed
using convex optimization.

B. Data Filtering Techniques

With respect to the constraints of sensor nodes in terms
of computation and communication, light-weight versions of
classical filtering algorithms have been proposed. For example,
in [10] the Kalman Consensus Filter (KCF) algorithm is
proposed for nodes with limited sensing range. In this kind
of network, not all the nodes of the network can observe
the target but only a subset of them. The authors proposed a
consensus-based filtering algorithm that is implemented over
a logical P2P network of micro-filters. Each micro-filter is a
local estimator. A high-level fusion center aggregates the state-
estimates and the error covariance matrix of each micro-filter.



The KCF algorithm aims at reaching a consensus on estimates
obtained by local KF rather than distributing the construction
of the fused measurements and the covariance information of
the central KF. The fusion center in KCF does not receive a
large amount of data because of the hybrid architecture.

A cluster-based scheme that uses Extended Kalman Filter
(EKF) as an estimation algorithm is also proposed in [26].
Tracking in [26] is done via successive selection of nodes.
To select a node, the leader needs to know its target detec-
tion probability which can be deduced from the target state
equations. Using this probability, one can compute the Joint
Detection Probability of all detecting sensors. Unfortunately,
this process is very complex and requires a Monte-Carlo
simulation method. The authors propose a greedy approach in
which, the sensors with high detection probability are selected.

Another aspect of EKF when used as an estima-
tion/prediction algorithm is the problem of the Inter-Sensor
Interferences problem (ISI). This problem appears with active
sensors that track non-collaborative targets [27]. To resolve
this problem, a time-division distributed technique is proposed
in which each sensor senses the target alternatively within a
predefined number of slots. The first variant of this technique
is called the periodic scheduling: it is based on the division of
time into periodic cycles each of which is assigned to a sensor
(see figure 4).

If the scheduled sensor detects the target, it will calculate
the difference between its measurement time and the previous
time step and fuse its measurement with the existing target
estimation using EKF. The problem of finding the minimum
number of time-slots can be modeled as a graph coloring
problem which is known as a NP-Complete problem. The
second variants is called the adaptive scheduling. Its goal is to
eliminate empty slots by scheduling the next tasking node for
the next time step according to the predicted tracking accuracy
which is derived from the trace of the covariance matrix of
the state estimation using Unscented Kalman Filter (UKF). In
figure 5, nodes s2, s3 and s4 have empty detections because
the target passes far from their sensing zones.

EKF can also be used to estimate the distance to the target
by the current cluster-head. This has been proposed in [28]
where detecting nodes send their measurements to a selected
cluster-head which in turn sends a command message to the
second nearest sensor to get initial coordinates of the target.
After that, it executes a Least Square method to obtain a
”good” estimation of the target position. The EKF algorithm is
then triggered to estimate the current and the next target state.
The target model in this scheme is Position-Velocity (PV) with
4 sensor distance measurements. The sampling period (δT ) is
computed according to the target velocity.

Cycle 1 Cycle 2

s1 s2 s3 s4 s5 s6 s1 s2 s3 s4 s5 s6

Fig. 4. Illustration of periodic scheduling.
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When we use EKF as an estimation/prediction algorithm, it
is important to find the most energy-efficient logical network
topology (ex. a tree) that satisfies state estimation constraints.
This problem is addressed in [29] where it is shown that
choosing the tree with minimum energy consumption is very
difficult. Thereby, the authors propose a tree reconfiguration
algorithm composed of three procedures: (1) a recursive
tree initialization procedure that uses the minimum power
transmission to establish connections of each node with its
immediate neighbors, (2) a switching tree topology procedure
that is triggered when the desired quality is not achieved. It
transforms some two-hop neighbors to one-hop neighbors, (3)
a minimum energy subtree procedure that finds all the possible
subtrees that satisfy the required quality and returns the one
with minimum overall energy cost.

Moreover, it is also shown in [29] that minimizing the
overall energy consumption may not lead to maximizing
the network lifetime. Thus, a tree scheduling algorithm that
choose M trees from NN−2 possible trees is necessary1. A
linear programming solution has been proposed to solve this
problem.

As stated above, the main objective of collaborative signal
processing methods is to measure the quality of data that can
be delivered by nodes to choose the most appropriate ones
for activation. They focus on reducing readings’ noise and
predicting the target behavior in the future without paying
attention to the network structure to reduce energy consump-
tion in communications. According to our classification shown
in figure 3, this the complementary aspect of sensing-related
methods and we will deal it in the next section.

IV. NETWORK SELF-ORGANIZATION APPROACHES

The objective of network self-organization approaches is
to extend the network lifetime by eliminating unnecessary
wakening of nodes, planning rigorously their sleep state and
adapting the network topology to the dynamic of the target.
In the following subsections, we describe three subclasses that
fit in this class of methods.

1Optimal scheduling of such trees is also known to be an NP-Complete
problem.



A. Sleep Scheduling
The presence of a target in the surveillance field is a

localized event because of its limited observability and the
nodes’ limited sensing ranges. The energy emitted by the target
is attenuated by spreading in space. Thus, only a subset of
nodes that are located close to the target should be activated.
The other nodes should stay inactive until they receive an
explicit activation message from the previous tracking nodes
indicating that the target is probably in their sensing ranges.
The predictability of the target trajectory helps at determining,
with a sufficient degree of confidence, which nodes to wake-
up, at what time and for which duration. From this standpoint,
sleep scheduling (or sleep planning) should consider several
constraints such as: sensing and communication coverage,
network lifetime, reliable detection, accurate tracking, etc.

In this subsection, we present the three subclasses of sleep
scheduling methods, namely: biological-based, geometric-
based and coverage-based.

1) Biological-based Approaches: they use bio-inspired con-
cepts such as insect communities and gene programming
notions.

One approach that treats the target as a virtual chemical
emitter is proposed in [30]. It constructs influence contours
whose strength decreases with distance from the target.Then,
it selects the sampling period based on meta-data of the target
using its net traveled distance (its past behavior). When the
target enters the surveillance region, it is detected by the border
nodes. Then, a group of nodes is pro-actively selected and
assigned as a Main Node (MN) or a Helper Node (HN). The
MN selects the next tracking group based on the predicted
target state and the node’s centrality which should be the
largest.

The concept of Parallel Gene Expression Programming
(P-GEP) is used in [31] to schedule nodes’ sleeping. The
target trajectory is modeled as a piecewise function which
is divided into different shorter portions. This function is
unknown before the target appears but it can be mined, and
the future positions can be predicted from past location infor-
mation. P-GEP includes a light-weight localization algorithm
that uses the distances to the target to estimate the target
location. During the trajectory mining process, some past
location information are unnecessary, so they can be discarded
using a sliding window mechanism whose size determines
how many previous information is needed according to the
prediction accuracy. This later is measured using the distance
between the prediction location and the actual location. Given
the prediction accuracy, an upper-bound and a lower-bound
trajectories are computed. A fitness function is proposed to
evaluate individuals in P-GEP: the higher the function value
is, the better the individual is, i.e: the the prediction error is
low. The node scheduling algorithm is based on a single-step
or multi-step prediction model that uses the trajectory found
to determine which nodes to wakeup at time ti+j from the
historical information up to time ti.

2) Coverage-based Approaches: their goal is to preserve
the event coverage requirements in the nodes’ sleeping plane.

Different problems rise.
First, the problem of determining the optimal period length

of activation in a sleep schedule of the Controlled Greedy
Sleep algorithm (CGS) [32] which is addressed in [33]. This
problem is modeled as a bi-partite graph whose properties de-
termines the static and the dynamic k-coverage requirements.
The basic idea behind this technique is that each node can
estimate the number of neighbors that will benefit from its
duty period, and based on this estimation, it decides to become
active or not. The authors recommend to consider a short
period of activation for dynamic networks.

Second, the off-duty eligibility rules problem which is
addressed in [34]. The objective here is to identify redundant
nodes to put them in off-duty mode without using any location
information. The basic idea is that before scheduling nodes’
sleeping, user application can specify the desired coverage per-
centage loss, then the corresponding threshold is determined
using given expression or prior collected data pairs which
case-depends: in the case of the number of neighbors, the
threshold is the minimal neighbor’s number, and in the case
of the nearest neighbor, the threshold is the nearest neighbor
distance, etc.

Last, the multi-node event watching problem i.e. TEK-
WEM2 which is formulated in [35]. The authors propose
an algorithm that find the detection sets that satisfy the
warning delivery delay and the network lifetime constraints.
The algorithm uses a color-based method to construct all
the Breath-First-Search Trees each of which is rooted at a
gateway. Each tree corresponds to a detection set. The gateway
adds greedily into the detection set sensors whose sensing
components can help to k-monitor the atomic events. It can
also add useless nodes for connectivity reasons. After that, the
gateway builds the working schedule which is broadcast to all
sensor nodes. A selection heuristic that takes into account the
estimated lifetime, the number of helpful sensing components
and the number of sensing components that equips the sensor
is also discussed.

3) Geometric-based Approaches: these approaches use
computational geometry to construct application-oriented net-
work topology. They take profit from the nodes’ location
information to optimize target localization and tracking. In the
following, we discuss three different schemes, each of them
uses a different geometric concept.

Face-based Object Tracking (FOTP) scheme [36] uses a
face-based architecture with a hexagon algorithm for predic-
tion. It achieves energy efficiency by reducing the number of
active faces as well as the number of waking nodes. A face is
defined as ”the subdivision of the maximal connected subset
of the plane that does not contain a point on an edge or a
node” [36]. The main idea behind FOTP is as follows:

First, some active nodes called ”soldier nodes” detect the
target then wake-up all the nodes in the face by which the
object enters. In figure 6, the target enters by face F1 and nodes
A, B and N are waked-up to detect it. The nodes in the current

2Timely Energy-Efficient k-Watching Event Monitoring.
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face can estimate the distance to the target. After that, they
select the nearest node (NN) to the target as a leader. In the
example (figure 6), node N is the leader. The NN determines
by which edge the target enters and obtains its last position.
Then, it computes its speed and direction. The current NN
determines the next edge to which the target is going through
(in figure 6 it is the edge N − H) and selects the next NN
from the set of nodes in the adjacent faces that intersects with
the predicted edge. Candidate nodes select the next NN which
is node F in this example. If the next NN cannot detect the
target in its time slot, it sends a lost message to the last NN
which will activate all its adjacent faces. If the target is not
detected again, this last NN sends a message back to the base
station.

Another concept used in geometric-based schemes is pla-
narized graphs. A typical scheme that demonstrates this con-
cept is Polygon-based Target Tracking scheme (PTT) [37],
where a measure of the information-utility based on the
Cramer-Rao Lower Bound (CRLB)3 of the variance is used.
The objective here is to minimize the number of nodes that
participate in the tracking process. The algorithm is based on
the brink construction procedure which consists at determining
the critical region by connecting an edge called the brink to
the active polygon. This critical region helps at confirming
if the target is leaving the current polygon and entering
another one, or not. The PTT scheme uses also a node
selection procedure based on both the information-usefulness
and the energy cost: before the target crosses the brink, a
control message which contains the target state estimation is
sent to the nodes in the forwarding polygon. The receiving
nodes combine their measures with the received estimation to
compute their weights. Each node can locally decides whether
it should join the tracking operation or not, and thereby it
determines its couple nodes.

Finally, Kinematics are used to reduce the active tracking
area in multiple-target tracking [38]. Sensor nodes are classed
into three categories: Boundary Nodes (BN), Worker Nodes
(WN) and Computational Nodes (CN). The tracking area is
mapped to a Voronoi Diagram and three different cases are

3CRLB is the inverse of the Fisher Information Matrix.

identified depending on the overlapped area of interest. Larger
overlapped area of interest between two polygons results in a
smaller number of sensors in that polygons, and vice versa.

B. Node Selection

The second subclass of network self-organization ap-
proaches is nodes’ selection which is directly related to net-
work lifetime maximization since this later is often formalized
as an optimization problem with constraints and its resolution
leads to node selection program.

This problem has been modeled as a knapsack problem in
[39]. The goal of the authors was to maximize the residual
energy of the network while meeting the application QoS
requirements. In their model, the authors subdivide the du-
ration of the submitted task T into rounds of size t. The
execution of the algorithm is alternated between different
subsets of active nodes whose role will not change during
the round. The algorithm seeks to select the best subset
of nodes according to different objective function such as:
minimum energy consumption, maximum residual energy, etc.
According to this model, the nodes are the objects of potential
relevance Ri and residual energy Ui. They have to be placed
in of knapsack of capacity M which represents the energy
budget. The energy cost of each node is its energy spent in
sensing and communication activities. The other constraints of
coverage, connectivity and QoS are included in the dynamic
program that resolves the problem.

Network Lifetime Maximization Problem (NLMP) and
Routing Path Length Minimization Problem (RPLMP) are
jointly addressed in [40]. NLMP is expressed as the maxi-
mization of the number of sensor nodes which are kept in
sleep state, and RPLMP is formalized as the minimization
of the routing path length. The nodes that are turned on
remain in this state until the end. These two problems are
proved to be NP-Complete and three heuristics are proposed to
solve it, namely: Naive Shortest Path Selection (NSPS), Dual
Shortest Path Selection (DSPS) and Weighted Shortest Path
Selection (WSPS). NSPS is better in minimizing the delay
time while WSPS and DSPS are better in maximizing the
network lifetime. The choice between these three heuristics
depends on the application requirements.

Finding the upper bound of the network lifetime for any col-
laborative protocol is an interesting question that is addressed
in [41]. The authors propose an approach based on Role
Assignment in which three basic roles are defined, namely:
sensing, gateway and aggregation. First, the problem is mod-
eled as a linear program. Then, the constraints of the network
topology and the sensing model are included. After that, it
is transformed into a flow maximization problem in order to
reduce computation complexity. To give a reliable estimation
of the network lifetime upper-bound, energy consumption at
the MAC layer should be incorporated into the proposed
model.

Sensor management with respect to energy-efficiency is
another alternative to select nodes. It uses many concepts such
as: state-centric [42], rechargeable sensors [43] and target’s



profile information [44], [45] to manage the sensing activity
of the nodes.

For example, in [42] active nodes selection is based on
a state-centric strategy. The prediction of the target state is
computed whatever is the number of hops between the current
data fusion center and the next one. In this scheme, the
selection of the fusion center is based on the energy cost and
all data transmissions are routed via minimal cost energy paths.

The activation range of sensors is also considered when we
come to track a mobile target with large acceleration [44].
A Proportional-Integral-Derivative (PID) control system [46]
is used to update activation range in each sampling period.
The proposed algorithm measures the tracking quality and
compares it with the required tracking quality. The average
error determines the number of nodes to be activated and the
activation range as well. The recovery process is based on
the number of consecutive misses, the distance between the
predictive positions, etc.

In [45], the Greedy-Selection Sensor Management (GSSM)
scheme is proposed to assign a proper subset of sensors to
track multiple targets. GSSM uses an information filter [47] for
multi-sensor data fusion. Sensor management in this scheme
is based on the fact that not all measurements contribute in
improving the tracking accuracy4. Furthermore, information
propagation uses two mechanisms to decide which subset
of nodes receives the target information: (1) the predicted
subset mechanism which is more optimal, but less-effective,
and (2) the nearest subset mechanism which is sub-optimal
but communication and delay-effective. In GSSM, the sensor
management problem with the maximization of the sensors’
information contributions is formulated as a binary optimiza-
tion problem. The GSSM finds a near-optimal solution to
this problem compared to the branch-and-bound algorithm.
However, this later is more difficult to implement in a localized
manner.

In [43], sensor nodes are supposed to be rechargeable using
energy harvesting techniques. A set of scheduling techniques
that take into account uncertainties of the energy incomes,
and which are based on the ANSWER architecture [48] are
proposed. The energy consumption depends on the current
node states, namely: active state, inactive state, wakeup state,
energy harvesting state and observation state. A static active
time approach is proposed in which the complete duration
of the day contains a regular alteration between active and
inactive time. This approach increases the observation quality
but suffers from the lack of adaptation to unexpected events.
A multi-parametric heuristic based approach which depends
on the currently stored energy, the probability of encountering
an event, etc. is used to predict the length of the next active
time. A third utility-based active time approach is proposed to
overcome the problems of the heuristic approach.

Distributed Spanning Tree Algorithm (DSTA) is designed
to track fast targets [49]. It generates successive predictions
to wake-up nodes in t + δt, t + 2δt, t + 3δt, etc. where:

4This is called the Sensor Management Problem.
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Fig. 7. Example of DSTA protocol operations according to [49].

δt is the tracking step duration. The protocol is designed
in two layers: the lower-layer where a spanning tree-based
clustering protocol builds a cluster-based network structure
(in figure 7 (a), three clusters are formed: the current cluster
{s1, s2, s3, s4} with cluster-head: s1, the wakeup cluster (i)
{s5, s6, s7, s8, s14, s15} with cluster-head: s14 and the wakeup
cluster (i + 1) {s9, s10, s11, s12, s13} with cluster-head: s10),
and an upper-layer where the wakening algorithm is executed.
The clusters form a spanning tree rooted at the sink node. Due
to the average speed of the target and its direction, clusters in
the same direction are woken up. The number of these clusters
depends on the target speed. The goal of this scheme is to
decrease the probability of target loss.

The Global Prediction-based Algorithm (GPBA) [50] con-
siders two main parameters: (1) the sampling duration and
(2) the reporting frequency (to the sink node). It uses global
profile rather than local profile because the global profile is
accessible by all the nodes of the network.
The mobile object (target) in GPBA can collect the information
about its behavior from the network. Thus, nodes can use this
information to activate a specific set of nodes. This approach is
specific to objects tagged with a unique global ID. A learning
phase is necessary to record the object movement frequency
between nodes. Each node saves the frequency of each node by
which the object is traversing. After that, based on the object
profile, a Tracking Leader is elected as the current cluster-head
that detects the target. The object profile is updated each time
the object is lost.

C. Dynamic Clustering

A WSN for target tracking is generally built on a cluster
structure because of its aggregation and data fusion charac-
teristics. In the literature, there exist pure dynamic clustering
schemes as well as hybrid (static/dynamic) schemes. Cluster
formation, maintaining, reconfiguration and cluster-head elec-
tion are the main problems related to these schemes. In the



this section, we describe and discuss some protocols such as:
ADCT, HTTP and HCTT, which have different methods to
tackle the above-mentioned problems.

Starting with the Adaptive Dynamic Cluster-based Track-
ing (ADCT) protocol that is proposed in [51]. The cluster
formation procedure is based on a two-phase mechanism. A
broadcast phase and a notification phase. The node with the
smallest distance/ID is chosen as a cluster-head. The sensor
selection procedure is based on an optimal selection function
which is a mixture of both data usefulness and energy cost.
The nodes’ usefulness can be deduced from the bid messages
sent by members to the cluster-head. The cluster reconfigura-
tion procedure is triggered when the predicted position of the
target is on the boundary of the current cluster, in which case,
the cluster-head sends a command message to the neighboring
node nearest to the predicted position. Receiving nodes send an
election message to their neighboring nodes and select the first
replying one as a new cluster-head. The recovery mechanism
is based on acknowledgment messages and waiting timers.

Clustering coupled with the Particle Filter (PF) is another
scheme proposed in [52]. It is based on re-sampling method
(SIR) to reduce the computation complexity of the PF by elim-
inating samples with small weights and preserving samples
with big weights: that is called bootstrap filter. This approach
suffers from degeneracy problem: the system may collapse
to a single point. The solution proposed in [52] is a local
linearization using EKF or UKF.

The utility function used in node selection is defined as the
uncertainty of the target reduced by the additional measure-
ments. It can be represented by the entropy of the belief state
which can be used to select the best node among sensor candi-
dates to maximize information gain. The cost includes: the bit
rate between the cluster-head and the neighbor, the distance
from the sensor node to the cluster-head and to the target,
and the energy needed to receive one bit from neighbors. An
optimization problem is formalized for which two scenario-
dependent solutions were proposed: a meta heuristic called
GRASP for static scenario and a branch-and-bound method
for dynamic scenario.

Another protocol called Herd-Based Target Tracking Pro-
tocol (HTTP) is proposed in [53]. It is based on a three
state-transition model, namely: sensing, sleeping and tracking.
Each node computes its weight and decides to participate in
the tracking process or not. Nodes that are in the tracking
state form a cluster surrounding the target. The backup herd
node is a node that has the same role as the herd node but it
does not send data to the base station. The geographic region
of the network is divided into virtual grids, each of which
is monitored by a cluster-head. A node in the sensing state
computes its weight periodically then it checks if it exceeds
a specified threshold. Then, it goes to the tracking state. Note
here that the node’s weight depends on its distance to the target
and the number of clusters that can participate in the tracking
task is determined by the grid size. When the target moves
out from the current grid to a new one, nodes within it can go
either to the tracking state or to the sensing state depending

on the measurements data. Meanwhile, nodes of the old grid
return back to the sleeping state because they cannot sens the
target anymore. The herd reconfiguration is triggered based on
the distance between the current herd head and the target.

Hybrid Cluster-based Target Tracking (HCTT) scheme [54]
addresses the problem of cluster’s boundary by integrating a
dynamic on-demand clustering protocol and a static cluster-
based target tracking scheme. According to [54], the boundary
problem increases the tracking uncertainties and to solve it,
HCTT checks whether there exist neighboring nodes that
belong to another cluster or not. If yes, then these are boundary
nodes and the cluster region is divided into three types: safety
region, boundary region and alert region. Consequently, the
dynamic cluster includes active boundary nodes that detect
the target. The hand-off between static and dynamic clusters
is based on the sensing data received from the nodes within
these different regions.

The scheme proposed in [55] uses a backoff procedure to
deffer messages’ broadcast, reduce the energy consumption
and varying the transmission range to achieve data accuracy.
The scheme consists of two processes: selection and release.
In the selection process, nodes that detect the target simultane-
ously trigger the backoff procedure. The node with the lowest
backoff period, broadcasts a DETECT message to its neighbors
(nodes that are in its transmission range). Upon receiving this
message, nodes stop their backoff procedures. The other nodes
that are out of the transmission range and which has the
lowest backoff time, do not receive the DETECT message.
Thus, the node with the lowest backoff time will track the
target. Collisions occur when two or more nodes transmit their
DETECT message simultaneously because of their identical
backoff time. In the release process, when the target moves
out of the sensing range of the detecting nodes, a RELEASE
message is transmitted to the neighbors. Upon receiving this
message, nodes trigger a backoff procedure. Similarly, nodes
that have the lowest backoff time will be selected to track the
target.

V. CLASSIFICATION OF SPECIFIC APPROACHES

In this section, we describe schemes that put special as-
sumptions on the sensor capacities or handle special function-
alities in the target tracking process or track special targets.
These schemes do not fit into our classification proposed
in section II because they use different methods to achieve
energy-efficiency. The common aspect that relates this special
classification and the above-described one is the ability of
using prediction to optimize sensing and communication.
In the following subsections we present the most important
schemes that fit in this category.

A. Continuous Object Tracking

Continuous objects contrary to single or individual objects,
have a geometric shape and may expand in a large area such as:
gas leaks, animal troupes, etc. Generally, this kind of objects
cannot be represented by a single point or an atomic event.
They often need multiple attributes to be described with. Thus,
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sensor nodes should have multiple sensing modalities to track
such objects, i.e: they form a Wireless Heterogeneous Sensor
Network (WHSN). In WHSN, one sensor can detect multiple
target’s attributes. It is suitable for detecting and tracking
composite events (ex. fire or pollution). A challenging task in
tracking continuous objects is event boundary determination.
Contrary to individual object tracking, in which the main
problem is how to predict the next location of the target, and
how to inform the next tasking nodes to take charge of the
tracking task, composite events occupy a large area. The goal
here is not to construct and maintain a network topology but
to estimate attribute regions and to determine the event region.

According to [56], there exist four methods to track contin-
uous objects:

1) All sensors in the phenomenon area report data to the
sink.

2) Only nodes nearby the boundary area of the phe-
nomenon are selected.

3) Nodes outside and inside the boundary area are selected
(more nodes than in the previous method).

4) Few representative nodes that report the tracking data.
For example, in ECOT scheme [56], an adjustable sensing

range technique is used where nodes may have five types: (1)
undetect-to-detect, (2), detect-to-undetect, (3) border node, (4)
representative node and (5) border point. Boundary detection
is achieved via node sensing range adjustment: nodes of type
1 diminish their sensing range and nodes of type 2 increase
their sensing range.

TOCOB is another scheme [57] in which each sensor wakes-
up periodically and makes a local observation. A node be-
comes a CVN (Changed Value Node) when it observes a value
in the current sampling period different from its last recorded
value. This node broadcasts a COZ (CompareOneZero) mes-
sage containing its ID and its status. A node becomes BN
(Boundary Node) if it receives a COZ message with different
value; It counts the COZ messages received during a period
of time in order to decide to become an RN (Representative
Node) or not. Contrary to the COBOM algorithm [58], not all
nodes nearby the boundary will become BN but only those
which receive different readings. RN selection is based on the
number of COZ messages that are received by the BN nodes
which determines the backoff time: the higher is the number of
COZ messages, the shorter is the backoff time. Hence, nodes
near the boundary will get high probability to become RN
nodes.

CODA [59] uses a hybrid static/dynamic clustering ap-

proach by constructing a static-cluster backbone and determin-
ing boundary sensors which form after that a dynamic cluster
to monitor the continuous object profile. CODA uses also
the Graham Scan algorithm [60] to resolve the Convex hull
problem i.e: determining the sensors located at the boundary
of the cluster by the cluster-head. Boundary detection is based
on the number of static clusters that detect the object. The
cluster-head is notified via sense messages. Then, it executes
the Graham Scan algorithm and organizes its boundary sensors
within a dynamic cluster. When the object boundary moves
out of the sensing range of the current boundary sensors, new
clusters are formed.

In CollECT [61], the accuracy of event determination is
achieved by subdividing the estimated attribute regions into
multiple non-overlapping faces. In each face, nodes determine
whether the event has occurred or not. Some test rules such
as AIT (Alert-In Triangulation), active role transition and
passive role transition are used to design these procedures of
event determination and border nodes selection. A simplified
strategy of logical neighbors selection is used which is called:
short diagonal wins. A more general design strategies are
needed to prove the effectiveness of such technique.

B. Tracking with Binary Sensors

Binary sensors generate one bit information indicating that
the target is approaching or moving away, or it is present in the
sensing range of the sensor or absent. These primitive sensors
minimize the volume of data transmitted from sensors to the
sink. However, the quality of tracking may degrade when noisy
measurements and/or lossy links are present.

In [62], the authors propose a minimalist scheme of binary
sensors that broadcast only a one bit of information to the
base station to indicate that the target is approaching or
moving away. A derived tracking algorithm based on particle
filter is proposed. The algorithm generates a set of particles
whose weights are computed based on the probabilities of
moving from one point to another and the distances between
sensors. The acceptance criterion of a particle is its associated
probability which should be above a certain threshold.

Although this model is energy-efficient since it uses a small
amount of data, it has the limit of the indistinguishableness of
two targets close to each other or that move parallel to each
other. Hence, an enhancement with a proximity bit is proposed
to overcome this problem.

In [63], the problem of tracking a group of targets as a
continuous region using binary proximity sensors is addressed.
Sensors compute their probability of detection based on the
duration of the target presence in their sensing field. They use
this probability to determine if the target is really detected or
not. In order to localize the group of targets, authors propose
two algorithms to determine the monitoring region: the first
one which is accurate but complex, computes the convex hull
using the graham scan algorithm. However, the second one
which compute the circle that contains the convex hull, is less
complex but less accurate. Reporter node selection algorithm
chooses the node closest to the plus (+) sensors. Based on the



TABLE I
COMPARISON BETWEEN SCHEMES OBJECTIVES

Objectives Sensing-related Communication-related

Energy Consumption
Information-Utility measures

Measurements’ Error
Data fusion & Compression

Selection of data reporting node
Role assignment
Multi-prediction

Application-oriented topologies

Data Accuracy
Target Observability

Sampling period length
Sensor management

Network coverage & connectivity
Geographic position information

Topology reconfiguration

TABLE II
COMPARISON BETWEEN MECHANISMS OF SENSING-RELATED SCHEMES

Mechanisms [16] [18] [21] [25] [10] [26] [27] [28] [29]
Quality of detection X X X X - X - - -

Estimation/Prediction Algorithm X - X - X X X X X
Data Reporting Mechanism - - - - - - - - -

Activation Mechanism X X - X - X X X X
Logical Network Structure - - X - X X - - X

TABLE III
COMPARISON BETWEEN MECHANISMS OF SLEEP SCHEDULING BASED SCHEMES

Mechanisms [30] [31] [33] [34] [35] [36] [37] [38]
Quality of detection - X X X X - X -

Estimation/Prediction Algorithm - X - - - X - -
Data Reporting Mechanism - - - - - - - -

Activation Mechanism X X X X X X X X
Logical Network Structure X - - - X X X X

TABLE IV
COMPARISON BETWEEN MECHANISMS OF NODE SELECTION AND DYNAMIC CLUSTERING BASED SCHEMES

Mechanisms [39] [40] [41] [42] [44] [45] [43] [49] [50] [51] [52] [53] [54] [55]
Quality of detection - - - - X X X - X - - X - -

Estimation/Prediction Algorithm - - - - X - - X - - X - - -
Data Reporting Mechanism - - X X X X - - X - - - - -

Activation Mechanism X X - X X - - X - X X X - X
Logical Network Structure X - - X - - - X X X X X X X

distance over which data are transmitted, and after iteration,
the proposed algorithm gives the near-optimal coordinates of
the reporter node. Finally, authors suggest a redeployment
control algorithm when the target group moves away from
the current one. This algorithm aims at reducing energy
consumption by reducing the distances the data aggregations
are transmitted.

Another binary proximity sensor tracking scheme is pro-
posed in [12]. For non-Gaussian target state distribution,
tracking becomes intractable. Instead of using a Particle Filter
(PF), the authors propose Variational Filtering approach to
reduce inter-cluster communications. In addition to this, a
Binary Proximity Observation Model (BPOM) with a prede-
fined threshold is used. This gives a solution to the problem
with minimalist model. The advantage of VF over PF is
the compression of the statistics required to update filtering
distribution between successive instants. In order to reduce
energy consumption, the authors adopt a Non-myopic cluster
activation based on the prediction generated by the VF.

VI. SCHEMES COMPARISON AND DISCUSSION

All the above-described schemes share the dual-objective of
minimizing the energy consumption and improving the data
accuracy:

• Energy-efficiency is related to the sensing and the com-
munication operations.

• Data-accuracy can be expressed as the precision of the
estimations or the amount of data extracted from the
WSN given a certain network energy budget.

As it is shown in table I, on one hand, sensing-related
energy-efficiency methods try to select nodes using a pre-
diction algorithm with respect to coverage, connectivity and
network lifetime constraints. They use data-fusion and data
compression algorithm to minimize the volume of data to
be forwarded. On the other hand, communication-related en-
ergy efficiency methods optimize routing and data report-
ing. They select reporter nodes based on the distance es-
timated between current active nodes and the target. They



use role-assignment and multi-step prediction approaches to
balance energy consumption between nodes. Another objective
of the network self-organization techniques is to construct
application-oriented topology that helps at optimizing data-
fusion process and extend the network lifetime.

Data accuracy is the opposite objective to the energy-
efficiency. Based on our study, data accuracy depends on the
network coverage and the target observability. Constructing
an efficient topology with respect to coverage constraints
and message communication cost is a challenging problem.
Furthermore, the use of a minimalist model of target ob-
servation such as binary sensors, adds additional constraints
but helps at reducing energy consumption. The specification
of the information-utility measurements and the target profile
definition are also key problems to enhance data accuracy.

Tables II, III and IV show the comparisons that we con-
ducted between sensing-related, sleep scheduling-based and
sensor selection and dynamic clustering-based mechanisms,
respectively. It is easy to observe that few schemes consider all
the energy-efficient aspects of a typical target tracking scheme.
All the schemes address only two or three aspects (except two
schemes [26], [44] that consider four aspects). Furthermore,
the activation mechanism is the best part addressed by the
different schemes followed by network logical structure and
the estimation/prediction algorithm. Hence, more attention
should be put on the other aspects that are less-handled such
as data reporting.

As we can see on the tables, sensing-related schemes focus
on the estimation/prediction algorithm in contrast to sleep
scheduling based schemes and sensor selection and dynamic
clustering based schemes that concentrate on the quality of
detection and the logical network structure, respectively.

VII. CONCLUSION AND FUTURE WORK

The energy problem in WSN is still an active research
area where a huge body of research is produced. In this
paper we surveyed some of the most recent target tracking
schemes whose goal is to preserve the network energy and
maintain an acceptable level of data accuracy. All the schemes
that we described and discussed try to resolve the energy
problem by allowing the interaction between the sensing layer
and the communication layer and letting each layer to take
profit from the other. However, we believe that the most
energy-consuming layer is the communication layer and the
optimization effort should be put on it.

In addition, we find that an important research track in
geographic and geometric-based schemes is handling dis-
tances’ and nodes’ positions uncertainties in tree and/or cluster
construction. Any error in nodes’ coordinates may propagate
during the computation process which may lead to wrong
results. We believe that taking into account these uncertainties
may improve the decisions about the target position predictions
and the data reporting especially in multimedia WSN.
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