# Solution - TD 1 - Automates finis et expressions rationnelles

### Informatique Théorique 2 - Unité J1INPW11 Licence 3 - Université Bordeaux 1

#### Solution de l'exercice 1 :

```
1. Mots de longeurs 0 : \epsilon;
```

Mots de longeurs 1:a;

Mots de longeurs 2:aa,ba;

Mots de longeurs 3 : aaa, aba, baa;

Mots de longeurs 4 : aaaa, aaba, abaa, baba, baaa.

2. Mots de longeurs 0 : aucun;

Mots de longeurs 1 : aucun;

Mots de longeurs 2:aa;

Mots de longeurs 3 : aucun;

Mots de longeurs 4 : aaaa, abaa.

### Solution de l'exercice 2 :

- 1.  $b^*(a(bb)^*)^*b^*$ .
- 2.  $a^*b^*$ .

## Solution de l'exercice 3 :

Mots de longeur 0 reconnus par l'automate  $A_1$ : aucun;

Mots de longeur 1 reconnus par l'automate  $A_1 : b$ ;

Mots de longeur 2 reconnus par l'automate  $A_1 : ba, aa, ab$ ;

Mots de longeur 3 reconnus par l'automate  $A_1$ : baa, aaa, aba, abb;

Mots de longeur 4 reconnus par l'automate  $A_1$ : baaa, aaaa, abaa, abab, abba, abbb.

Il est possible de répondre à cette question de manière systématique en utilisant les matrices. Pour cela, on représente l'automate (que l'on peut voir comme un graphe) par la matrice d'adjacence suivante :

$$M = \left(\begin{array}{cccc} 0 & a & 0 & b \\ 0 & 0 & b & a \\ 0 & 0 & a+b & 0 \\ 0 & 0 & 0 & a \end{array}\right).$$

Ainsi, le coefficient d'indice i, j de la matrice  $M^k$  correspond aux mots de longueur k reconnus par l'automate, si l'état initial était l'état i et l'état final, l'état j. Si l'on souahite obtenir

les mots de longueur k reconnus par notre automate, il suffit d'évaluer  $M_{1,4}^k + M_{1,3}^k$ . Voici les matrices  $M^0$ ,  $M^1$ ,  $M^2$ ,  $M^3$  et  $M^4$ :

$$M^{0} = \begin{pmatrix} \epsilon & 0 & 0 & 0 \\ 0 & \epsilon & 0 & 0 \\ 0 & 0 & \epsilon & 0 \\ 0 & 0 & 0 & \epsilon \end{pmatrix} \quad M = \begin{pmatrix} 0 & a & 0 & b \\ 0 & 0 & b & a \\ 0 & 0 & a + b & 0 \\ 0 & 0 & 0 & a \end{pmatrix} \quad M^{2} = \begin{pmatrix} 0 & 0 & ab & aa + ba \\ 0 & 0 & b(a+b) & a^{2} \\ 0 & 0 & (a+b)^{2} & 0 \\ 0 & 0 & 0 & a^{2} \end{pmatrix}$$

$$M^{3} = \begin{pmatrix} 0 & 0 & ab(a+b) & a^{3} + ba^{2} \\ 0 & 0 & b(a+b)^{2} & a^{3} \\ 0 & 0 & (a+b)^{3} & 0 \\ 0 & 0 & 0 & a^{3} \end{pmatrix} \qquad M^{4} = \begin{pmatrix} 0 & 0 & ab(a+b)^{2} & a^{4} + ba^{3} \\ 0 & 0 & b(a+b)^{3} & a^{4} \\ 0 & 0 & (a+b)^{4} & 0 \\ 0 & 0 & 0 & a^{4} \end{pmatrix}$$

Mots de longeurs  $0: M_{1,2}^0 + M_{1,4}^0 = 0$ 

Mots de longeurs  $1: M_{1,2}^{1} + M_{1,4}^{1} = b;$ 

Mots de longeurs  $2: M_{1,2}^2 + M_{1,4}^2 = ab + aa + ba;$ 

Mots de longeurs  $3:M_{1,2}^3+M_{1,4}^3=aba+abb+aaa+baa$ ; Mots de longeurs  $4:M_{1,2}^4+M_{1,4}^4=abaa+abab+abba+abba+abab+aaaa+baaa$ ;

Pour l'automate  $A_2$ , on a les résultat suivants :

$$M^{0} = \begin{pmatrix} \epsilon & 0 & 0 & 0 \\ 0 & \epsilon & 0 & 0 \\ 0 & 0 & \epsilon & 0 \\ 0 & 0 & 0 & \epsilon \end{pmatrix} \quad M = \begin{pmatrix} a & 0 & 0 & b \\ a & 0 & a & 0 \\ b & 0 & 0 & 0 \\ 0 & b & 0 & 0 \end{pmatrix} \qquad M^{2} = \begin{pmatrix} a^{2} & b^{2} & 0 & ab \\ a^{2} + ab & 0 & 0 & ab \\ ba & 0 & 0 & b^{2} \\ ba & 0 & ba & 0 \end{pmatrix}$$

$$M^{3} = \begin{pmatrix} a^{3} + b^{2}a & ab^{2} & b^{2}a & a^{2}b \\ a^{3} + aba & ab^{2} & 0 & a^{2}b + ab^{2} \\ ba^{2} & b^{3} & 0 & bab \\ b(a^{2} + ab) & 0 & 0 & bab \end{pmatrix} M^{4} = \begin{pmatrix} a(a^{3} + b^{2}a) & b^{2}(a^{2} + ab) + a^{2}b^{2} & \dots \\ a^{2}(a^{2} + ab) & a^{2}(a^{2} + ab) & a^{2}(a^{2} + ab) + a^{2}b^{2} & \dots \\ a^{2}(a^{2} + ab) & a^{2}(a^{2} + ab) & a^{2}(a^{2} + ab) & a^{2}(a^{2} + ab) + a^{2}b^{2} & \dots \\ a^{2}(a^{2} + ab) & a^{2}(a$$

Mots de longueur  $0: M_{1,1}^0 + M_{1,2}^0 = \epsilon;$ 

Mots de longueur 1 :  $M_{1,1}^1 + M_{1,2}^1 = a$ ;

Mots de longueur 2 :  $M_{1,1}^2 + M_{1,2}^2 = aa + bb$ ;

Mots de longueur  $3:M_{1,1}^{3}+M_{1,2}^{3}=aaa+bba+abb$ ; Mots de longueur  $4:M_{1,1}^{4}+M_{1,2}^{4}=aaaa+abba+aabb+bbaa+bbab$ ;

### Solution de l'exercice 4 :

L'automate  $A_1$  a pour définition :

$$\mathcal{A}_{1} = \begin{pmatrix} Q = \{1, 2, 3, 4\}, & q_{i} = 1, & F = \{3, 4\}, & \delta : \begin{cases} (1, a) \to 2 \\ (1, b) \to 4 \\ (2, a) \to 4 \\ (2, b) \to 3 \\ (3, a) \to 3 \\ (3, b) \to b \end{pmatrix}$$

L'automate  $A_2$  a pour définition :

$$\mathcal{A}_{2} = \begin{pmatrix} Q = \{1, 2, 3, 4\}, & q_{i} = 1, & F = \{1, 2\}, & \delta : \begin{cases} (1, a) \to 1 \\ (1, b) \to 4 \\ (2, a) \to 1 \\ (2, a) \to 3 \\ (3, b) \to 1 \\ (4, b) \to 2 \end{pmatrix}$$

#### Solution de l'exercice 5 :

Les automates  $A_3$  et  $A_4$  sont déssinés dans les figures 1 et 2 suivantes :



FIGURE 1 – Automate  $A_3$ 

FIGURE 2 – Automate  $\mathcal{A}_4$ 

### Solution de l'exercice 6 :

1. Expression régulière :  $(a + b + c)^*$ . Automate :



On prouve maintenant que cet automate reconnaît bien le bon langage. On pose L le langage de tous les mots et K le langage de l'automate. On cherche à prouver L = K. Considérons la propriété suivante,  $\mathcal{P}_n$ , paramétrée par un entier n:

$$\mathcal{P}_n$$
: Pour tout mot  $w$  de taille  $n: w \in L \Leftrightarrow w \in K$ 

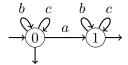
Il est clair que si  $\mathcal{P}_n$  est vraie pour tout entier n, on a bien K = L. Il nous reste à prouver  $\mathcal{P}_n$  pour tout n. On procède par induction sur n.

- Si n=0, on a  $w=\epsilon$ . Par définition, on a  $w\in L$  et  $w\in K$ . Donc  $\mathcal{P}_0$  est vérifiée.
- Soit n > 0, on suppose  $\mathcal{P}_{n-1}$  et on prouve  $\mathcal{P}_n$ . Soit w un mot de taille n, puisque n > 0, on a w = w'x où w' est un mot de taille  $n 1 \ge 0$  (on va donc pouvoir appliquer  $\mathcal{P}_{n-1}$  à w') et x une lettre dans  $\{a,b,c\}$ . Supposons que  $w \in K$ , par définition de L on a  $w \in L$ . Réciproquement si  $w \in L$ , on sait par hypothèse d'induction  $(\mathcal{P}_{n-1})$  que  $w' \in K$ . Or en observant les transitions de l'automate on constate que  $Kx \subseteq K$  pour tout  $x \in \{a,b,c\}$ , il en découle que  $w \in K$ . On a donc bien  $w \in L \Leftrightarrow w \in K$ .

2. Expression régulière :  $(a+c)^*$ . Automate :

$$\xrightarrow{a \quad c}$$

3. Expression régulière :  $(b+c)^*(a+\epsilon)(b+c)^*$ . Automate :



4. Expression régulière :  $(b+c)^*a(a+b+c)^*$ . Automate :

On prouve maintenant que cet automate reconnaît bien le bon langage. On note :

- $-L_0$  le langage des mots ne contenant pas de a.
- $-K_0$  le langage des mots pour lequels il existe un calcul de l'automate arrivant dans l'état 0.
- $-L_1$  le langage des mots contenant exactement un a.
- $-K_1$  le langage des mots pour lequels il existe un calcul de l'automate arrivant dans l'état 1.

Observons que le langage de la question est  $L_1 \cup L_0$  et le langage reconnu par l'automate  $K_1 \cup K_0$ . On va montrer  $L_0 = K_0$  et  $L_1 = K_1$ . Considérons la propriété suivante,  $\mathcal{P}_n$ , paramétrée par un entier n:

$$\mathcal{P}_n$$
 : Pour tout mot  $w$  de taille  $n$  :  $\begin{tabular}{l} w \in L_0 \Leftrightarrow w \in K_0 \\ w \in L_1 \Leftrightarrow w \in K_1 \end{tabular}$ 

Il est clair que si  $\mathcal{P}_n$  est vraie pour tout entier n, on a bien  $K_0 = L_0$  et  $K_1 = L_1$ . Il nous reste à prouver  $\mathcal{P}_n$  pour tout n. On procède par induction sur n.

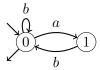
- Si n = 0, on a  $w = \epsilon$ . Par définition, on a  $w \in L_0$ ,  $w \notin K_0$ ,  $w \notin L_1$  et  $w \notin K_1$ . Donc  $\mathcal{P}_0$  est vérifiée.
- Soit n > 0, on suppose  $\mathcal{P}_{n-1}$  et on prouve  $\mathcal{P}_n$ . Soit w un mot de taille n, puisque n > 0, on a w = w'x où w' est un mot de taille  $n 1 \ge 0$  et x une lettre dans  $\{a, b, c\}$ . Supposons que  $w \in K_0$ , par définition des transitions de l'automate on a  $w' \in K_0$  et  $x \in \{b, c\}$ . Par induction on en déduit que  $w' \in L_0$  donc  $w \in L_0(b+c) \subseteq L_0$ . Réciproquement, si  $w \in L_0$ , on a  $w' \in L_0$  donc par induction  $w' \in K_0$ , par définition des transitions de l'automate on obtient  $w \in K_0$ .

Maintenant, supposons que  $w \in K_1$ , par définition de l'automate, il y a deux cas possibles : soit  $w' \in K_0$  et x = a, soit  $w' \in K_1$  et  $x \in \{b, c\}$ . Dans le premier cas on conclut en utilisant l'induction que  $w' \in L_0$  et  $w \in L_0 a \subseteq L_1$ . Dans le second cas on a par induction  $w' \in L_1$  et  $w \in L_1(b+c) \subseteq L_1$ . Réciproquement, si  $w \in L_1$ , soit

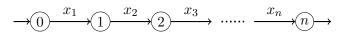
x = a auquel cas  $w' \in L_0$  et donc  $w' \in K_0$  par induction ce qui implique que  $w \in K_1$  par définition des transitions. Sinon  $x \in \{b, c\}$ , dans ce cas  $w' \in L_1$  et  $w \in L_1$  par définition des transitions.

5. Expression régulière :  $b^*(abb^*)^*$ .

Automate:

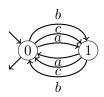


6. Expression régulière : x. Pour l'automate, on appelle  $x_1, \ldots, x_n \in \{a, b, c\}$ , les lettres de x (i.e.  $x = x_1 x_2 \ldots x_n$ ).



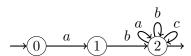
7. Expression régulière :  $((a+b+c)(a+b+c))^*$ .

Automate:



8. Expression régulière :  $ab(a+b+c)^*$ .

Automate:



9. Expression régulière :  $(a+b+c)^*ab$ .

Automate:

