
Group separation strikes back1

Thomas Place ! Ï2

LaBRI, Bordeaux University, France3

Marc Zeitoun ! Ï4

LaBRI, Bordeaux University, France5

Abstract6

We consider group languages, which are those recognized by a finite group, or equivalently by a7

permutation automaton (i.e., each letter induces a permutation on the set of states). We investigate8

the separation problem for this class: given two regular languages as input, decide whether there9

exists a group language containing the first, while being disjoint from the second. We prove that10

covering, which generalizes separation, is decidable. So far, this result could only be obtained as a11

corollary of an independent algebraic theorem by Ash, whose proof relies on involved algebraic notions.12

In contrast, our algorithm and its proof rely exclusively on standard notions from automata theory.13

Additionally, we prove that covering is also decidable for two strict subclasses: languages14

recognized by commutative groups, and modulo languages. Both algorithms rely on the construction15

made for group languages, but the proof for commutative groups builds on independent ideas.16

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory;17

Theory of computation → Regular languages18

Keywords and phrases Automata, Separation, Covering, Group languages19

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2320

1 Introduction21

Context. A prominent question in automata theory is to understand natural classes22

of languages defined by restricting standard definitions of the regular languages (such as23

regular expressions, automata, monadic second-order logic or finite monoids). Naturally,24

“understanding a class” is an informal goal. The standard approach is to show that the25

class under investigation is recursive by looking for membership algorithms: given a regular26

language as input, decide whether it belongs to the class. Rather than the procedure itself,27

the motivation is that formulating such an algorithm often requires a deep understanding of28

the class. This approach was initiated in the 60s by Schützenberger [24], who provided a29

membership algorithm for the class of star-free languages (those defined by a regular expression30

without Kleene star but with complement instead). This theorem started a fruitful line of31

research, which is now supported by a wealth of results. In fact, some of the most famous32

open problems in automata theory are membership questions (see [25, 13, 12] for surveys).33

In the paper, we look at two problems, which both generalize membership. The first one34

is separation: given two regular languages L1 and L2 as input, decide whether there exists a35

third language that belongs to the investigated class, includes L1 and is disjoint from L2. The36

second one is covering. It generalizes separation to an arbitrary number of input languages.37

These problems have been getting a lot of attention recently, and one could even argue38

that they have replaced membership as the central question. The motivation is twofold.39

First, it has recently been shown [18] that separation and covering are key ingredients for40

solving some of the most difficult membership questions (see [17] for a survey). Yet, the main41

motivation is tied to our original goal: “understanding classes”. In this respect, separation42

and covering are more rewarding than membership (albeit more difficult). Intuitively, a43

membership algorithm for a class C can only detect the languages in C, while a covering44

algorithm provides information on how arbitrary regular languages interact with C.45

© T. Place and M. Zeitoun;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tplace@labri.fr
http://www.labri.fr/perso/tplace
mailto:mz@labri.fr
http://www.labri.fr/perso/zeitoun
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Group separation strikes back

Group languages. In the paper, we look at three specific classes. The main one is the46

class of group languages GR. While natural, this class is rather unique since its only known47

definition is based on machines: group languages are those recognized by a finite group,48

or equivalently, by a permutation automaton (a deterministic finite automaton in which49

every letter induces a permutation on the set of states). On the other hand, no “descriptive”50

definition of GR is known (e.g, based on regular expressions or on logic). This makes51

it difficult to get an intuitive grasp about group languages, which may explain why this52

class remains poorly understood. We also consider two more intuitive subclasses: the first,53

AMT, consists of all languages recognized by Abelian (i.e., commutative) groups. From a54

language theoretic point of view, these are the languages that can be defined by counting55

the occurrences of each letter modulo some fixed integer. The second is a subclass of AMT56

named MOD. A language is in MOD if membership of a word in the language only depends57

on its length modulo some fixed integer. Like all classes of group languages, these three58

classes are orthogonal and complementary to the classes for which separation and covering59

have been recently investigated (i.e., subclasses of the star-free languages, see [17]). Indeed,60

only the empty and the universal languages are simultaneously star-free and group languages.61

Let us point out that separation and covering are known to be decidable for group62

languages. This can be deduced from an algebraic theorem by Ash [1]. However, Ash’s63

motivations were purely algebraic and independent from ours (see [6, 11, 10]). Ash does not64

mention separation nor even regular languages. More importantly, while there exist several65

proofs of Ash’s theorem, they all rely on involved algebraic concepts and machinery outside66

of automata theory. Some proofs [1, 2] are based on the theory of inverse semigroups while67

others rely on topological arguments [14, 9, 22]. The situation is similar for the languages of68

Abelian groups: the decidability of separation can be deduced from results of Delgado [3]69

which are formulated and proved using topology. This means that these results (and their70

proofs) are not satisfying with respect to our primary goal: “understanding classes”.71

Motivations. GR and its sub-classes often serve as ingredients for building more complex72

classes. Let us illustrate using logic. One may associate several classes to a fixed fragment73

of first-order logic. Every such class corresponds to a choice of signature (i.e., the allowed74

predicates). For each class of languages C, we define a signature PC as follows: each language L75

in C gives rise to a predicate PL(x), which selects all positions x in a word w such that the76

prefix of w up to position x (excluded) belongs to L. For C = AMT and C = MOD, we77

obtain in this way two natural signatures: the predicates of PAMT allow one to test, for each78

letter a of the alphabet, the number of a’s before position x modulo some integer. Likewise,79

the predicates of PMOD make it possible to test the value of positions modulo some integer.80

More generally, given an arbitrary class of group languages G with mild properties, it81

is natural to consider the signatures {<} ∪ PG and {<,+1} ∪ PG (where “+1” denotes the82

successor). It was recently shown that for many fragments of first-order logic F, membership83

and sometimes even separation and covering are decidable for the classes F(<,PG) and84

F(<,+1,PG) as soon as separation is decidable for G. Prominent examples include the whole85

first-order logic [19] (FO), the first levels of the well-known quantifier alternation hierarchy86

of FO [20, 21] (namely, the levels Σ1, BΣ1, Σ2 and Σ3), and finally two variable first-order87

logic (FO2) and its whole quantifier alternation hierarchy [15]. The proofs are based on88

language theoretic definitions of these classes: they can be built by applying operators to G.89

Consequently, it is desirable to have accessible language theoretic proofs that separation is90

decidable for the most prominent classes of group languages: GR, AMT and MOD.91

Contribution. We present new self-contained proofs that covering and separation are92

decidable for GR, AMT and MOD. The algorithms and their proofs rely exclusively on93

T. Place and M. Zeitoun 23:3

basic notions of automata theory, making them accessible to computer scientists. We work94

with non-deterministic finite automata (NFA), and our arguments use non-determinism in95

a crucial way. Ironically, we use very few algebraic notions beyond the standard definition96

of groups. Essentially, the proof arguments are based on word combinatorics for GR and97

arithmetic for AMT, while MOD boils down to the other two for unary alphabets. Finally,98

while Ash did not formulate his theorem as a separation result, it is simple to deduce the99

NFA-based algorithm from his work, and vice-versa. The value of the present paper lies in100

the elementary proof rather than on the algorithm itself.101

The algorithms themselves are simple. Let us consider GR-separation. We present a102

simple construction that takes an NFA A as input and outputs a new one bAcε. Then, we103

show that the languages recognized by two NFAs A1 and A2 can be separated by a group104

language if and only if the languages recognized by bA1cε and bA2cε do not intersect. Since105

bA1cε and bA2cε can be computed in polynomial time, this shows that GR-separation is in P106

(this goes up to PSPACE for covering as the question boils down to deciding intersection107

between an arbitrary number of NFAs). The approach for AMT is similar with one key108

difference: we consider Parikh images. More precisely, we show that whether the languages109

recognized by two NFAs A1 and A2 can be separated by AMT boils down to some specific110

condition on the Parikh images of bA1cε and bA2cε. Using standard results (namely that111

existential Presburger arithmetic is in NP [23]), this implies that AMT-separation is in112

co-NP. Actually, we show that both AMT-separation and AMT-covering are co-NP-complete.113

Finally, we show that in the much simpler case of MOD, separation is NL-complete.114

MOD AMT GR

Separation NL-complete co-NP-complete P-complete

Covering In co-NP co-NP-complete In PSPACE

Figure 1 Covering and separation for MOD, AMT and GR (inputs represented by NFAs).

Organization. In Section 2, we introduce preliminary definitions and an automata construc-115

tion, which we use as a key ingredient in all algorithms. Section 3 is devoted to separation116

and covering for the class GR of all group languages. Section 4 is devoted to AMT. Finally,117

Section 5 is devoted to MOD. Due to space limitations, some results are proved in appendix.118

2 Preliminaries119

2.1 Words, languages, separation and covering120

Languages and automata. In the paper, we fix a finite alphabet A. As usual, A∗ denotes121

the set of all finite words over A, including the empty word ε. We let A+ = A∗ \ {ε}. For122

u, v ∈ A∗, we write uv the word obtained by concatenating u and v. A language (over A)123

is a subset of A∗. Finally, a class of languages C is a set of languages, i.e., a subset of 2A∗ .124

Additionally, we say that C is a Boolean algebra when it is closed under union, intersection125

and complement: for every K,L ∈ C, we have K ∪ L ∈ C, K ∩ L ∈ C and A∗ \K ∈ C.126

We consider regular languages: those that can be equivalently defined by finite automata,127

finite monoids or monadic second-order logic. We work with automata. A non-deterministic128

finite automaton (NFA) over A is a tuple A = (Q, I, F, δ) where Q is a finite set of states,129

I ⊆ Q and F ⊆ Q are sets of initial and final states, and δ ⊆ Q × A × Q is a set of130

CVIT 2016

23:4 Group separation strikes back

transitions. The language recognized by A is defined as follows. Given q, r ∈ Q and w ∈ A∗,131

we say that there exists a run labeled by w from q to r (in A) if there exist q0, . . . , qn ∈ Q132

and a1, . . . , an ∈ A such that w = a1 · · · an , q0 = q, qn = r and (qi−1, ai, qi) ∈ δ for133

every 1 ≤ i ≤ n. Moreover, we write δ∗ ⊆ Q × A∗ × Q for the set consisting of all triples134

(q, w, r) ∈ Q × A∗ × Q such that there exists a run labeled by w from q to r (note that135

(q, ε, q) ∈ δ∗ for every q ∈ Q: this is the case n = 0). The language recognized by A, denoted136

by L(A) ⊆ A∗, consists of all w ∈ A∗ such that there exist q ∈ I and r ∈ F satisfying137

(q, w, r) ∈ δ∗. A language is regular if and only if it is recognized by an NFA.138

We also use NFAs with ε-transitions. In such an NFA A = (Q, I, F, δ), a transition may139

also be labeled by the empty word “ε” (that is, δ ⊆ Q× (A∪{ε})×Q). We use the standard140

semantics: an ε-transition can be taken without consuming an input letter. Note that unless141

otherwise specified, the NFAs that we consider are assumed to be without ε-transitions.142

Separation and covering. These decision problems depend on an arbitrary fixed class C.143

They are used as mathematical tools for investigating C. They both take finitely many144

regular languages as input (which we represent with NFAs in the paper).145

Given two languages L1 and L2, we say that L1 is C-separable from L2 if there exists146

K ∈ C such that L1 ⊆ K and L2 ∩ K = ∅. The C-separation problem takes two regular147

languages L1 and L2 as input and asks whether L1 is C-separable from L2.148

Covering was introduced in [16] as a generalization of separation. Given a language L, a C-149

cover of L is a finite set of languages K such that everyK ∈ K belongs to C and L ⊆
⋃
K∈K K.150

Given a pair (L1,L2) where L1 is a language and L2 a finite set of languages, we say that151

(L1,L2) is C-coverable when there exists a C-cover K of L1 such that for every K ∈ K,152

there exists L ∈ L2 satisfying K ∩ L = ∅. The C-covering problem takes as input a regular153

language L1 and a finite set of regular languages L2 and asks whether (L1,L2) is C-coverable.154

Covering generalizes separation when C is closed under union: in this case, one may verify155

that L1 is C-separable from L2, if and only if (L1, {L2}) is C-coverable. Additionally, the156

definition of covering may be simplified when C is a Boolean algebra: it suffices to consider157

the case when the language L1 that needs to be covered is A∗. Indeed, in that case, (L1,L2)158

is C-coverable if and only if (A∗, {L1} ∪ L2) is C-coverable (the proof is simple, see [16]).159

Since we only consider Boolean algebras, we only look at this special case. Given a finite160

set of languages L, we say that L is C-coverable if and only if (A∗,L) is C-coverable. For the161

classes C that we consider, C-covering boils down to deciding whether an input finite set L of162

regular languages is C-coverable. Additionally, C-separation is the special case when |L| = 2.163

I Remark 1. When discussing complexity, we consider the alphabet A as part of the input.164

Group languages. We first recall the algebraic definition of regular languages. A monoid165

is a set M endowed with an associative multiplication (s, t) 7→ s · t (also denoted by st)166

having a neutral element 1M , i.e., such that 1Ms = s1M = s for every s ∈M . Clearly, A∗ is167

a monoid whose multiplication is concatenation (the neutral element is ε). Thus, we may168

consider monoid morphisms α : A∗ → M where M is an arbitrary monoid. Given such a169

morphism and some language L ⊆ A∗, we say that L is recognized by α when there exists a170

set F ⊆ M such that L = α−1(F). It is well-known and simple to verify that the regular171

languages are also those which can be recognized by a morphism into a finite monoid.172

A group is a monoid G such that every element g ∈ G has an inverse g−1 ∈ G, i.e.,173

gg−1 = g−1g = 1G. We write GR for the class of all group languages, i.e., which are174

recognized by a morphism into a finite group. One can verify that GR is a Boolean algebra.175

I Remark 2. No language theoretic definition of GR is known. There is however a definition176

based on automata: the group languages are those which can be recognized by a permutation177

automaton (i.e., which is simultaneously deterministic, co-deterministic and complete).178

T. Place and M. Zeitoun 23:5

We also look at two sub-classes of GR. The first one is the class MOD of modulo languages.179

For w ∈ A∗, we write |w| ∈ N for the length of w (its number of letters). For all q, r ∈ N such180

that r < q, we let Lq,r = {w ∈ A∗ | |w| ≡ r mod q}. The class MOD consists of all finite181

unions of languages Lq,r. The following simple lemma is proved in Appendix C.182

I Lemma 3. Let L ⊆ A∗. Then, L ∈ MOD if and only if L is recognized by a morphism183

α : A∗ → G into a finite group G such that α(a) = α(b) for all a, b ∈ A.184

We turn to the class AMT of alphabet modulo testable languages. If w ∈ A∗ and a ∈ A,185

let |w|a ∈ N be the number of copies of “a” in w. For all q, r ∈ N such that r < q and all186

a ∈ A, let Laq,r = {w ∈ A∗ | |w|a ≡ r mod q}. We define AMT as the least class containing all187

languages Laq,r and closed under union and intersection. The lemma is proved in Appendix B.188

I Lemma 4. Let L ⊆ A∗. Then, L ∈ AMT if and only if L is recognized by a morphism189

α : A∗ → G into a finite commutative group G.190

One may verify that both MOD and AMT are Boolean algebras and MOD ⊆ AMT ⊆ GR.191

In the paper, we prove that covering and separation are decidable for GR, AMT and MOD.192

The proofs are based exclusively on elementary arguments from automata theory. We rely193

on a common automata-based construction, which we describe now.194

2.2 Automata-based construction195

First, we define an extension of A as a larger alphabet denoted by Ã. For each a ∈ A, we196

create a fresh letter a−1 (by “fresh”, we mean that a−1 6∈ A) and define A−1 = {a−1 | a ∈ A}.197

We let Ã be the disjoint union Ã = A∪A−1. Observe that we have a bijection a 7→ a−1 from198

A to A−1. We extend it as an involution of Ã∗: for every a ∈ A, we let (a−1)−1 = a. Then,199

for every w = b1b2 · · · bn ∈ Ã∗ (with b1, . . . , bn ∈ Ã), we define w−1 = b−1
n · · · b−1

2 b−1
1 (we let200

ε−1 = ε). The map w 7→ w−1 is an involution of Ã∗: (w−1)−1 = w for every w ∈ Ã∗.201

Every morphism α : A∗ → G into a group G can be extended as morphism α : Ã∗ → G.202

For all a−1 ∈ A−1, we let α(a−1) = (α(a))−1 (the inverse of α(a)). One may verify that the203

definition implies α(w−1) = (α(w))−1 for every w ∈ Ã∗. We shall use this fact implicitly.204

I Remark 5. This construction is standard, and used to introduce the free group over A205

(which is a quotient of Ã∗). We do not need this notion. We use Ã as a syntactic tool: we206

build auxiliary NFAs over Ã from NFAs over A. We shall never consider arbitrary objects207

over Ã: all arbitrary NFAs that we encounter are implicitly assumed to be over A.208

We now present the construction on automata. Consider an arbitrary NFA A = (Q, I, F, δ)209

over the original alphabet A (δ ⊆ Q×A×Q). We build a new NFA bAc over the extended210

alphabet Ã. We say that two states q, r ∈ Q are strongly connected if there exist u, v ∈ A∗211

such that (q, u, r) ∈ δ∗ and (r, v, q) ∈ δ∗ (i.e., q and r are in the same strongly connected212

component of the graph representation of A). Clearly, this is an equivalence relation. We213

define bδc ⊆ Q× Ã×Q as the following extended set of transitions:214

bδc = δ ∪ {(r, a−1, q) | (q, a, r) ∈ δ and q, r are strongly connected}.215

We let bAc = (Q, I, F, bδc), so that L(bAc) ⊆ Ã∗. Note that for all q, r ∈ Q which are216

strongly connected and u ∈ Ã∗, we have (q, u, r) ∈ bδc∗ if and only if (r, u−1, q) ∈ bδc∗.217

Observe that bAc may be computed from A in polynomial time: this boils down to computing218

the pairs of states which are strongly connected, which is a graph reachability problem.219

Finally, we use the following lemma to “simulate” the runs in bAc into the original NFA A.220

CVIT 2016

23:6 Group separation strikes back

I Lemma 6. Let A = (Q, I, F, δ) be an NFA and α : A∗ → G be a morphism into a finite221

group. For every q, r ∈ Q and w ∈ Ã∗ such that (q, w, r) ∈ bδc∗, there exists w′ ∈ A∗ such222

that (q, w′, r) ∈ δ∗ and α(w) = α(w′).223

Proof. By definition of bδc, it suffices to show that every new transition (s, a−1, t) ∈ bδc224

with a ∈ A can be “simulated” in A with a word x ∈ A∗ (i.e., such that (s, x, t) ∈ δ∗) such225

that α(x) = α(a−1) = (α(a))−1. By definition of bδc, if (s, a−1, t) ∈ bδc, we have (t, a, s) ∈ δ226

and s, t are strongly connected. Hence, we have y ∈ A∗ such that (s, y, t) ∈ δ∗. Since G is a227

finite group, it is standard that there exists a number p ≥ 1 such that gp = 1G for all g ∈ G.228

Therefore, α((ay)p) = 1G. Let x = y(ay)p−1. Clearly, we have (s, x, t) ∈ δ∗ by hypothesis on229

a and y. Moreover, α(ax) = α((ay)p) = 1G. Therefore, α(x) = (α(a))−1, as desired. J230

3 Covering and separation for group languages231

We prove that separation and covering are decidable for GR. Historically, this result follows232

from a theorem of Ash [1]. Yet, Ash’s results are purely algebraic and do not mention233

separation. This makes it difficult to compare them with what we do. In particular, Ash234

relies heavily on the theory of inverse semigroups. Here, we bypass this notion entirely: the235

algorithm and its proof rely on elementary notions from automata theory only.236

3.1 Statement237

The procedure is based on a theorem characterizing the finite sets of regular languages which238

are GR-coverable. To present it, we first extend the automata-based construction A 7→ bAc239

introduced in the previous section (this extended construction is specific to GR-covering).240

Given an arbitrary NFA A, we further modify the NFA bAc and construct a new NFA241

with ε-transitions bAcε (these are the only NFAs with ε-transitions that we consider). The242

definition is based on a language Lε ⊆ Ã∗ that we define first. We introduce a standard243

rewriting rule that one may apply to words in Ã∗. If w ∈ Ã∗ contains an infix of the form244

aa−1 or a−1a for some a ∈ A, one may delete it. More precisely, given w,w′ ∈ Ã∗, we write245

w → w′ if there exist x, y ∈ Ã∗ and a ∈ A such that either w = xaa−1y or w = xa−1ay, and246

w′ = xy. We write “ ∗−→” for the reflexive transitive closure of “→”. That is, given w,w′ ∈ Ã∗,247

we have w ∗−→ w′ if w = w′ or there exist words w0, . . . , wn ∈ Ã∗ with n ≥ 1 such that248

w = w0 → w1 → w2 → · · · → wn = w′. We let Lε = {w ∈ Ã∗ | w ∗−→ ε}. This is a variant of249

the well-known Dyck language. In particular, Lε is not regular (it is only context-free).250

Consider an NFA A = (Q, I, F, δ) and the associated NFA bAc = (Q, I, F, bδc). We251

extend the set bδc by adding ε-transitions. We define bδcε ⊆ Q× (Ã ∪ {ε}) ∪Q as follows:252

bδcε = bδc ∪ {(q, ε, r) | there exists w ∈ Lε such that (q, w, r) ∈ bδc∗}.253

Moreover, we let bAcε = (Q, I, F, bδcε). Note that one may compute bAcε from bAc (hence254

from A) in polynomial time. Indeed, the construction creates a new ε-transition (q, ε, r) if255

and only if {w ∈ Ã∗ | (q, w, r) ∈ bδc∗} (which is regular) intersects Lε (which is context-free).256

It is standard that this problem is decidable in polynomial time. We complete the definition257

with two simple but useful properties (see Appendix A for the proofs).258

I Fact 7. Let A = (Q, I, F, δ) be an NFA. Let q, r ∈ Q and w ∈ Ã∗ such that (q, w, r) ∈ bδc∗ε.259

If w ∈ Lε, then (q, ε, r) ∈ bδcε. Also, if q, r are strongly connected, then (r, w−1, q) ∈ bδc∗ε.260

Moreover, it is straightforward to extend Lemma 6 to this new automaton bAcε.261

T. Place and M. Zeitoun 23:7

I Lemma 8. Let A = (Q, I, F, δ) be an NFA and let α : A∗ → G be a morphism into a finite262

group. For every q, r ∈ Q and w ∈ Ã∗ such that (q, w, r) ∈ bδc∗ε, there exists w′ ∈ A∗ such263

that (q, w′, r) ∈ δ∗ and α(w) = α(w′).264

We may now state the main theorem of this section. It characterizes the finite sets of265

regular languages that are GR-coverable using the construction A 7→ bAcε.266

I Theorem 9. Let k ≥ 1 and let k NFAs A1, . . . ,Ak. The following conditions are equivalent:267

1. The set
{
L(A1), · · · , L(Ak)

}
is GR-coverable.268

2. We have
⋂
i≤k L(bAicε) = ∅.269

Clearly, the second condition in Theorem 9 can be decided. Indeed, for every i ≤ k, we270

are able to compute bAicε from Ai in polynomial time. Moreover, it is well-known that one271

may decide whether an arbitrary number of NFAs intersect (in polynomial space). Hence,272

we obtain as desired that GR-covering is decidable and in PSPACE. Additionally, when the273

number k of inputs is fixed, intersection can be decided in polynomial time. In particular, we274

obtain that GR-separation (the case k = 2) is decidable and in P. We prove in Appendix A275

that the problem is actually P-complete by reducing the monotone circuit value problem.276

3.2 Proof of Theorem 9277

We fix a number k ≥ 1 and for every j ≤ k an NFA Aj = (Qj , Ij , Fj , δj). The two implications278

in the theorem are handled independently. Let us start with 1)⇒ 2).279

Implication 1) ⇒ 2). Assume that {L(A1), · · · , L(Ak)} is GR-coverable. We show that280 ⋂
i≤k L(bAicε) = ∅. By contradiction, assume that there exists w ∈

⋂
i≤k L(bAicε).281

By hypothesis, we have a GR-cover K of A∗ such that for every K ∈ K, there exists j ≤ k282

such that K ∩ L(Aj) = ∅. Let K = {K1, . . . ,Kn}. By hypothesis, Ki ∈ GR for every i ≤ n:283

it is recognized by a morphism αi : A∗ → Gi into a finite group. Clearly, G = G1 × · · · ×Gn284

is a finite group for the componentwise multiplication and the morphism α : A∗ → G defined285

by α(w) = (α1(w), . . . , αn(w)) recognizes all languages Ki. Since w ∈ L(bAjcε) for every286

j ≤ k, Lemma 8 yields wj ∈ A∗ such that wj ∈ L(Aj) and α(wj) = α(w). Since K is a287

cover of A∗, there exists K ∈ K such that w1 ∈ K. Hence, since K is recognized by α288

and α(w1) = · · · = α(wk) = α(w), it follows that w1, . . . , wk ∈ K. We have shown that289

K ∩ L(Aj) 6= ∅ for every j ≤ k which contradicts the definition of K.290

Implication 2) ⇒ 1). This is the technical core of the proof. We start with preliminary291

terminology. Let A = (Q, I, F, δ) be an NFA. We say that (q, a, r) ∈ δ is a frontier transition292

if the states q and r are not strongly connected. Moreover, given q, r ∈ Q and w ∈ A∗, we293

associate a number d(q, w, r) ∈ N ∪ {∞}. If (q, w, r) 6∈ δ∗, we let d(q, w, r) =∞. Otherwise,294

(q, w, r) ∈ δ∗ and d(q, w, r) is the least number n ∈ N such there exists a run from q to r295

labeled by w in A which uses exactly n frontier transitions. Note that d(q, w, r) = 0 if and296

only if (q, w, r) ∈ δ∗ and q, r are strongly connected. We have the following immediate fact.297

I Fact 10. Let q, r ∈ Q and w ∈ A∗ be such that (q, w, r) ∈ δ∗. Then, d(q, w, r) ≤ |Q|.298

Moreover, if w = uv with u, v ∈ A∗, we have s ∈ Q such that d(q, u, s)+d(s, v, r) = d(q, w, r).299

We turn to a key definition. Let A = (Q, I, F, δ) be a NFA and ` ∈ N. An `-synchronizer300

(for A) is a morphism α : A∗ → G into a finite group G satisfying the two following properties:301

1. for all q, r ∈ Q and w ∈ A∗ such that d(q, w, r) ≤ ` and α(w) = 1G, we have (q, ε, r) ∈ bδc∗ε .302

2. for all q1, . . . , qk, r1, . . . , rk ∈ Q and w1, . . . , wk ∈ A∗ such that
∑
i≤k d(qi, wi, ri) ≤ `− 1303

and α(w1) = · · · = α(wk), there exists u ∈ Ã∗ such that (qi, u, ri) ∈ bδc∗ε for every i ≤ k.304

CVIT 2016

23:8 Group separation strikes back

I Remark 11. There is a subtle difference between these two properties. The first one requires305

that d(q, w, r) ≤ ` while the second requires that
∑
i≤k d(qi, wi, ri) ≤ ` − 1. This will be306

important when proving Proposition 12 below. In particular, when ` = 0, the second property307

is trivially satisfied since
∑
i≤k d(qi, wi, ri) cannot be smaller than −1.308

I Proposition 12. Let A be an NFA. For every ` ∈ N, there exists an `-synchronizer for A.309

Let us first apply Proposition 12 to prove the implication 2)⇒ 1) in Theorem 9. Assuming310

that
⋂
j≤k L(bAjcε) = ∅, we show that {L(A1), · · · , L(Ak)} is GR-coverable. Recall that311

Aj = (Qj , Ij , Fj , δj). We may assume without loss of generality that the sets Qj are pairwise312

disjoint. We define Q =
⋃
j≤kQj , δ =

⋃
j≤k δj and A = (A,Q, ∅, ∅, δ). Let ` = k|Q|+ 1. By313

Proposition 12, there exists an `-synchronizer α : A∗ → G for A. Consider the GR-cover314

{α−1(g) | g ∈ G} of A∗. We show that for every g ∈ G, there exists j ≤ k such that315

α−1(g) ∩ L(Aj) = ∅, which means that {L(A1), · · · , L(Ak)} is GR-coverable, as desired.316

Let g ∈ G and by contradiction, assume that α−1(g) ∩ L(Aj) 6= ∅ for every j ≤ k. This317

yields wj ∈ L(Aj) for each j ≤ k such that α(wj) = g. Since wj ∈ L(Aj), there are two states318

qj ∈ Ij and rj ∈ Fj such that (qj , wj , rj) ∈ δ∗. By Fact 10, this implies d(qj , wj , rj) ≤ |Q|.319

We get
∑
j≤k d(qj , wj , rj) ≤ k|Q| = `− 1. Thus, since α(w1) = · · · = α(wk) = g and α is an320

`-synchronizer, the second property yields u ∈ Ã∗ such that (qj , u, rj) ∈ bδc∗ε for every j ≤ k.321

Since qj ∈ Ij and rj ∈ Fj , it follows that u ∈ L(bAjcε) for every j ≤ k. This contradicts the322

hypothesis that
⋂
j≤k L(bAjcε) = ∅, concluding the main argument.323

We turn to the proof of Proposition 12, which we develop in the remainder of the section.324

We fix an NFA A = (Q, I, F, δ). Using induction on ` ∈ N, we build an `-synchronizer for A.325

Base case: ` = 0. The definition of our 0-synchronizer is based on an equivalence. Let326

q, r ∈ Q. We write q ' r when q and r are strongly connected and (q, ε, r) ∈ bδc∗ε.327

I Lemma 13. The relation ' is an equivalence. Moreover, let q, r, q′, r′ ∈ Q with q, q′ and328

r, r′ strongly connected. If (q, a, q′) ∈ δ and (r, a, r′) ∈ δ for a ∈ A, then q ' r ⇔ q′ ' r′.329

Proof. Clearly, ' is reflexive: (q, ε, q) ∈ bδc∗ε for every q ∈ Q. Moreover, if q ' r, then q330

and r are strongly connected and (q, ε, r) ∈ bδc∗ε . Since ε = ε−1, Fact 7 yields (r, ε, q) ∈ bδc∗ε331

and we get r ' q, meaning that ' is symmetric. Finally, let q, r, s ∈ Q such that q ' r332

and r ' s. By definition, q, r, s are strongly connected, (q, ε, r) ∈ bδc∗ε and (r, ε, s) ∈ bδc∗ε.333

Clearly, (q, ε, s) ∈ bδc∗ε which yields q ' s and we conclude that ' is transitive.334

Let now q, r, q′, r′ ∈ Q and a ∈ A be as in the statement. We prove that q ' r ⇔ q′ ' r′.335

By definition, (q′, a−1, q) ∈ bδc and (r′, a−1, r) ∈ bδc. If q ' r, then q′, r′ are strongly336

connected, and (q, ε, r) ∈ bδc∗ε, so that (q′, a−1a, r′) ∈ bδc∗ε. Since a−1a
∗−→ ε, Fact 7 yields337

(q′, ε, r′) ∈ bδc∗ε: we get q′ ' r′. Conversely, if q′ ' r′, we have (q′, ε, r′) ∈ bδc∗ε. Hence,338

(q, aa−1, r) ∈ bδc∗ε and since aa−1 ∗−→ ε, Fact 7 yields (q, ε, r) ∈ bδc∗ε: we obtain q ' r. J339

For every q ∈ Q, we write [q]' ∈ Q/' for the '-class of q. Moreover, we let G be the340

group of permutations of Q/'. That is, G consists of all bijections g : Q/' → Q/' and the341

multiplication is composition (the neutral element is identity). We have the following fact.342

I Fact 14. For every a ∈ A, there exists an element ga ∈ G such that for every q, q′ ∈ Q343

which are strongly connected and such that (q, a, q′) ∈ δ, we have ga([q]') = [q′]'.344

Proof. Consider q ∈ Q. By Lemma 13, if there exists q′ ∈ Q such that q, q′ are strongly345

connected and (q, a, q′) ∈ δ, we know that for every r, r′ ∈ Q which are strongly connected346

and such that (r, a, r′) ∈ δ, we have q ' r ⇔ q′ ' r′. Hence, we may define ga([q]') = [q′]'.347

This yields a partial function ga : Q/' → Q/' which satisfies the condition described in the348

fact and is injective. Hence, we may complete ga into a bijection, concluding the proof. J349

T. Place and M. Zeitoun 23:9

We define α : A∗ → G as the morphism defined by α(a) = ga for every a ∈ A and show350

that α is a 0-synchronizer. We prove the first property in the definition (the second one351

is trivially satisfied when ` = 0). Let q, r ∈ Q and w ∈ A∗, such that d(q, w, r) = 0 and352

α(w) = 1G. By definition, α(w) is a permutation of Q/'. Moreover, since d(q, w, r) = 0,353

we have (q, w, r) ∈ δ∗ and q, r are strongly connected. By definition of α from Fact 14 this354

implies that α(w)([q]') = [r]'. Finally, since α(w) = 1G, we also have α(w)([q]') = [q]'.355

Hence, q ' r and the definition yields (q, ε, r) ∈ bδc∗ε . We conclude that α is a 0-synchronizer.356

Inductive step: ` ≥ 1. Induction on ` yields a (`− 1)-synchronizer β : A∗ → H. We define357

a new morphism α : A∗ → G from β and then prove that it is the desired `-synchronizer.358

For every pair (h, a) ∈ H ×A and every w ∈ A∗, we define #h,a(w) ∈ N as the number359

of pairs (x, y) ∈ A∗ × A∗ such that β(x) = h and w = xay. We choose α so that for360

every w ∈ A∗, the image α(w) ∈ G determines β(w) ∈ H and, for every (h, a) ∈ H × A,361

whether the number #h,a(w) ∈ N is even or odd. The definition is inspired from the work362

of Auinger [2]. Let G = H × {0, 1}H×A. Every g ∈ G is a pair g = (h, f) where h ∈ H and363

f : H × A → {0, 1} is a function. We define a multiplication on G. If g1 = (h1, f1) ∈ G364

and g2 = (h2, f2) ∈ G, we define g1g2 = (h1h2, f) where f : H ×A→ {0, 1} is the function365

f : (h, a) 7→ (f1(h, a) + f2(h−1
1 h, a)) mod 2. One may verify that G is indeed a group for366

this multiplication. For every w ∈ A∗, let fw : H × A → {0, 1} be the function defined367

by fw(h, a) = #h,a(w) mod 2. One may now verify that the map α : A∗ → G defined by368

α(w) = (β(w), fw) is a monoid morphism. We show that it is an `-synchronizer.369

Let us first explain how to exploit the definition of α. A key point is that we are mainly370

interested in special pairs (h, a) ∈ H ×A. Given a subset F ⊆ H, we say that such a pair371

(h, a) is F -alternating when h ∈ F ⇔ hβ(a) 6∈ F . Moreover, we say that a word w ∈ A∗372

is F -safe if #h,a(w) is even for every F -alternating pair (h, a) ∈ H × A. By definition,373

the image α(w) ∈ G determines whether w is F -safe or not. In the latter case, we get an374

F -alternating pair (h, a) such that #h,a(w) is odd (and thus, #h,a(w) ≥ 1). In the former375

case, we shall use the following lemma.376

I Lemma 15. Let F ⊆ H such that 1H ∈ F . For every w ∈ A∗ which is F -safe, β(w) ∈ F .377

Proof. For w ∈ A∗, let #F (w) ∈ N be the sum of all numbers #h,a(w) where (h, a) ∈ H ×A378

is F -alternating. We prove that for every w ∈ A∗, we have β(w) ∈ F ⇔ #F (w) is even. This379

clearly implies the lemma: if w is F -safe, then #F (w) is even which implies that β(w) ∈ F .380

We use induction on the length of w ∈ A∗. When w = ε, β(w) = 1H ∈ F and #F (w) = 0.381

Hence, the property is trivially satisfied. Assume now that w ∈ A+. This yields v ∈ A∗ and382

a ∈ A such that w = va. Clearly, we have |v| < |w| and we get β(v) ∈ F ⇔ #F (v) is even383

by induction. Note that this implies β(v) 6∈ F ⇔ #F (v) is odd. There are two cases. First,384

assume that (β(v), a) is F -alternating. Since w = va, it follows that β(w) ∈ F ⇔ β(v) 6∈ F385

and #F (w) = #F (v) + 1 (i.e., #F (w) is even ⇔ #F (v) is odd). Combining the equivalences,386

we get β(w) ∈ F ⇔ #F (w) is even, as desired. Assume now that (β(v), a) is not F -alternating.387

Since w = va, it follows that β(w) ∈ F ⇔ β(v) ∈ F and #F (w) = #F (v) (i.e., #F (w) is388

even ⇔ #F (v) is even). Again, we may combine the equivalences to get β(w) ∈ F ⇔ #F (w)389

is even, as desired. This concludes the proof. J390

It remains to prove that α is an `-synchronizer. There are two conditions to verify. We391

first present preliminary results that will be useful in both arguments. In particular, we392

describe the sets F ⊆ H for which we shall consider F -alternating pairs.393

Preliminary results. For every q ∈ Q, we define a set L(q) ⊆ Ã∗. Given v ∈ Ã∗, we394

let v ∈ L(q) if and only if there exists q′ ∈ Q such that q, q′ are strongly connected and395

(q, v, q′) ∈ bδc∗ε. The next key lemma follows from the fact that β is an (`− 1)-synchronizer.396

CVIT 2016

23:10 Group separation strikes back

I Lemma 16. Let s, t ∈ Q and w ∈ A∗ such that d(s, w, t) ≤ `− 1. The following holds:397

1. for every v ∈ L(s) such that β(w) = β(v), we have (s, v, t) ∈ bδc∗ε.398

2. for every v ∈ L(t) such that β(w) = (β(v))−1, we have (s, v−1, t) ∈ bδc∗ε.399

Proof. Since both assertions can be proved similarly, we only prove the first (a proof of400

the second one is available in Appendix A). Consider v ∈ L(s) such that β(w) = β(v). By401

definition, we have s′ ∈ Q such that s, s′ are strongly connected and (s, v, s′) ∈ bδc∗ε. By402

Fact 7, we have (s′, v−1, s) ∈ bδc∗ε. Lemma 8 yields x ∈ A∗ such that (s′, x, s) ∈ δ∗ and403

β(x) = β(v−1). Since d(s, w, t) ≤ ` − 1 and s′, s are strongly connected, it follows that404

d(s′, xw, t) ≤ `− 1. Moreover, since β(w) = β(v) and β(x) = β(v−1), we have β(xw) = 1H .405

Altogether, since β is an (`− 1)-synchronizer, we get (s′, ε, t) ∈ bδc∗ε. Since (s, v, s′) ∈ bδc∗ε,406

it follows that (s, v, t) ∈ bδc∗ε as desired. J407

Let q ∈ Q and (h, a) ∈ H ×A. We say that (h, a) stabilizes q if there exist w ∈ A∗ and408

s ∈ Q such that d(q, w, s) = 0 and #h,a(w) ≥ 1. The next lemma follows from Lemma 16.409

I Lemma 17. Let q ∈ Q and (h, a) ∈ H ×A which stabilizes q. The following holds:410

for every v ∈ L(q) such that β(v) = h, we have va ∈ L(q).411

for every v ∈ L(q) such that β(v) = hβ(a), we have va−1 ∈ L(q).412

Proof. By hypothesis, we have w ∈ A∗ and s ∈ Q such that d(q, w, s) = 0 and #h,a(w) ≥ 1.413

The latter yields x, y ∈ A∗ such that w = xay and β(x) = h. Hence, since d(q, w, s) = 0,414

Fact 10 yields q′, q′′ ∈ Q such that d(q, x, q′) = d(q′, a, q′′) = d(q′′, y, s) = 0 ≤ `− 1.415

Let v ∈ L(q) such that β(v) = h = β(x). Since d(q, x, q′) = 0, Lemma 16 yields416

(q, v, q′) ∈ bδc∗ε. Since (q′, a, q′′) ∈ δ, we get (q, va, q′′) ∈ bδc∗ε. This yields va ∈ L(q) since417

q, q′′ are strongly connected. We now consider v ∈ L(q) such that β(v) = hβ(a) = β(xa).418

Since d(q, xa, q′′) = 0, Lemma 16 yields (q, v, q′′) ∈ bδc∗ε. Moreover, since (q′, a, q′′) ∈ δ and419

q′, q′′ are strongly connected, we have (q′′, a−1, q′) ∈ bδc by definition. Therefore, we have420

(q, va−1, q′) ∈ bδc∗ε . Since q, q′ are strongly connected , this yields va−1 ∈ L(q) as desired. J421

We may now present the sets F ⊆ H to which we shall apply Lemma 15. For every422

S ⊆ Q, we associate a set FS ⊆ H. We define,423

FS =
{
β(v) | v ∈

⋂
q∈S

L(q)
}
.424

A simple yet crucial observation is that for every S ⊆ Q, we have 1H ∈ FS . Indeed, ε ∈ L(q)425

for every q ∈ Q since (q, ε, q) ∈ bδc∗ε. This property means that we can apply Lemma 15 for426

the sets FS . Finally, we have the following corollary of Lemma 17.427

I Corollary 18. Let S ⊆ Q and (h, a) ∈ H ×A which is FS-alternating. There exists q ∈ S428

such that (h, a) does not stabilize q.429

Proof. We proceed by contradiction. Assume that (h, a) stabilizes q for every q ∈ S. We430

show that h ∈ FS ⇔ hβ(a) ∈ FS , contradicting the hypothesis that (h, a) is FS-alternating.431

Assume first that h ∈ FS . By definition, this yields v ∈
⋂
q∈S L(q) such that β(v) = h. Since432

(h, a) stabilizes q for every q ∈ S, the first assertion in Lemma 17 yields va ∈
⋂
q∈S L(q). Thus,433

hβ(a) ∈ FS . Conversely assume that hβ(a) ∈ FS . By definition, this yields v′ ∈ Ã∗ such that434

v′ ∈ L(q) and β(v′) = hβ(a). Since (h, a) stabilizes q for every q ∈ S, the second assertion in435

Lemma 17 yields v′a−1 ∈
⋂
q∈S L(q). Thus, h ∈ FS which concludes the proof. J436

T. Place and M. Zeitoun 23:11

First condition. Let q, r ∈ Q and w ∈ A∗ with d(q, w, r) ≤ ` and α(w) = 1G. We show that437

(q, ε, r) ∈ bδc∗ε . By definition of α, have β(w) = 1H . Hence, since β is a (`− 1)-synchronizer,438

the result is immediate when d(q, w, r) ≤ `− 1. Thus, we assume that d(q, w, r) = `.439

Since ` ≥ 1, w must be nonempty. Let a1, . . . , an ∈ A such that w = a1 · · · an. By Fact 10,440

we have q0, . . . , qn ∈ Q such that q0 = q, qn = r and
∑

1≤k≤n d(qk−1, ak, qk) = d(q, w, r) = `.441

Hence, there are exactly ` indices k < n such that (qk−1, ak, qk) ∈ δ is a frontier transition.442

For every 0 ≤ k ≤ n, we let xk = a1 · · · ak and yk = ak+1 · · · an (we let x0 = yn = ε). Clearly,443

w = xkyk. We let hk = β(xk) for every k ≤ n. Since β(w) = 1H , we also have β(yk) = h−1
k .444

We let i ≤ n be the least index such that (qi−1, ai, qi) is a frontier transition. Symmet-445

rically, we let j ≤ n be the greatest index such that (qj−1, aj , qj) is a frontier transition.446

Clearly, 1 ≤ i ≤ j ≤ n (we have i = j when ` = 1). By definition, we have the following fact.447

I Fact 19. Let k ≤ n. If i ≤ k, then d(qk, yk, r) ≤ `− 1. If k < j, then d(q, xk, qk) ≤ `− 1.448

We use the hypothesis that α(w) = 1G and a case analysis to prove the following lemma.449

I Lemma 20. One of the three following properties holds:450

1. there exists k such that i ≤ k < j and hk ∈ F{q,r}, or,451

2. hi−1 ∈ F{q,r} and (hi−1, ai) stabilizes r, or,452

3. hj ∈ F{q,r} and (hj−1, aj) stabilizes q.453

Proof. We start with a preliminary definition. Since w = xjyj and α(w) = 1G, we know454

that α(xj) = α(y−1
j). Moreover, (qj , yj , r) ∈ δ∗ which yields (r, y−1

j , qj) ∈ bδc∗ since455

qj , r are strongly connected by definition of j. Thus, Lemma 6 yields z ∈ A∗ such that456

α(z) = α(y−1
j) = α(xj) and (r, z, qj) ∈ δ∗. For every (h, a) ∈ H ×A, we have the following457

two properties:458

By definition of i, d(q, xi−1, qi−1) = 0. Thus, if #h,a(xi−1) ≥ 1, then (h, a) stabilizes q.459

By definition of j, d(r, z, qj) = 0. Thus, if #h,a(z) ≥ 1, then (h, a) stabilizes r.460

We shall use these two properties and their contrapositives repeatedly in the proof. We461

consider two cases depending on whether xi is F{q,r}-safe.462

First case: xi is F{q,r}-safe. Lemma 15, yields hi = β(xi) ∈ F{q,r}. Thus, if i < j, Assertion 1463

in the lemma holds for k = i. We now assume that i = j. Let (h, a) = (hi−1, ai) = (hj−1, aj).464

The argument differs depending on whether #h,a(xi−1) ≥ 1 or not. If #h,a(xi−1) ≥ 1, then465

(h, a) = (hj−1, aj) stabilizes q. Hence, Assertion 3 in the lemma holds since hj = hi ∈ F{q,r}.466

Otherwise, #h,a(xi−1) = 0. Since xi = xi−1ai and (h, a) = (hi−1, ai), it follows that467

#h,a(xi) = 1. In particular, #h,a(xi) is odd and since xi is F{q,r}-safe, it follows that (h, a)468

is not F{q,r}-alternating. Hence, since hβ(a) = hi ∈ F{q,r}, we also have hi−1 = h ∈ F{q,r}.469

Finally, since xi = xj , we have α(xi) = α(xj) = α(z). Thus, since #h,a(xi) = 1, we470

know that #h,a(z) is odd by definition of α. In particular, #h,a(z) ≥ 1 which implies that471

(hi−1, ai) = (h, a) stabilizes r. Since hi−1 ∈ F{q,r}, we conclude that Assertion 2 holds.472

Second case: xi is not F{q,r}-safe. The argument differs depending on whether xi−1 is473

F{q,r}-safe or not. Assume first that xi−1 is F{q,r}-safe. By Lemma 15, we have hi−1 =474

β(xi−1) ∈ F{q,r}. Thus, if there exists k such that i ≤ k < j and hk = hi−1, Assertion 1475

in the lemma holds. Otherwise, we have #hi−1,ai(xi) = #hi−1,ai(xj). By hypothesis,476

xi = xi−1ai is not F{q,r}-safe while xi−1 is F{q,r}-safe. Thus, (hi−1, ai) is F{q,r}-alternating477

and #hi−1,ai
(xi) = #hi−1,ai

(xj) is odd. Since α(z) = α(xj), it follows that #hi−1,ai
(z) is odd478

as well by definition of α. Thus, #hi−1,ai
(z) ≥ 1 which implies that (hi−1, ai) stabilizes r.479

Since hi−1 ∈ F{q,r}, Assertion 2 in the lemma holds.480

Finally, assume that xi−1 is not F{q,r}-safe: we have (h, a) which is F{q,r}-alternating481

and such that #h,a(xi−1) is odd. Observe that since xi = xi−1ai is not F{q,r}-safe as well,482

CVIT 2016

23:12 Group separation strikes back

we may choose (h, a) so that (h, a) 6= (hi−1, ai). Thus, #h,a(xi) is odd as well. Since483

#h,a(xi−1) ≥ 1, we know that (h, a) stabilizes q. By Corollary 18 it follows that (h, a) does484

not stabilize r. This implies #h,a(z) = 0 and since α(z) = α(xj), it follows that #h,a(xj) is485

even. Since #h,a(xi) is odd, this yields k such that i ≤ k < j and (hk, ak+1) = (h, a). Since486

(h, a) is F{q,r}-alternating either hk ∈ F{q,r} or hk+1 = hkβ(ak+1) ∈ F{q,r}. If hk ∈ F{q,r},487

Assertion 1 in the lemma holds. If hk+1 ∈ F{q,r}, then either i ≤ k < j−1 and Assertion 1 in488

the lemma holds, or k = j − 1 which means that hj = hk+1 ∈ F{q,r} and (hj−1, aj) = (h, a)489

which stabilizes q: Assertion 2 in the lemma holds. J490

By Lemma 20, there are three cases. First assume that we have k such that i ≤ k < j491

and hk ∈ F{q,r}. The definition of F{q,r} yields v ∈ L(q)∩L(r) such that β(v) = hk. Fact 19492

yields d(q, xk, qk) ≤ `− 1. Thus, since v ∈ L(q) and β(xk) = hk = β(v), Lemma 16 yields493

(q, v, qk) ∈ bδc∗ε. Symmetrically, Fact 19 yields d(qk, yk, r) ≤ ` − 1. Thus, since v ∈ L(r)494

and β(yk) = h−1
k = (β(v))−1 Lemma 16 yields (qk, v−1, r) ∈ bδc∗ε. Altogether, we obtain495

(q, vv−1, r) ∈ bδc∗ε. Since vv−1 ∗−→ ε, we get (q, ε, r) ∈ bδcε by Fact 7, concluding this case.496

In the second case, hi−1 ∈ F{q,r} and (hi−1, ai) stabilizes r. By definition of F{q,r}, there497

exists v ∈ L(q) ∩ L(r) such that β(v) = hi−1. We have d(q, xi−1, qi−1) = 0 by definition of i.498

Thus, since v ∈ L(q) and β(xi−1) = β(v), Lemma 16 yields (q, v, qi−1) ∈ bδc∗ε . Moreover, since499

(hi−1, ai) stabilizes r, v ∈ L(r) and β(v) = hi−1, Lemma 17 implies that vai ∈ L(r). Fact 19500

yields d(qi, yi, r) ≤ `− 1. Thus, since vai ∈ F (r) and β(yi) = h−1
i = (β(vai))−1, Lemma 16501

yields (qi, (vai)−1, r) ∈ bδc∗ε. Hence, since (qi−1, ai, qi) ∈ δ, we get (q, vai(vai)−1, r) ∈ bδc∗ε.502

Since vai(vai)−1 ∗−→ ε, it follows that (q, ε, r) ∈ bδcε by Fact 7, concluding this case.503

In the last case, hj ∈ F{q,r} and (hj−1, aj) stabilizes q. By definition of F{q,r}, there exists504

v ∈ L(q)∩L(r) such that β(v) = hj . We have d(qj , yj , r) = 0 by definition of j. Consequently,505

since v ∈ F (r) and β(yj) = h−1
j = (β(v))−1, Lemma 16 yields (qj , v−1, r) ∈ bδc∗ε. Moreover,506

we know that (hj−1, aj) stabilizes q, v ∈ L(q) and β(v) = hj = hj−1β(aj). Thus, Lemma 17507

yields va−1
j ∈ L(q). We have d(q, xj−1, qj−1) ≤ `−1 by Fact 19. Thus, since va−1

j ∈ L(q) and508

β(xj−1) = hj−1 = β(va−1
j), Lemma 16 yields (q, va−1

j , qj−1) ∈ bδc∗ε. Since (qj−1, aj , qj) ∈ δ,509

we obtain (q, va−1
j ajv

−1, r) ∈ bδc∗ε. Finally, since va−1
j ajv

−1 ∗−→ ε, we obtain from Fact 7510

that (q, ε, r) ∈ bδcε as desired. This concludes the proof for the first condition.511

Second condition. Consider q1, . . . , qk, r1, . . . , rk ∈ Q and w1, . . . , wk ∈ A∗ such that512 ∑
i≤k d(qi, wi, ri) ≤ ` − 1 and α(w1) = · · · = α(wk). We need to exhibit u ∈ Ã∗ such that513

(qi, u, ri) ∈ bδc∗ε for every i ≤ k. By definition of α, we have β(w1) = · · · = β(wk). Let514

S = {q1, . . . , qk}. There are two cases depending on whether w1 is FS-safe.515

Assume first that w1 is FS-safe. By Lemma 15, it follows that β(w1) ∈ FS . We get u ∈ Ã∗516

such that u ∈
⋂
i≤k L(qi) and β(u) = β(w1) = · · · = β(wk). Thus, since d(qi, wi, ri) ≤ `− 1517

by hypothesis, Lemma 16 yields (qi, u, ri) ∈ bδc∗ε for every i ≤ k, concluding this case.518

Assume now that w1 is not FS-safe: we have an FS-alternating pair (h, a) such #h,a(w1)519

is odd. Since α(w1) = · · · = α(wk), we know that #h,a(wi) is odd for every i ≤ k. Therefore,520

#h,a(wi) ≥ 1: we have xi, yi ∈ A∗ such that wi = xiayi and β(xi) = h. Fact 10 yields521

si, ti ∈ Q such that d(qi, xi, si) + d(si, a, ti) + d(ti, yi, ri) = d(qi, wi, ri). In particular,522

we have d(ti, yi, ri) ≤ d(qi, wi, ri) for every i ≤ k. Moreover, (h, a) is FS-alternating and523

S = {q1, . . . , qk}. Hence, Corollary 18 yields j ≤ k such that (h, a) does not stabilize qj . Since524

#h,a(xja) ≥ 1, this implies d(qj , xjaj , tj) ≥ 1. Consequently, we have the strict inequality525

d(tj , yj , rj) < d(qj , wj , rj). Altogether, we obtain
∑
i≤k d(ti, yi, ri) <

∑
i≤k d(qi, wi, ri). By526

hypothesis, this implies that
∑
i≤k d(ti, yi, ri) ≤ (`− 1)− 1. Moreover, β(w1) = · · · = β(wk),527

β(x1a) = · · · = β(xka) = hβ(a) and H is a group. Hence, we have β(y1) = · · · = β(yk) and528

since β is a (`− 1)-synchronizer, we obtain z ∈ Ã∗ such that (ti, z, ri) ∈ bδc∗ε for every i ≤ k.529

T. Place and M. Zeitoun 23:13

We now consider two subcases. Since (h, a) is FS-alternating, either h ∈ FS or hβ(a) ∈ FS .530

Assume first that h ∈ FS . We get v ∈
⋂
i≤k L(qi) such that β(v) = h = β(x1) = · · · = β(xn).531

Since d(qi, xi, si) ≤ d(qi, wi, ri) ≤ ` − 1, Lemma 16 yields (qi, v, si) ∈ bδc∗ε for every i ≤ k.532

Moreover, we have (si, a, ti) ∈ δ. Altogether, it follows that (qi, vaz, ri) ∈ bδc∗ε for every533

i ≤ k. This concludes the first subcase. Finally, assume that hβ(a) ∈ FS . This yields534

v′ ∈
⋂
i≤k L(qi) such that β(v′) = hβ(a) = β(x1a) = · · · = β(xna). Since d(qi, xiai, ti) ≤535

d(qi, wi, ri) ≤ `− 1, Lemma 16 yields (qi, v′, ti) ∈ bδc∗ε for every i ≤ k. Altogether, it follows536

that (qi, v′z, ri) ∈ bδc∗ε for every i ≤ k. This concludes the proof of Proposition 12.537

4 Covering and separation for alphabet modulo testable languages538

We prove that covering is decidable for AMT as well. Let us point out that this can be539

obtained from an algebraic theorem of Delgado [3]. Yet, this approach is indirect: Delgado’s540

results are purely algebraic and do not mention separation. Formulating them would require541

a lot of groundwork. We use a direct approach based on standard arithmetical and automata542

theoretic arguments. As for GR, the procedure is based on a theorem characterizing the finite543

sets of regular languages which are AMT-coverable. We reuse the construction A 7→ bAc544

defined in Section 2. We start with terminology that we need to formulate the result.545

Let n = |A|. We fix an arbitrary linear order A and let A = {a1, . . . , an}. We use this546

order to define a map ζ : Ã∗ → Zn (where Z is the set of integers). Given, w ∈ Ã∗, we define,547

ζ(w) = (|w|a1 − |w|a−1
1
, . . . , |w|an

− |w|a−1
n

) ∈ Zn.548

For a language L ⊆ Ã∗ over Ã, we shall consider the direct image ζ(L) = {ζ(w) | w ∈ L} ⊆ Zn.549

We may now present the characterization theorem.550

I Theorem 21. Let k ≥ 1 and k NFAs A1, . . . ,Ak. The following conditions are equivalent:551

1. The set {L(A1), · · · , L(Ak)} is AMT-coverable.552

2. We have
⋂
i≤k ζ(L(bAic)) = ∅.553

We first explain why Theorem 21 implies the decidability of AMT-covering. This follows554

from standard results and the decidability of Presburger arithmetic. Let us present a sketch.555

The definition of the map ζ : Ã∗ → Zn is a variation on a standard notion. Given a word556

w ∈ Ã∗, its Parikh image (also called commutative image) is defined as the following vector,557

π(w) = (|w|a1 , . . . , |w|an
, |w|a−1

1
, . . . , |w|a−1

n
) ∈ N2n.558

Clearly, π(w) determines ζ(w) and for every L ⊆ Ã∗, π(L) ⊆ N2n determines ζ(L) ⊆ Zn.559

Consider k NFAs A1, . . . ,Ak. We know that bAic can be computed from Ai in polynomial560

time for every i ≤ k. Moreover, it is known [5] that an existential Presburger formula ϕi561

describing the set π(L(bAic)) ⊆ N2n can be computed from Ãi in polynomial time. It is then562

straightforward to combine the formulas ϕi into a single existential Presburger sentence which563

is equivalent to
⋂
i≤k ζ(L(bAic)) 6= ∅. Finally, it is known [23] that the existential fragment of564

Presburger arithmetic can be decided in NP. Hence, deciding whether
⋂
i≤k ζ(L(bAic)) 6= ∅565

can be achieved in NP. It then follows from Theorem 21 that AMT-covering (and therefore566

AMT-separation as well) can be decided in co-NP. It turns out that this complexity upper567

bound is optimal: AMT-covering and AMT-separation are both co-NP-complete (we present568

a simple proof for the lower bound in Appendix B using a reduction from 3-SAT).569

We prove the implication 2)⇒ 1) in Theorem 21. The converse is shown in Appendix B570

(the proof is similar to what we did for GR in Section 3). We use standard arithmetical571

CVIT 2016

23:14 Group separation strikes back

tools. We consider the componentwise addition on Zn. Moreover, we abuse terminology and572

write “0” for the neutral element (i.e., the vector whose entries are all equal to zero). Given573

a single vector v ∈ Zn and a finite set of vectors V = {v1, . . . , v`} ⊆ Zn, we write,574

L(v, V) = {v + k1v1 + · · ·+ k`v` | k1, . . . , k` ∈ Z} ⊆ Zn.575

The sets L(v, V) are called the linear subsets of Zn. Finally, the semi-linear subsets of Zn576

are the finite unions of linear sets (note that this includes ∅, which is the empty union). We577

need two results about these sets. The first one is a variation on Parikh’s theorem (which578

states that the Parikh images of regular languages are semi-linear subsets of Nn). Yet, it is579

specific to the automata built with A 7→ bAc. The proof is presented in Appendix B.580

I Lemma 22. Let A be a NFA. Then, ζ(L(bAc)) is a semi-linear subset of Zn.581

The second result is more general. We prove it in Appendix B as a corollary of a standard582

theorem concerning the bases of subgroups of free commutative groups (i.e., the groups Zn).583

See [7, Theorem 1.6] for example. The statement is as follows.584

I Proposition 23. Let n ≥ 1 and S a semi-linear subset of Zn. Assume that for every d ≥ 1,585

there exists u ∈ Zn such that du ∈ S. Then, 0 ∈ S.586

Proof of 2)⇒ 1) in Theorem 21. We actually prove the contrapositive. More precisely, we587

Assume that {L(A1), · · · , L(Ak)} is not AMT-coverable and prove that
⋂
i≤k ζ(L(bAic)) 6= ∅.588

First, we use our hypothesis to prove the following lemma.589

I Lemma 24. For every d ≥ 1, there exist x, y1, . . . , yk ∈ Zn such that x+ dyi ∈ ζ(L(bAic))590

for every i ≤ k.591

Proof. Given two words w,w′ ∈ A∗, we write w ∼d w′ if and only if |w|a ≡ |w′|a mod d for592

every a ∈ A. Clearly, ∼d is an equivalence of finite index on A∗ and one may verify that every593

∼d-class belongs to AMT. Hence, the partition K of A∗ into ∼d-classes is an AMT-cover594

of A∗. Therefore, since {L(A1), · · · , L(Ak)} is not AMT-coverable, there exists a ∼d-class595

which intersects all languages L(Ai) for i ≤ k. We get w1 ∈ L(A1), . . . , wk ∈ L(Ak) such596

that w1 ∼d · · · ∼d wn. Let x = ζ(w1) ∈ Nn. Consider i ≤ k. Since wi ∼d w1, one may verify597

that there exists yi ∈ Zn such that ζ(wi) = x+ dyi. Finally, since wi ∈ L(Ai) ⊆ L(bAic), we598

have ζ(wi) ∈ ζ(L(bAic)) which concludes the proof. J599

By Lemma 22, the sets ζ(L(bAic)) ⊆ Zn are semi-linear for all i ≤ k. We use them to600

build a semi-linear subset of Zkn. We use vector concatenation: given i, j ≥ 1, x ∈ Zi and601

y ∈ Zj , we write x · y ∈ Zi+j for the vector obtained by concatenating x with y. We define,602

S = {u1 · · ·uk + xk | ui ∈ ζ(L(bAic)) for every i ≤ k and x ∈ Zn} ⊆ Zkn.603

Since the sets ζ(L(bAic)) ⊆ Zn are semi-linear, one may verify that S ⊆ Zkn is semi-linear604

as well. Lemma 24 implies that for every d ≥ 1, there exist x, y1, . . . , yk ∈ Zn such that605

x+dyi ∈ ζ(L(bAic)) for all i ≤ k. By definition of S, this implies d(y1 · · · yk) ∈ S. Altogether,606

it follows that for all d ≥ 1, there exists y ∈ Zkn such that dy ∈ S. Since S is semi-linear, this607

yields 0 ∈ S by Proposition 23. By definition of S, we get x ∈ Zn such that x ∈ ζ(L(bAic))608

for every i ≤ k. Thus,
⋂
i≤k ζ(L(bAic)) 6= ∅ which completes the proof. J609

T. Place and M. Zeitoun 23:15

5 Covering and separation for modulo languages610

Getting a “naive” direct algorithm for MOD-covering is fairly straightforward. Here, we611

prove that MOD-covering reduces to both GR-covering and AMT-covering (in logarithmic612

space). This approach provides much better complexity upper bounds than the naive one.613

The reduction is based on a simple construction which takes a language L ⊆ A∗ as input614

and builds a new one over a unary alphabet (i.e., which contains a unique letter). We let615

U = {$} and write υ : A∗ → U∗ for the morphism defined by υ(a) = $ for every a ∈ A. Given616

a regular language L ⊆ A∗, is standard that υ(L) ⊆ U∗ is also regular. Moreover, given an617

NFA A recognizing L as input, one may compute an NFA recognizing υ(L) in logarithmic618

space (this amounts to relabeling every transition with “$”).619

I Theorem 25. Let k ≥ 1 and L1, . . . , Lk ⊆ A∗. The following conditions are equivalent:620

1. The set {L1, · · · , Lk} is MOD-coverable.621

2. The set {υ(L1), · · · , υ(Lk)} is AMT-coverable.622

3. The set {υ(L1), · · · , υ(Lk)} is GR-coverable.623

In view of Theorem 25, we have a logarithmic space reduction from MOD-covering to624

AMT-covering. By the results of Section 4, this implies that MOD-covering is decidable and625

in co-NP. Moreover, Theorem 25 also provides a logarithmic space reduction from MOD-626

separation to GR-separation. By the results of Section 3, it follows that MOD-separation is627

decidable and in P. We prove in Appendix C that MOD-separation is in NL (this is based628

on a simple analysis of the GR-separation procedure for unary alphabets). This implies that629

MOD-separation is NL-complete as NL is a generic lower bound for separation. There exists630

a reduction from NFA emptiness (which is NL-complete) to C-separation for an arbitrary631

Boolean algebra C: given an NFA A, L(A) = ∅ if and only if L(A) is C-separable from A∗.632

Proof of Theorem 25. We prove that 1) ⇒ 2) ⇒ 3) ⇒ 1). Let us start with 1) ⇒ 2).633

Assume that {L1, · · · , Lk} is MOD-coverable: there exists a MOD-cover K of A∗ such that for634

every K ∈ K, there exists i ≤ k satisfying K∩Li = ∅. Consider the set H = {υ(K) | K ∈ K}.635

Since K is a cover of A∗ and υ is surjective, H must be a cover of U∗. It is also simple to636

verify that every H ∈ H belongs to MOD since this is the case for every K ∈ K. Hence,637

since MOD ⊆ AMT, we obtain that H is an AMT-cover of U∗. It remains to verify for638

every H ∈ H, there exists i ≤ k such that H ∩ υ(Li) = ∅. We fix H ∈ H for the proof.639

By definition, H = υ(K) for some K ∈ K. By hypothesis on K, we get i ≤ k such that640

K ∩ Li = ∅. We show that H ∩ υ(Li) = ∅. By contradiction, assume that there exists641

u ∈ H ∩υ(Li) = ∅. Since H = υ(K), we get w ∈ K and w′ ∈ Li such that υ(w) = υ(w′) = u.642

By definition of υ, this implies |w| = |w′| = |u|. Since w ∈ K and K ∈ MOD, one may verify643

that this implies w′ ∈ K. Thus, w′ ∈ K ∩ Li, contradicting the hypothesis that K ∩ Li = ∅.644

The implication 2) ⇒ 3) is trivial since AMT ⊆ GR. Hence, it remains to show that645

3) ⇒ 1). Assume that {υ(L1), · · · , υ(Lk)} is GR-coverable. This yields a GR-cover H646

of U∗ such that for every H ∈ H, there exists i ≤ k satisfying H ∩ υ(Li) = ∅. We let647

K = {υ−1(H) | H ∈ H}. By definition of H, one may verify that K is a cover of A∗ and648

that for every K ∈ K, there exist i ≤ k such that K ∩ Li = ∅. We show that K is actually a649

MOD-cover, which implies, as desired, that {L1, · · · , Lk} is MOD-coverable. Given H ∈ H,650

we have to verify that υ−1(H) ∈ MOD. By hypothesis, we have H ∈ GR. Therefore, there651

exists a morphism α : U∗ → G into a finite group G recognizing H. Hence, υ−1(H) is652

recognized by the morphism α ◦ υ : A∗ → G. By definition of υ, it is immediate that653

α(υ(a)) = α(υ(b)) for every a, b ∈ A. This yields υ−1(H) ∈ MOD by Lemma 3, concluding654

the proof. J655

CVIT 2016

23:16 Group separation strikes back

6 Conclusion656

We proved simple separation and covering algorithms for the classes GR, AMT and MOD657

using only standard notions from automata theory. For GR and AMT, the algorithms are658

based on the automata-theoretic construction “A 7→ bAc”. In particular, the statements659

behind the two algorithms (i.e., Theorem 9 and Theorem 21) are quite similar. Hence, a660

natural question is whether their proofs can be unified (as of now, they are independent).661

References662

1 Christopher J. Ash. Inevitable graphs: a proof of the type II conjecture and some related663

decision procedures. International Journal of Algebra and Computation, 1(1):127–146, 1991.664

2 Karl Auinger. A new proof of the Rhodes type II conjecture. International Journal of Algebra665

and Computation, 14(5-6):551–568, 2004.666

3 Manuel Delgado. Abelian poinlikes of a monoid. Semigroup Forum, 56(3):339–361, 1998.667

4 Leslie M. Goldschlager. The monotone and planar circuit value problems are log space complete668

for P. SIGACT News, 9:25–29, 1977.669

5 Peter Habermehl, Anca Muscholl, Thomas Schwentick, and Helmut Seidl. Counting in trees670

for free. In Proceedings of the 31st International Colloquium on Automata, Languages and671

Programming, ICALP’04, pages 1136–1149, Berlin, Heidelber, 2004. Springer-Verlag.672

6 Karsten Henckell, Stuart Margolis, Jean-Eric Pin, and John Rhodes. Ash’s type II theorem,673

profinite topology and Malcev products. International Journal of Algebra and Computation,674

1:411–436, 1991.675

7 Thomas W. Hungerford. Algebra / Thomas W. Hungerford. Springer-Verlag, 1980.676

8 Eryk Kopczynski and Anthony Widjaja To. Parikh images of grammars: Complexity and677

applications. In Proceedings of the 25th Annual IEEE Symposium on Logic in Computer678

Science, LICS 2010, pages 80–89, 2010.679

9 Stuart W. Margolis and Jean-Eric Pin. New results on the conjecture of rhodes and on the680

topological conjecture. Journal of Pure and Applied Algebra, 80(3):305 – 313, 1992.681

10 Jean-Eric Pin. Polynomial closure of group languages and open sets of the hall topology. In682

Proceedings of the 21st International Colloquium on Automata, Languages, and Programming,683

ICALP’94, pages 424–435, Berlin, Heidelberg, 1994. Springer-Verlag.684

11 Jean-Eric Pin. BG = PG: A success story. 1995.685

12 Jean-Eric Pin. The dot-depth hierarchy, 45 years later, chapter 8, pages 177–202. World686

Scientific, 2017.687

13 Jean-Eric Pin. Open Problems About Regular Languages, 35 Years Later, chapter 7, pages688

153–175. World Scientific, 2017.689

14 Jean-Eric Pin and Christophe Reutenauer. A Conjecture on the Hall Topology for the Free690

Group. Bulletin of the London Mathematical Society, 23(4):356–362, 1991.691

15 Thomas Place. The amazing mixed polynomial closure and its applications to two-variable692

first-order logic, 2022. arXiv:2202.03989.693

16 Thomas Place and Marc Zeitoun. The covering problem. Logical Methods in Computer Science,694

14(3), 2018.695

17 Thomas Place and Marc Zeitoun. Generic results for concatenation hierarchies. Theory of696

Computing Systems (ToCS), 63(4):849–901, 2019. Selected papers from CSR’17.697

18 Thomas Place and Marc Zeitoun. Going higher in first-order quantifier alternation hierarchies698

on words. Journal of the ACM, 66(2):12:1–12:65, 2019.699

19 Thomas Place and Marc Zeitoun. On all things star-free. In Proceedings of the 46th International700

Colloquium on Automata, Languages, and Programming, ICALP’19, pages 126:1–126:14, 2019.701

20 Thomas Place and Marc Zeitoun. Separation and covering for group based concatenation702

hierarchies. In Proceedings of the 34th Annual ACM/IEEE Symposium on Logic in Computer703

Science, LICS’19, pages 1–13, 2019.704

http://arxiv.org/abs/2202.03989

T. Place and M. Zeitoun 23:17

21 Thomas Place and Marc Zeitoun. Characterizing level one in group-based concatenation705

hierarchies, 2022. arXiv:2201.06826.706

22 Luis Ribes and Pavel A. Zalesskii. On the profinite topology on a free group. Bulletin of the707

London Mathematical Society, 25(1):37–43, 1993.708

23 Bruno Scarpellini. Complexity of subcases of presburger arithmetic. Transactions of the709

American Mathematical Society, 284:203–218, 1984.710

24 Marcel Paul Schützenberger. On finite monoids having only trivial subgroups. Information711

and Control, 8(2):190–194, 1965.712

25 Pascal Tesson and Denis Therien. Logic Meets Algebra: the Case of Regular Languages.713

Logical Methods in Computer Science, Volume 3, Issue 1, 2007.714

CVIT 2016

http://arxiv.org/abs/2201.06826

23:18 Group separation strikes back

A Appendix: Group languages715

This appendix presents the missing proofs in Section 3. We also present a proof that716

GR-separation is P-hard.717

A.1 Missing proofs718

We first present the proof of Fact 7. Let us recall the statement.719

I Fact 7. Let A = (Q, I, F, δ) be an NFA. Let q, r ∈ Q and w ∈ Ã∗ such that (q, w, r) ∈ bδc∗ε.720

If w ∈ Lε, then (q, ε, r) ∈ bδcε. Also, if q, r are strongly connected, then (r, w−1, q) ∈ bδc∗ε.721

Proof. Since (q, w, r) ∈ bδc∗ε, one may verify from the definition of bδcε that there exist722

u0, . . . , un ∈ Ã∗ and v1, . . . , vn ∈ Lε such that w = u0 · · ·un and (q, x, r) ∈ bδc∗ where723

x = u0v1u1 · · · vnun. We may now prove the fact. Assume first that w ∈ Lε. Since724

v1, . . . , vn ∈ Lε, we have vi
∗−→ ε for every i ≤ n. Hence, x ∗−→ w and since w ∈ Lε, we725

get x ∗−→ ε. Thus, since (q, x, r) ∈ bδc∗, we get (q, ε, r) ∈ bδcε by definition. Assume now726

that q, r are strongly connected. Since (q, x, r) ∈ bδc∗, this implies (r, x−1, q) ∈ bδc∗ by727

definition of bδc. Moreover, x−1 = u−1
n v−1

n · · ·u−1
1 v−1

1 u−1
0 and since vi

∗−→ ε for every i ≤ n,728

we also have v−1
i

∗−→ ε for every i ≤ n. Thus, since (r, x−1, q) ∈ bδc∗, it is immediate729

that (r, u−1
n · · ·u−1

0 , q) ∈ bδc∗ε by definition of bδcε. Since u−1
n · · ·u−1

0 = w−1 (recall that730

w = u0 · · ·un), this concludes the proof J731

We turn to Lemma 8. The statement is as follows.732

I Lemma 8. Let A = (Q, I, F, δ) be an NFA and let α : A∗ → G be a morphism into a finite733

group. For every q, r ∈ Q and w ∈ Ã∗ such that (q, w, r) ∈ bδc∗ε, there exists w′ ∈ A∗ such734

that (q, w′, r) ∈ δ∗ and α(w) = α(w′).735

Proof. Since (q, w, r) ∈ bδc∗ε, one may verify from the definition of bδcε that there exist736

u0, . . . , un ∈ Ã∗ and v1, . . . , vn ∈ Lε such that w = u0 · · ·un and (q, x, r) ∈ bδc∗ where737

x = u0v1u1 · · · vnun. By Lemma 6, there exists w′ ∈ A∗ such that (q, w′, r) ∈ δ∗ and738

α(x) = α(w′). Moreover, since v1, . . . , vn ∈ Lε, we have vi
∗−→ ε for every i ≤ n. Clearly, this739

implies α(vi) = 1G for every i ≤ n. Therefore, α(w) = α(x) = α(w′) which concludes the740

proof. J741

Finally, we complete the proof of Lemma 16.742

I Lemma 16. Let s, t ∈ Q and w ∈ A∗ such that d(s, w, t) ≤ `− 1. The following holds:743

1. for every v ∈ L(s) such that β(w) = β(v), we have (s, v, t) ∈ bδc∗ε.744

2. for every v ∈ L(t) such that β(w) = (β(v))−1, we have (s, v−1, t) ∈ bδc∗ε.745

Proof. First, consider v ∈ L(s) such that β(w) = β(v). By definition, we have s′ ∈ Q such746

that s, s′ are strongly connected and (s, v, s′) ∈ bδc∗ε. By Fact 7, we have (s′, v−1, s) ∈ bδc∗ε.747

Lemma 8 yields x ∈ A∗ such that (s′, x, s) ∈ δ∗ and β(x) = β(v−1). Since d(s, w, t) ≤ `−1 and748

s′, s are strongly connected, it follows that d(s′, xw, t) ≤ `− 1. Moreover, since β(w) = β(v)749

and β(x) = β(v−1), we have β(xw) = 1H . Altogether, since β is an (`− 1)-synchronizer, we750

get (s′, ε, t) ∈ bδc∗ε. Since (s, v, s′) ∈ bδc∗ε, it follows that (s, v, t) ∈ bδc∗ε as desired.751

We now consider v ∈ L(t) such that β(w) = (β(v))−1. By definition, we have t′ ∈ Q752

such that t, t′ are strongly connected and (t, v, t′) ∈ bδc∗ε. Lemma 8 yields y ∈ A∗ such753

that (t, y, t′) ∈ δ∗ and β(y) = β(v). Since d(s, w, t) ≤ `− 1 and t, t′ are strongly connected,754

it follows that d(s, wy, t) ≤ ` − 1. Moreover, since β(w) = (β(v))−1 and β(y) = β(v), we755

T. Place and M. Zeitoun 23:19

have β(wy) = 1H . Altogether, since β is an (` − 1)-synchronizer, we get (s, ε, t′) ∈ bδc∗ε.756

Finally, since (t, v, t′) ∈ bδc∗ε and t, t′ are strongly connected, Fact 7 yields (t′, v−1, t) ∈ bδc∗ε.757

Altogether, we get (s, v−1, t) ∈ bδc∗ε as desired. J758

A.2 Complexity of GR-separation759

We prove that GR-separation is P-complete. We already presented the upper bound in the760

main text: GR-separation is in P. Here, we concentrate on the lower bound: we show that the761

problem is P-hard. In fact, we show this lower bound for the special case of GR-separation762

when one of the two inputs is the singleton {ε}.763

We present a logarithmic space reduction from the Circuit Value problem. We use764

the variant in which all gates are either a disjunction (∨) or a conjunction (∧), which is765

P-complete [4]. A Boolean circuit is a finite directed acyclic graph such that:766

There are arbitrarily many input vertices with no incoming edge. There must all be767

labeled by truth value (0 for false, 1 for true).768

The other vertices have exactly two incoming edges. They are called gates and are labeled769

by a logical connective: “∨” or “∧”. They may have arbitrarily many outgoing edges.770

There is a single gate with no outgoing edge. It is called the output vertex.771

We present an Example of Boolean circuit in Figure 2 below:772

0

1

0

1

∨

∨

∧

∧

∧

∨

∨

∨

∧

Figure 2 An example of Boolean circuit which evaluates to 0.

Clearly, a Boolean circuit computes a truth value for each gate. The decision problem773

takes as input a Boolean circuit C and asks whether the logical value computed by the output774

vertex is true. We present a logarithmic space reduction from this problem to non-separability775

by GR. More precisely, given as input a Boolean circuit C, we construct an NFA AC such776

that C evaluates to true if and only if {ε} is not GR-separable from L(AC). This implies777

that GR-separation is P-hard, as desired. Note that we only present the construction of AC .778

That it can be implemented in logarithmic space is straightforward and left to the reader.779

We fix the Boolean circuit C for the construction and describe the NFA AC = (Q, I, F, δ).780

We let n be the number of vertices in C and {v1, . . . , vn} be the set of all these vertices,781

with vn as the output vertex. The NFA A uses an alphabet A = {a1, . . . , an} of size n. For782

each i ≤ n, the set of states Q contains three states qi, ri and si associated to the vertex vi783

CVIT 2016

23:20 Group separation strikes back

(note that while qi and ri are always used, si is only used when vi is a gate labeled by “∧”).784

Moreover, we also associate several transitions in δ connecting these three states to those785

associated to other vertices. There are several cases depending on vi.786

First, we consider the case when vi is an input vertex. If vi is labeled by “0” (false), we787

add the following states and transition to AC :788

qi ri
ai

789

Ifvi is labeled by “1”. In that case, we add the following states and transitions to AC :790

qi ri
ai

ai

791

We now consider the case when vi is a gate. Let j, k ≤ n be the two indices such that792

there are edges from vj to vi and from vk to vi in C. If vi is labeled by “∨”, we add the793

following states and transitions to AC :794

qi

qj

qk

rj

rk

ri

ai

a
i

a
i

ai

ai

795

Finally, when vi is labeled by “∧”, we add the following states and transitions to AC :796

qi qj rj si qk rk ri
ai ai ai ai

ai

797

Recall that vn is the output vertex of C. We let AC = (Q, {qn}, {rn}, δ). One may now798

verify from the definition that the output vertex of C evaluates to 1 if and only if {ε} is not799

GR-separable from L(AC). Let us point out that the proof argument should not consider800

GR-separation directly: we use Theorem 9 instead. Indeed, Theorem 9 implies that {ε} is801

not GR-separable from L(AC) if and only if ε ∈ L(bACcε). It is straightforward to verify802

that the latter property is equivalent to the the output vertex of C evaluating to 1. This803

completes the presentation of our reduction.804

B Appendix: Alphabet modulo testable languages805

This appendix is devoted to the alphabet modulo testable languages. We first provide a806

proof for Lemma 4. Then we turn to the missing parts in the proof of followed by the proof807

of Theorem 21 (which we partially presented in the main text. Finally, we prove that both808

AMT-separation and AMT-covering are co-NP-complete.809

B.1 Proof of Lemma 4810

For the proof, we shall need an equivalence on A∗ that we already encountered in the proof811

of Lemma 24. We first recall it and prove the correspondence with AMT properly. For every812

number d ≥ 1, we associate an equivalence ∼d over A∗ and use it to characterize the languages813

in AMT. Let d ≥ 1 and w,w′ ∈ A∗, we write w ∼d w′ if and only if |w|a ≡ |w′|a mod d for814

every a ∈ A. It is immediate from the definition that ∼d is an equivalent of finite index. We815

have the following lemma.816

T. Place and M. Zeitoun 23:21

I Lemma 26. For every language L ⊆ A∗, we have L ∈ AMT if and only if there exists817

d ≥ 1 such that L is a union of ∼d-classes.818

Proof. Assume first that L ∈ AMT. By definition, L is built from finitely many languages819

Laq,r (with a ∈ A and q, r ∈ N such that r < q) using only unions and intersections. Let820

d be the least common multiplier of all numbers q ≥ 1 used in these languages. We show821

that L is a union of ∼d-classes. Given w,w′ ∈ A∗ such that w ∼d w′, we have to show that822

w ∈ L⇔ w′ ∈ L. By hypothesis, it suffices to show that each language Laq,r in the definition823

of L satisfies w ∈ Laq,r ⇔ w′ ∈ Laq,r. Since d is a multiple of q (by choice of d), the hypothesis824

that w ∼d w′ yields |w|a ≡ |w′|a mod q. Hence, since Laq,r = {w ∈ A∗ | |w|a ≡ r mod q} by825

definition, we have w ∈ Laq,r ⇔ w′ ∈ Laq,r as desired.826

Conversely, assume that L is a union of ∼d-classes for some d ≥ 1 and show that L ∈ AMT.827

Since ∼d has finite index and AMT is closed under union, it suffices to show that every828

∼d-class belongs to AMT. Let w ∈ A∗ and consider its ∼d-class. For every a ∈ A, let ra < d829

by the remainder of the Euclidean division of |w|a by d. By definition, for every w′ ∈ A∗, we830

have w′ ∼d w if and only if |w′|a ≡ ra mod d for every a ∈ A. It follows that the ∼d-class of831

w is the language
⋂
a∈A L

a
d,ra

which belongs to AMT by definition. J832

We turn to Lemma 4 itself. Let us first recall the statement.833

I Lemma 4. Let L ⊆ A∗. Then, L ∈ AMT if and only if L is recognized by a morphism834

α : A∗ → G into a finite commutative group G.835

Proof. Assume first that L ∈ MOD. We show that L is recognized by a morphism α : A∗ → G836

into a finite commutative group G. By definition of MOD, it suffices to prove that this837

property is true for all basic languages Laq,r and that it is preserved by union and intersection.838

We first look at the language Laq,r = {w ∈ A∗ | |w|a ≡ r mod q} for a ∈ A and q, r ∈ N839

such that r < q. Clearly, Laq,r is recognized by the morphism α : A∗ → Z/qZ defined840

by α(a) = 1 and α(b) = 0 for b ∈ A \ {a} (where Z/qZ = {0, . . . , q − 1} is the standard841

cyclic group): we have Laq,r = α−1(r). Now, let L1, L2 ⊆ A∗ such that for i = 1, 2, Li842

is recognized by a morphism αi : A∗ → Gi into a finite commutative group Gi such that843

αi(a) = αi(b) for all a, b ∈ A. Clearly, L1 ∪ L2 and L1 ∩ L2 are both recognized by the844

morphism α : A∗ → G1 → G2 (where G1 ×G2 is the commutative group equipped with the845

componentwise multiplication). This completes the proof for this direction.846

Conversely, assume that L is recognized by a morphism α : A∗ → G into a finite847

commutative group G. We show that L ∈ AMT. Since G is a finite group, it is standard848

that there exists a number q ≥ 1 such that gq = 1G for every g ∈ G. We use q to define an849

equivalence ∼q over A∗. We prove that L is a union of ∼q-classes which yields L ∈ AMT850

by Lemma 26. Let u, v ∈ A∗. We show that u ∈ L ⇔ v ∈ L. Since L is recognized by α851

it suffices to show that α(u) = α(v). We write A = {a1, . . . , an}. As G is commutative,852

reorganizing the letters in u and v does not change their image under α. Thus, we have,853

α(u) = α(a|u|a1
1 · · · a|u|an

n) and α(v) = α(a|v|a1
1 · · · a|v|an

n).854

Moreover, since u ∼q v, we have |u|ai ≡ |v|ai mod q for every i ≤ n. We get ri < q and855

hi, ki ∈ N such that |u|ai
= ri + hi × q and |v|ai

= ri + ki × d. Therefore, since gd = 1G for856

every g ∈ G, we obtain that for every i ≤ n,857

α(a|u|ai
i) = α(a|v|ai

i) = α(ari
i).858

Altogether, it follows that α(u) = α(v) = α(ar1
1 · · · arn

n), which concludes the proof. J859

CVIT 2016

23:22 Group separation strikes back

B.2 Proof of Theorem 21860

Recall that we write n = |A|. Moreover, an arbitrary linear order on A is fixed and we write861

A = {a1, . . . , an}. We used this linear order to define the map ζ : Ã∗ → Zn. Let us now862

recall the statement of Theorem 21.863

I Theorem 21. Let k ≥ 1 and k NFAs A1, . . . ,Ak. The following conditions are equivalent:864

1. The set {L(A1), · · · , L(Ak)} is AMT-coverable.865

2. We have
⋂
i≤k ζ(L(bAic)) = ∅.866

We already proved the implication 2)⇒ 1) in the main text. Yet, we still need to provide867

proofs for Lemma 22 and Proposition 23. We start with the former.868

I Lemma 22. Let A be a NFA. Then, ζ(L(bAc)) is a semi-linear subset of Zn.869

Proof. The argument is based on standard ideas which are typically used to prove the870

automata variant of Parikh’s theorem. However, let us point out that we do require a specific871

property of the automaton bAc at some point (the lemma is not true for an arbitrary NFA872

over the extended alphabet Ã). For all q ∈ Q, we associate a finite set Vq ⊆ Zn. We define,873

Vq = {ζ(w) | w ∈ Ã∗, |w| ≤ |Q| and (q, w, q) ∈ bδc∗}.874

Observe that if (q, w, q) ∈ bδc∗ for some w ∈ Ã∗, the states encountered on this run are875

strongly connected. Hence, in that case, we also have (q, w−1, q) ∈ bδc∗ by definition of bAc.876

Moreover, we have ζ(w−1) = −ζ(w) by definition of ζ. Consequently, for every v ∈ Vq, the877

opposite vector also belongs to Vq: we have −v ∈ Vq. This property is where we need the878

hypothesis that are considering an automata built with the construction A 7→ bAc (it fails879

for an arbitrary NFA over Ã). For every P ⊆ Q, we write VP =
⋃
q∈P Vq.880

Finally, we associate a second finite set XP ⊆ Zn to every P ⊆ Q. Let w ∈ Ã∗. We say881

that w is a P -witness if there exist q ∈ I and r ∈ F such that there is a run from q to r882

labeled by w such that P is exactly the set of all states encountered in that run (in particular,883

this means that w ∈ L(A)). We define,884

XP = {ζ(w) | w is a P -witness and |w| ≤ |Q|2}.885

We now prove the following,886

ζ(L(bAc)) =
⋃
P⊆Q

⋃
v∈XP

L(v, VP).887

This equality concludes the proof: ζ(L(bAc)) is a semi-linear subset of Zn, as desired. We start888

with the right to left inclusion. Let P ⊆ Q and v ∈ XP . We show that L(v, VP) ⊆ ζ(L(bAc)).889

Let u ∈ L(v, VP). By definition, we have v1, . . . , v` ∈ VP and k1, . . . , k` ∈ Z such890

that u = v + k1v1 + · · · + k`v`. Moreover, recall that by construction, for every vi, the891

opposite vector −vi belongs to VP as well. Therefore, we may assume without loss of892

generality that k1, . . . , k` ∈ N: they are positive integers. By definition of VP , we know893

that for every i ≤ `, we have vi ∈ Vqi for some qi ∈ P . Hence, there exists xi ∈ Ã∗ such894

that ζ(wi) = vi and (qi, yi, qi) ∈ bδc∗. Let yi = (wi)ki (this is well-defined since ki ∈ N).895

Clearly, ζ(yi) = kivi and (qi, yi, qi) ∈ bδc∗. Moreover, v ∈ XP which yields a P -witness896

w ∈ Ã∗ such that ζ(w) = v. Since q1, . . . , q` ∈ P and w is a P -witness, we have q ∈ I897

and r ∈ F such that there exists a run from q to r labeled by w which encounters all898

states q1, . . . , q`. Therefore, we have a permutation σ of {1, . . . , `} and w0, . . . , w` ∈ Ã∗899

such that w = w0 · · ·w`, (q, w0, qσ(1)) ∈ bδc∗, (qσ(i), wi, qσ(i+1)) ∈ bδc∗ for 1 ≤ i ≤ n − 1900

T. Place and M. Zeitoun 23:23

and (qσ(`), w`, r) ∈ bδc∗. Consider the word w′ = w0yσ(1)w1 · · · yσ(`)w`. It is clear from the901

definitions that (q, w′, r) ∈ bδc∗ which yields w′ ∈ L(bAc) and ζ(w′) ∈ ζ(L(bAc)). Moreover,902

ζ(w′) = ζ(w) + ζ(y1) + · · ·+ ζ(y`) = v+k1v1 + · · ·+k`v` = u. Thus, we obtain u ∈ ζ(L(bAc))903

as desired.904

We turn to the converse inclusion which is based on pumping arguments. Given a word905

w ∈ L(bAc), we need to prove that ζ(w) ∈
⋃
P⊆Q

⋃
v∈XP

L(v, VP). Since w ∈ L(bAc), there906

exists q ∈ I and r ∈ F such that (q, w, r) ∈ δ∗. We let P ⊆ Q be the set of all states which are907

encountered in the corresponding run: w is a P -witness. We use induction on the length of w908

to show that there exists v ∈ XP such that ζ(w) ∈ L(v, VP) (which concludes the argument).909

There are two cases. First assume that |w| ≤ |Q|2. This implies ζ(w) ∈ XP by definition and910

we have ζ(w) ∈ L(ζ(w), VP), concluding this case. Assume now that |w| > |Q|2. One may911

verify with a pumping argument that there exist x1, x2 ∈ A∗ and y ∈ A+ such that w = x1yx2,912

the word w′ = x1x2 remains a P -witness, |y| ≤ |Q| and (q, y, q) ∈ bδc∗ for some q ∈ P .913

Since y ∈ A+ and w = x1yx2, we have |w′| < |w|. Thus, since w′ is a P -witness, induction914

yields v ∈ XP such that ζ(w′) ∈ L(v, VP). Moreover, since |y| ≤ |Q| and (q, y, q) ∈ bδc∗915

for some q ∈ P , we have ζ(y) ∈ VP by definition. Thus, ζ(w′) + ζ(y) ∈ L(v, VP). Finally,916

since w = x1yx2 and w′ = x1x2, it is clear that ζ(w) = ζ(w′) + ζ(y). Altogether, we obtain917

ζ(w) ∈ L(v, VP) which concludes the proof. J918

We turn to Proposition 23. As we explained in the main text this is a corollary of a919

standard theorem about free abelian groups. We first introduce terminology that we need920

to state this theorem. Clearly, Zn is a commutative group for addition (called “free abelian921

group of rank n”). We consider the subgroups of Zn (the subsets which are closed under922

addition and inverses). Additionally, we need the notion of basis. Given a subgroup G of923

Zn, a basis of G is a finite set of vectors {v1, . . . , vm} ⊆ G which satisfies the two following924

conditions:925

1. G is generated by {v1, . . . , vm}. That is, G = {k1v1 + · · ·+ kmvm | k1, . . . , km ∈ Z}.926

2. For every k1, . . . , km ∈ Z such that k1v1 + · · ·+ kmvm = 0, we have k1 = · · · = km = 0.927

We need the following standard theorem (see for example Theorem 1.6 in [7]).928

I Theorem 27. Let G be a nontrivial subgroup of Zn. There exist a basis {x1, . . . , xn} of Zn,929

a number m ≤ n and d1, . . . , dm ≥ 1 such that di divides di+1 for every i ≤ m − 1 and930

{d1x1, . . . , dmxm} is a basis of G.931

We are now ready to prove Proposition 23. Let us first recall the statement.932

I Proposition 23. Let n ≥ 1 and S a semi-linear subset of Zn. Assume that for every d ≥ 1,933

there exists u ∈ Zn such that du ∈ S. Then, 0 ∈ S.934

Proof. Observe first that we may assume without loss of generality that S is a linear subset935

of Zn. Indeed, by definition S is a finite union of linear subsets. Hence, by hypothesis, for936

every d ≥ 1, there exists u ∈ Zn and a linear set S′ in this union such that du ∈ S′. In937

particular, this is true when d = h! for some h ≥ 1. Hence, since the union is finite, it938

contains a fixed linear set S′ such that there exists infinitely many d such that d = h! for939

some h ≥ 1 and du ∈ S′. It then follows that for every d ≥ 1, there exists u ∈ Zn such that940

du ∈ S′. Therefore, we may replace S with S′.941

We assume from now on that S is linear: we have v ∈ Zn and a finite set V ⊆ Zn such942

that S = L(v, V). If V = ∅ or V = {0}, we have L(v, V) = {v}. Thus, for every d ≥ 1, there943

exists u ∈ Zn such that v = du. In particular, this holds for a number d which is strictly944

larger than the absolute values of all entries in v. Clearly, this implies v = 0 and we get945

0 ∈ L(v, V). We now assume that V contains a non-zero vector.946

CVIT 2016

23:24 Group separation strikes back

Let G ⊆ Zn be the subgroup of Zn generated by the set V ⊆ Zn. By hypothesis on V , G947

is nontrivial. Therefore, Theorem 27 yields a basis {x1, . . . , xn} of Zn, a number m ≤ n and948

d1, . . . , dm ≥ 1 such that {d1x1, . . . , dmxm} is a basis of G.949

Since {x1, . . . , xn} is a basis of Zn, we have h1, . . . , hn ∈ Z such that v = h1x1 +· · ·+hnxn.950

Let d be the least common multiplier of |h1|+ 1, . . . , |hn|+ 1, d1, . . . , dm ≥ 1. By hypothesis,951

there exists u ∈ Zn such that du ∈ L(v, V). Thus, since G is the subgroup generated by V ,952

there exists y ∈ G such that du = v + y. Since {x1, . . . , xn} is a basis of Zn, we have953

k1, . . . , kn ∈ Z such that u = k1x1 + · · ·+ knxn. Moreover, since {d1x1, . . . , dmxm} is a basis954

of G, we have `1, . . . , `m ∈ Z such that y = `1d1x1 + · · ·+ `mdmxm. Altogether, we obtain,955

h1x1 + · · ·+ hnxn + `1d1x1 + · · ·+ `mdmxm = dk1x1 + · · ·+ dknxn.956

Since {x1, . . . , xn} is a basis, this implies that for every i > m, we have hi = dki. By definition957

d > |hi| (it is a nonzero multiple of |hi|+ 1). Thus, dki = hi implies that ki = hi = 0. Since958

this holds for every i > m, we obtain959

h1x1 + · · ·+ hnxn + `1d1x1 + · · ·+ `mdmxm = dk1x1 + · · ·+ dkmxm.960

This yields the following,961

v + (`1d1 − dk1)x1 + · · ·+ (`mdm − dkm)xm = 0.962

By definition d is a multiple of di for every i ≤ m. Therefore, there exists `′i ∈ Z such that963

`idi − dki = `′idi. Thus, we obtain,964

v + `′1d1x1 + · · ·+ `′mdmxm = 0.965

Since {d1x1, . . . , dmxm} is a basis of G which is the subgroup generated by V , we obtain966

0 ∈ F (v, V) which concludes the proof. J967

Finally, it remains to prove the implication 1)⇒ 2) in Theorem 21. This is straightforward.968

Proof of 1)⇒ 2) in Theorem 21. We fix k ≥ 1 and k NFAs A1, . . . ,Ak for the proof.969

We actually prove the contrapositive of 1) ⇒ 2). Assuming that there exists a vector970

v ∈
⋂
i≤k ζ(L(bAic)), we show that {L(A1), · · · , L(Ak)} is not AMT-coverable. We write971

(v1, . . . , vn) = v ∈ Zn for the proof. By definition, it suffices to prove that if K is an972

arbitrary AMT-cover of A∗, then there exists K ∈ K such that K ∩ L(Aj) 6= ∅ for every973

j ≤ k. Let K = {K1, . . . ,K`}. By hypothesis Ki ∈ AMT for every i ≤ ` and Lemma 4974

yields a morphism αi : A∗ → Gi into a finite commutative group recognizing Gi. Clearly,975

G = G1×· · ·×G` is a finite commutative group for the componentwise multiplication and the976

morphism α : A∗ → G defined by α(w) = (α1(w), . . . , αn(w)) recognizes all languages Ki.977

Let w = (a1)v1 · · · (an)vn ∈ Ã∗ (note that when vi is negative, (ai)vi is defined as978

(a−1
i)|vi|). Clearly, we have ζ(w) = v. Moreover, since v ∈

⋂
i≤k ζ(L(bAic)), we have979

wi ∈ L(bAic) such that ζ(wi) = v for every i ≤ k. Since G is a commutative group, it is980

straightforward to verify that this implies α(w) = α(w1) = · · · = α(wk). Finally, since K981

is a cover of A∗, there exists K ∈ K such that w1 ∈ K. Hence, since K is recognized by α982

and α(w1) = · · · = α(wk) = α(w), it follows that w1, . . . , wk ∈ K. Thus, K ∩ L(Aj) 6= ∅ for983

every j ≤ k which completes the proof. J984

T. Place and M. Zeitoun 23:25

B.3 Complexity lower bound985

We prove that AMT-covering and AMT-separation are co-NP-complete. As we explained in986

the main text, the upper bound follows from Theorem 21. Here, we prove the lower bound:987

both problems are co-NP-hard. Actually since separation is a special case of covering, it988

suffices to show that AMT-separation is co-NP-hard. Let us start with an important remark.989

I Remark 28. When considering complexity, it is important to distinguish the case when990

the alphabet is fixed from the one when it is a parameter of the problem. Here, we consider991

the latter case: we show that given an alphabet A and two NFAs over A, deciding whether992

the recognized languages are AMT-separable is co-NP-hard. Actually, when the alphabet is993

fixed, one may show that the problem is in P (roughly, this boils down to disjointedness of994

Parikh images for NFAs which is known to be in P when the alphabet is fixed [8]).995

We actually show that non AMT-separability is NP-hard. More precisely, we present a996

logarithmic space reduction from 3-satisfiability (3-SAT) to this problem. Given a 3-SAT997

formula ϕ, we explain how to construct two regular languages L1, L2 and show that they are998

not AMT-separable if and only if ϕ is satisfiable. We only describe the construction: that999

NFAs for the regular languages L1 and L2 can be computed from ϕ in logarithmic space is1000

straightforward and left to the reader.1001

Let C1, . . . , Ck be the 3-clauses such that ϕ =
∧
i≤k Ci and let x1, . . . , xn be the pro-1002

positional variables in ϕ. We construct two finite languages L1 and L2 over the alphabet1003

A = {x1, . . . , xn, x1, . . . , xn}. Intuitively, we code assignments of truth values for the vari-1004

ables {x1, . . . , xn} by words in A∗. Given w ∈ A∗, we say that w is an encoding if for all1005

i ≤ n, w contains either the letter xi or the letter xi, but not both. It is immediate that an1006

assignment of truth values for the variables {x1, . . . , xn} can be uniquely defined from any1007

such encoding.1008

For every i ≤ n, we let Hi be the language Hi = {xpi | 1 ≤ p ≤ k} ∪ {xip | 1 ≤ p ≤ k}.1009

We may now define L1 ⊆ A∗. We let,1010

L1 = H1H2 · · ·Hn.1011

Clearly L1 is finite and all the words in L1 are encodings. We turn to the definition of L2.1012

For every j ≤ k, we associate a language Tj to the 3-clause Cj . Assume that Cj = `1∨ `2∨ `31013

where `1, `2, `3 ∈ {x1, x1, . . . , xn, xn} are literals. We define,1014

Tj = {`1, `2, `3}.1015

Finally, we define,1016

L2 = T1 · · ·Tk({ε} ∪H1) · · · ({ε} ∪Hn).1017

Clearly, L2 is finite as well. Observe that the words in L2 need not be encodings. On the1018

other hand, all encodings within L2 (if any) correspond to an assignment of truth values1019

which satisfies {C1, . . . , Ck}.1020

It remains to show that L1, L2 are not AMT-separable if and only if the ϕ is satisfiable.1021

We start with the right to left implication. Assume that there exists a truth assignment1022

satisfying ϕ. By definition of L1 and L2, one may verify that there exists w1 ∈ L1 and1023

w2 ∈ L2 which are both encodings of this assignment. Moreover, one may verify that we can1024

choose w1 and w2 so that for every letter a ∈ A, we have |w1|a = |w2|a. This clearly implies1025

that for every morphism α : A∗ → G into an commutative group G, we have α(w1) = α(w2).1026

Hence, in view of Lemma 4, every language K ∈ AMT which contains w1 must contain w21027

as well. Since w1 ∈ L1 and w2 ∈ L2, it follows that L1 and L2 are not AMT-separable.1028

CVIT 2016

23:26 Group separation strikes back

Conversely, assume that L1 and L2 are not AMT-separable. By definition, L1 and L2 are1029

finite. Thus, there exists d ∈ N such that |w| < d for every w ∈ L1 ∪ L2. We consider the1030

equivalence ∼d over A∗. By Lemma 26, every union of ∼d-classes belongs to AMT. Hence,1031

since L1 and L2 are not AMT-separable, there exists a ∼d-class which intersects both L11032

and L2. We obtain w1 ∈ L1 and w2 ∈ L2 such that w1 ∼d w2: we have |w1|a ≡ |w′2|a mod d1033

for every a ∈ A. Moreover, since |w1| < d and |w2| < d by definition of d, this yields1034

|w1|a = |w2|a for every a ∈ A. By definition of L1, the word w1 ∈ L1 encodes an assignment1035

of truth values. Moreover, since |w1|a = |w2|a for every a ∈ A, the word w2 encodes the1036

same assignment of truth values. Finally, since w2 ∈ L2, this assignment satisfies ϕ which1037

completes the proof.1038

C Appendix: Modulo testable languages1039

This appendix is devoted to the class MOD of modulo languages. We present the missing1040

proofs for the statements in the main paper and look more closely at the complexity of1041

MOD-separation.1042

C.1 Proof of Lemma 31043

Let us first recall the statement of Lemma 3.1044

I Lemma 3. Let L ⊆ A∗. Then, L ∈ MOD if and only if L is recognized by a morphism1045

α : A∗ → G into a finite group G such that α(a) = α(b) for all a, b ∈ A.1046

Proof. Assume first that L ∈ MOD. We show that L is recognized by a morphism α : A∗ → G1047

into a finite group G such that α(a) = α(b) for every a, b ∈ A. By definition of MOD, it1048

suffices to prove that this property is true for all basic languages Lq,r and that it is preserved1049

by union. We first look at the language Lq,r = {w ∈ A∗ | |w| ≡ r mod q} for q, r ∈ N1050

such that r < q. Clearly, Lq,r is recognized by the morphism α : A∗ → Z/qZ defined by1051

α(a) = 1 for every a ∈ A (where Z/qZ = {0, . . . , q− 1} is the standard cyclic group): we have1052

Lq,r = α−1(r). Now, let L1, L2 ⊆ A∗ such that for i = 1, 2, Li is recognized by a morphism1053

αi : A∗ → Gi into a finite group Gi such that αi(a) = αi(b) for all a, b ∈ A. Clearly, L1 ∪ L21054

is recognized by the morphism α : A∗ → G1 → G2 (where G1 ×G2 is the group equipped1055

with the componentwise multiplication). This completes the proof for this direction.1056

We now assume that L is recognized by a morphism α : A∗ → G into a finite group G1057

such that α(a) = α(b) for every a, b ∈ A. We show that L ∈ MOD. By hypothesis, there1058

exists s ∈M such that α(a) = s for all a ∈ A. Since G is a finite group, it is standard that1059

there exists q ≥ 1 such that sq = 1G. We prove that L is a finite union of languages Lr,q1060

for r such that 0 ≤ r < q. This implies that L ∈ MOD, as desired. Since α is recognized by1061

α, it suffices to prove that for all r such that 0 ≤ r < q, if w,w′ ∈ Lr,q, then α(w) = α(w′).1062

We fix r for the proof and show that for every w ∈ Lr,q, we have α(w) = sr. By hypothesis,1063

there exists k ∈ N such that |w| = kq + r. Hence, since all letters have image s under α by1064

hypothesis, we get α(w) = skqsr. Moreover, we have skq = 1G by definition of q. Altogether,1065

this yields α(w) = sr, which concludes the proof. J1066

C.2 Complexity of MOD-separation1067

We prove that MOD-separation is in NL. Theorem 25 presents a logarithmic space reduction1068

from MOD-separation to GR-separation for languages over unary alphabets. Hence, it suffices1069

to prove that the latter problem is in NL. We fix an alphabet A = {a} containing a single1070

T. Place and M. Zeitoun 23:27

letter “a” and prove that given as input two NFAs A1 and A2 over A, one may decide in1071

NL whether L(A1) is not GR-separable from L(A2). Since NL = co-NL by the Immerman-1072

Szelepcsényi theorem, this implies as desired that GR-separation is in NL for languages over1073

unary alphabets. By Theorem 9, the two following conditions are equivalent:1074

1. L(A1) is not GR-separable from L(A2).1075

2. L(bA1cε) ∩ L(bA2cε) 6= ∅.1076

Therefore, we have to prove that the second condition can be decided in NL. For j = 1, 2, we1077

write Aj = (Qj , Ij , Fj , δj). By definition, bAjcε is built from Aj by adding new transitions1078

labeled by a−1 (this is the construction of bAjc = (Qj , Ij , Fj , bδjc) from Aj) and ε-transitions1079

(this is the construction of bAjcε = (Qj , Ij , Fj , bδjcε) from bAjc). It is standard that if we1080

have bA1cε and bA2cε in hand, deciding whether L(bA1cε) ∩ L(bA2cε) 6= ∅ can be achieved1081

in NL since this boils down to graph reachability (in the product of A1 and A2 whose set1082

of states is Q1 × Q2). Therefore, we have to prove that one may decide whether a given1083

transition belongs to bδ1cε or bδ2cε in NL.1084

This is immediate for the transitions labeled by a ∈ A as they already belong to δ1 and δ2.1085

Let us now consider the transitions labeled by a−1 ∈ A−1 which belong to bδ1c and bδ2c. By1086

definition, for j = 1, 2, and q, r ∈ Qj , we have (r, a−1, q) ∈ bδjc if and only if (q, a, r) ∈ δj1087

and q, r are strongly connected. Clearly, this can be checked in NL since testing whether1088

q, r are strongly connected boils down to a graph reachability problem (which is in NL). It1089

remains to consider the ε-transitions in bδ1cε and bδ2cε. We treat this case in the following1090

lemma (this is where we use the hypothesis that the alphabet is unary).1091

I Lemma 29. Let j ∈ {1, 2} and q, r ∈ Qj, one may decide in NL whether (q, ε, r) ∈ bδjcε.1092

Proof. By definition, we have (q, ε, r) ∈ bδjcε if and only if there exists w ∈ Ã∗ such1093

that w ∈ Lε ⊆ Ã∗ such that (q, w, r) ∈ bδjc∗. Observe that since A = {a}, we have1094

Lε = {w ∈ Ã∗ | |w|a = |w|a−1}. We use this property to prove that deciding whether1095

(q, ε, r) ∈ bδjcε boils down to a graph reachability problem that can be decided in NL.1096

We let U = Qj × Z be a set of vertices and write V = {(q, k) ∈ U | |k| ≤ |Qj |2}. We1097

consider the following set of edges:1098

E = {((q, k), (q′, k + 1)) | (q, a, q′) ∈ bδjc} ∪ {((q, k), (q′, k − 1)) | (q, a−1, q′) ∈ bδjc}.1099

Consider the graph G = (U,E). One may verify from the definitions that (q, ε, r) ∈ bδjcε,1100

if and only if there exists a path from (q, 0) to (r, 0) in G. Hence, it suffices to prove that1101

the latter condition can be checked in NL. We show that there exists a path (q, 0) to (r, 0)1102

in G if and only if there exists a path from (q, 0) to (r, 0) in G using only states in V . It is1103

then straightforward to verify that this can can be tested in NL (this is a graph reachability1104

problem over a graph with |V | = |Qj | × (2|Qj |+ 1) vertices whose edges can be computed1105

from Aj in NL).1106

The right to left implication is immediate. For the converse one, we consider a path from1107

(q, 0) to (r, 0) in G. We prove that if this path contains a vertex in U \ V , then there exists a1108

strictly shorter path from (q, 0) to (r, 0). One may then iterate the result to build a path1109

which only contains states in V , completing the proof. Let (s0, k0), . . . , (sn, kn) ∈ U be the1110

vertices along our path: we have (s0, k0) = (q, 0), (sn, kn) = (r, 0), and for every i ≤ n, we1111

have ((si, ki), (si+1, ki+1)) ∈ E. Moreover, we know that there exits some index h ≤ n such1112

that (sh, kh) 6∈ V , i.e. such that |kh| > |Qj |2. By symmetry, we assume that kh > |Qj |21113

and leave the case kh < |Qj |2 to the reader. We write m = kh for the proof. By definition1114

of E and since k0 = km = 0, there exists 0 < i1 < · · · < im−1 < h < i′m−1 < · · · < i′1 < n1115

such that ki1 = ki′1 = 1, . . . , kim−1 = ki′
m−1

= m− 1. We also write i0 = 0 and i′0 = n. By1116

CVIT 2016

23:28 Group separation strikes back

hypothesis, we have ki0 = ki′0 = 0. Since m > |Qj |2, it now follows from the pigeon-hole1117

principle that there exists 0 ≤ `1 < `2 ≤ m − 1 such that si`1
= si`2

and si′
`1

= si′
`2
. Let1118

` = `1 = `2. One may verify from the definition of E that the following paths exist in G:1119

(s0, k0)→ · · · → (si`1
, ki`1

)→ (si`2+1 , ki`2+1 − `)→ · · · → (sh, kh − `).
(sh, kh − `)→ · · · → (si′

`2−1
, ki′

`2−1
− `)→ (si′

`1
, ki′

`1
)→ · · · → (sn, kn).1120

Altogether, we get a strictly shorter path from (q, 0) to (r, 0) which completes the proof. J1121

	1 Introduction
	2 Preliminaries
	2.1 Words, languages, separation and covering
	2.2 Automata-based construction

	3 Covering and separation for group languages
	3.1 Statement
	3.2 Proof of Theorem 9

	4 Covering and separation for alphabet modulo testable languages
	5 Covering and separation for modulo languages
	6 Conclusion
	A Appendix: Group languages
	A.1 Missing proofs
	A.2 Complexity of GR-separation

	B Appendix: Alphabet modulo testable languages
	B.1 Proof of Lemma 4
	B.2 Proof of Theorem 21
	B.3 Complexity lower bound

	C Appendix: Modulo testable languages
	C.1 Proof of Lemma 3
	C.2 Complexity of MOD-separation

