
12

Going Higher in First-Order Quantifier Alternation
Hierarchies on Words

THOMAS PLACE, LaBRI, Bordeaux University and Institut Universitaire de France, France

MARC ZEITOUN, LaBRI, Bordeaux University, France

We investigate quantifier alternation hierarchies in first-order logic on finite words. Levels in these hierarchies
are defined by counting the number of quantifier alternations in formulas. We prove that one can decide
membership of a regular language in the levels BΣ2 (finite Boolean combinations of formulas having only
one alternation) and Σ3 (formulas having only two alternations and beginning with an existential block). Our
proofs work by considering a deeper problem, called separation, which, once solved for lower levels, allows
us to solve membership for higher levels.

CCS Concepts: • Theory of computation → Formal languages and automata theory; Regular lan-

guages; Logic;

Additional Key Words and Phrases: First-order logic, regular languages, decidable characterization, member-
ship problem, separation problem, quantifier alternation, logical hierarchies, dot-depth hierarchy, Straubing-
Thérien hierarchy

ACM Reference format:

Thomas Place and Marc Zeitoun. 2019. Going Higher in First-Order Quantifier Alternation Hierarchies on
Words. J. ACM 66, 2, Article 12 (March 2019), 65 pages.
https://doi.org/10.1145/3303991

1 INTRODUCTION

The connection between logic and automata theory is well known and has a fruitful history in
theoretical computer science. It was first observed when Büchi [22], Elgot [31], and Trakhtenbrot
[120] proved independently that regular languages of finite words are exactly languages that can
be defined by a monadic second-order logic (MSO) sentence. Since then, many efforts have been
devoted to the investigation and understanding of the expressive power of relevant fragments of
MSO. In this field, the yardstick result is often to prove a decidable characterization, i.e., to design
an algorithm which, given as input a regular language, decides whether it can be defined within
the fragment under investigation. This decision problem is called the membership problem. More
than the algorithm itself, the main motivation for solving it is the insight given by its proof. Indeed,
in order to prove a decidable characterization, one has to consider and understand all properties
that can be expressed in the fragment.

This work was supported by the DeLTA project (ANR-16-CE40-0007).
Authors’ addresses: T. Place, LaBRI, Bordeaux University, 351 cours de la Libération, 33405 Talence Cedex, France and
Institut Universitaire de France, France; email: tplace@labri.fr; M. Zeitoun, LaBRI, Bordeaux University, 351 cours de la
Libération, 33405 Talence Cedex, France; email: mz@labri.fr.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0004-5411/2019/03-ART12 $15.00
https://doi.org/10.1145/3303991

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

https://doi.org/10.1145/3303991
mailto:permissions@acm.org
https://doi.org/10.1145/3303991

12:2 T. Place and M. Zeitoun

The most prominent fragment of MSO is first-order logic (FO(<), or FO for short) equipped
with a predicate “<” for the linear order. This logic was first investigated on finite words by
McNaughton and Papert [54], who showed that a language is FO definable if and only if it is
star-free, that is, if and only if it can be defined from singleton languages using Boolean operations
and concatenation (but not the Kleene star, hence, the name). As such, this result just amounts
to a simple syntactic translation, which does not provide any insight on the expressive power of
first-order logic. However, together with an earlier result from Schützenberger [91], it yields a
decidable characterization. Schützenberger’s Theorem states that a regular language is star-free if
and only if its syntactic monoid is aperiodic. The syntactic monoid is a finite algebraic structure
that can be effectively computed from any representation of the language. Moreover, aperiodicity
can be rephrased as an equation that needs to be satisfied by all elements of the monoid. There-
fore, Schützenberger’s Theorem together with McNaughton-Papert’s result entails decidability of
first-order definability.

Quantifier Alternation. Schützenberger’s proof also provides an algorithm that, given a regular
language, outputs a first-order sentence (of course, when the input language is first-order defin-
able). However, this sentence may be unnecessarily complicated. The next natural step consists
of requiring the output sentence to be “as simple as possible.” To make this question precise, one
needs a meaningful notion of complexity.

The most appropriate parameter for classifying first-order definable languages according to the
difficulty of defining them is their quantifier alternation. The quantifier alternation of a formula
is simply the maximal number of switches between blocks of existential quantifiers and blocks of
universal quantifiers in its prenex normal form. The quantifier alternation of a language definable
in FO is the smallest quantifier alternation of a first-order sentence that defines it. Observe that the
quantifier alternation of a language is, like first-order definability, a semantic notion (in contrast
to the quantifier alternation of a formula, which is a syntactic notion). This explains why it is not
straightforward to compute it from a representation of the language.

It is intuitive that formulas involving several alternations are difficult to grasp—one usually uses
only few of them to state mathematical properties. This intuition is supported by results showing
that, indeed, this parameter is meaningful, i.e., that languages of high quantifier alternation are
“hard” to deal with. The algorithmic treatment of first-order formulas involves an unavoidable non-
elementary lower bound [86, 99, 100]. This is the case, for instance, for the satisfiability problem.
Likewise, the number of states of the minimal automaton equivalent to an FO formula may be
non-elementarily large in the size of the formula. This blowup is due to quantifier alternation,
since restricting these problems to formulas of bounded quantifier alternation yields elementary
decision procedures.

This motivates the investigation of what can be expressed with a fixed number of quantifier
alternations and, already importantly, with few of them. This is what we do in this article: we
investigate the hierarchy inside FO obtained by classifying languages according to their quantifier
alternation. More precisely, the hierarchy involves the classes Σi (<), BΣi (<), and Δi (<), defined
as follows:

—An FO(<) formula is Σi (<) if its prenex normal form has (i − 1) quantifier alternations and
starts with a block of existential quantifiers or if it has strictly less than (i − 1) quantifier
alternations. A language is Σi (<) if it can be defined by a Σi (<) sentence.

—A formula is BΣi (<) if it is a finite Boolean combination of Σi (<) formulas. A language is
BΣi (<) if it can be defined by a BΣi (<) sentence.

—Finally, a language is Δi (<) if it can be defined by both a Σi (<) sentence and the negation
of a Σi (<) sentence. Note that there is no notion of a “Δi (<) formula.”

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

Going Higher in First-Order Quantifier Alternation Hierarchies on Words 12:3

The quantifier alternation hierarchy is known to be strict:

Δi (<) � Σi (<) � BΣi (<) � Δi+1 (<).

This well-known hierarchy thus defines a complexity measure of first-order definable languages:
complex ones are those requiring several quantifier alternations.

Another motivation for investigating this hierarchy is its ties with two other famous hierar-
chies in formal language theory, defined in terms of regular expressions. Roughly speaking, levels
in both of these hierarchies count the number of alternations between Boolean operations and con-
catenation products that are necessary to express a language (recall that, by McNaughton-Papert’s
Theorem, every first-order definable language can be built from singleton languages using union,
concatenation, and Boolean operations). In the first of these hierarchies, the Straubing-Thérien hi-
erarchy [101, 109], level i exactly corresponds to the classBΣi (<), as shown by Perrin and Pin [58].
In the second one, the dot-depth hierarchy, which was actually defined earlier by Brzozowski and
Cohen [18], level i corresponds to augmenting the logic BΣi (<) with a predicate for the successor
relation, as shown by Thomas [113]. These correspondences show that proving decidability of the
membership problem for BΣ2 (<) immediately entails its decidability for level 2 in the Straubing-
Thérien hierarchy but also in the dot-depth hierarchy, thanks to a reduction due to Straubing [102].
We refer the reader to Section 3 for details.

Many efforts have been devoted to finding decidable characterizations for levels in the quan-
tifier alternation hierarchy. Despite these efforts, however, only the lower ones are known to be
decidable. The class BΣ1 (<) consists exactly of all piecewise testable languages, i.e., such that
membership of a word depends on its scattered subwords only up to a fixed size. These languages
were characterized by Simon [94] as those whose syntactic monoid is J -trivial. A decidable char-
acterization of Σ2 (<)—hence, of Δ2 (<) as well—was obtained by Arfi [8, 9], a problem revisited
and clarified by Pin and Weil [71, 76], who also set up a generic algebraic framework to work
with. For Δ2 (<), the literature is very rich: see the survey by Tesson and Thérien [108]. For exam-
ple, the Δ2 (<) definable languages are exactly the ones definable in the two-variable restriction
of FO(<) [112]. These are also the languages whose syntactic monoid belongs to the class DA,
as shown again by Pin and Weil [71, 76] (see also [92]). For higher levels in the hierarchy, get-
ting decidable characterizations remained a major open problem. In particular, the case of BΣ2 (<)
has a very abundant history, and a series of combinatorial, logical, and algebraic conjectures have
been proposed over the years. We refer to Section 3 and to several surveys cited in this section
for a bibliography. So far, the only known effective result has been partial, working only when the
alphabet is of size 2 [104].

Contributions. In this article, we establish decidable characterizations for the fragments BΣ2

(<), Δ3 (<), and Σ3 (<) of first-order logic. These new results are based on a deeper decision problem
than membership: the separation problem. Fix a class C of languages. The C-separation problem
amounts to deciding whether, given two input regular languages, there exists a third language in
C containing the first language while being disjoint from the second one. Solving the C-separation
problem is more general than obtaining a decidable characterization for the class C. Since regular
languages are effectively closed under complement, testing membership in C can be achieved by
testing whether the input is C-separable from its complement. While this reduction immediately
transfers decision procedures for one problem to the other, this is not our primary motivation
for looking at separation. Although intrinsically more challenging, a solution to the separation
problem requires more understanding than just getting a decidable characterization. This under-
standing for a given fragment can then be exploited in order to obtain decidable characterizations
for extensions built on top of this fragment.

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

12:4 T. Place and M. Zeitoun

Historically, the separation problem for regular languages was first investigated as a special
case of a deep problem in semigroup theory, the problem of computing the pointlike subsets of a
finite monoid, solved for several cases by relying on purely algebraic and topological arguments
[7, 35, 37]. It was only identified as a variant of the separation problem by Almeida [4]. Recently,
a research effort has been made to investigate this problem from a radically different perspective,
with the aim of finding new and self-contained proofs relying on elementary ideas and notions
from language theory only. Such proofs were obtained for several results already known in the
algebraic framework [28, 79, 80, 82, 85]. This article is a continuation of this effort for classes that
were not solved even in the algebraic setting: we solve the separation problem for Σ2 (<), and we
use our solution as a basis to obtain decidable characterizations for the classes BΣ2 (<), Δ3 (<), and
Σ3 (<).

Our proof works as follows: given two regular languages, one can easily construct a morphism
α from A∗ into a finite monoid M that recognizes both languages. We then design an algorithm
that computes, inside the finite monoid M , enough Σ2-related information to answer the Σ2 (<)-
separation question for every pair of languages that are recognized by α . It turns out that it is
also possible to use this information to obtain decidability of Δ3 (<), Σ3 (<), and BΣ2 (<) (though
this last characterization is much more difficult). This information amounts to the notion of Σ2-
chain, our main tool in the article. A Σ2-chain is an ordered sequence s1, . . . , sn ∈ M that witnesses a
property of α with respect to Σ2 (<). Let us give some intuition in the case n = 2—which is enough
to make the link with Σ2-separation. A sequence s1, s2 of elements ofM is a Σ2-chain if every Σ2 (<)
language containing all words in α−1 (s1) intersects α−1 (s2). In terms of separation, this means that
α−1 (s1) is not separable from α−1 (s2) by a Σ2 (<) definable language. This notion can actually be
extended to every level of the hierarchy.

This article contains three main separate, new, and nontrivial results:

(1) An algorithm to compute Σ2-chains—hence, Σ2 (<)-separability is decidable.
(2) A transfer result showing that an algorithm to compute Σi -chains of length 2 entails a de-

cidable characterization of Σi+1 (<). In particular, by (1), membership in Σ3 (<) is decidable.
Decidability of Π3 (<), the dual of Σ3 (<), and of Δ3 (<) are then immediate.

(3) A decidable characterization of BΣ2 (<).

For (1), computing Σ2-chains is achieved using a fixed-point algorithm that starts with trivial Σ2-
chains such as s, s, . . . , s and iteratively computes more Σ2-chains until a fixed point is reached. For
our technique to work, we actually have to consider a notion slightly more general than Σ2-chains.
The completeness proof of this algorithm relies on the Factorization Forest Theorem of Simon
[95]. This is not surprising (even though one can actually bypass its use), as the link between this
theorem and the quantifier alternation hierarchy was already observed by Pin and Weil [76] and
Bojańczyk [15].

For (2), we establish a characterization of Σ3 (<) in terms of an equation on the syntactic monoid
of the language. This equation is parametrized by the set of Σ2-chains of length 2. In other words,
we use Σ2-chains to abstract an infinite set of equations into a single one. The proof relies again on
the Factorization Forest Theorem of Simon [95] and is actually generic to all levels in the hierarchy.
This means that, for any level i , we define a notion of Σi -chain and characterize Σi+1 (<) using an
equation parametrized by Σi -chains of length 2. However, decidability of Σi+1 (<) depends on our
ability to compute all Σi -chains of length 2, which we can do only for i = 2.

Finally, for (3), the decidable characterization of BΣ2 (<) is the most difficult result of the arti-
cle. As for Σ3 (<), it is presented by two equations parametrized by Σ2-chains (of lengths 2 and 3).
However, the characterization is, this time, specific to the case i = 2. This is because most of our
proof relies on a careful analysis of our algorithm that computes Σ2-chains, which works only for

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

Going Higher in First-Order Quantifier Alternation Hierarchies on Words 12:5

i = 2. The equations share surprising similarities with the ones used by Bojańczyk and the first
author [16] to characterize a totally different formalism: Boolean combinations of open sets of infi-
nite trees. In [16] also, the authors present their characterization as a set of equations parametrized
by a notion of “chain” for open sets of infinite trees (although their “chains” are not explicitly
identified as a separation relation). Since the formalisms are of a different nature, the way that
these chains and our Σ2-chains are constructed are completely independent, which means that the
proofs are also mostly independent. However, once the construction analysis of chains has been
done, several combinatorial arguments used to make the link with equations are analogous. In par-
ticular, we reuse and adapt definitions from [16] to present these combinatorial arguments in our
proof. One could say that the proofs are both (very different) setups to apply similar combinatorial
arguments in the end.

Our results are shown using the ordering relation “<” on positions as the only numerical pred-
icate of the signature in the logic. In full first-order logic, one can define other natural numerical
predicates, such as the first and last positions, as well as the successor relation. However, defin-
ing these predicates requires an additional quantification. It is known that enriching the signature
with these predicates increases the expressiveness of each fragment in the quantifier alternation
hierarchy. This yields another hierarchy inside first-order logic, which has also been investigated
in the literature. In particular, it has been shown by Thomas [113] to correspond to the so-called
dot-depth hierarchy defined by Brzozowski and Cohen [18] in terms of regular constructs needed
to build a star-free language. In Section 12, we present already known results to show that all de-
cidability statements obtained for the original hierarchy can be lifted to the hierarchy where the
additional predicates are allowed. This works both for decidable characterizations [83, 102] and
for separation [83, 96].

Organization. Sections 2 and 3 are devoted to the presentation of the problem that we investigate.
In Section 2, we define the quantifier alternation hierarchies and precisely state this problem. Sec-
tion 3 presents an outline of the rich history of these problems, viewed from different perspectives.

In Sections 4 and 5, we develop the machinery necessary for the statements and the proofs of our
results. Section 4 is devoted to the presentation of well-known classical tools, such as Ehrenfeucht-
Fraïssé games, monoids, and Simon’s Factorization Forest Theorem, while Section 5 introduces a
new tool specific to this article: Σi -chains.

The remaining sections present and prove our results. In Section 6, we reduce the membership
and separation problems for all levels in the hierarchy to the problem of computing Σi -chains.
In the following sections, we then prove that these problems can be solved for specific levels. In
Section 7, we obtain a solution to separation for Σ2 (<) and to membership for Σ3 (<), Π3 (<), and
Δ3 (<). Then, in Section 8, we obtain a solution to membership for BΣ2 (<). Sections 9 to 11 are
then devoted to the difficult proof of the decidable characterization of BΣ2 (<). In the last section,
Section 12, we lift up our results to the hierarchy with successor, using previously known transfer
results.

This article is the full version of [81].

2 QUANTIFIER ALTERNATION HIERARCHIES

As explained in the introduction, we study two decision problems, called membership and sepa-
ration, to investigate two famous hierarchies of classes of languages. In this section, we precisely
define these hierarchies and decision problems. Note that the section is devoted to definitions only.
We shall present the history of these hierarchies in Section 3.

This section is organized into two parts. We begin by giving a logical definition of our two
hierarchies: they classify first-order definable languages by counting the number of quantifier

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

12:6 T. Place and M. Zeitoun

alternations that are needed for defining these languages. Equivalent combinatorial definitions
in terms of star-free languages will be presented in Section 3. In the second part, we define the
membership problem and the separation problem.

2.1 Quantifier Alternation Hierarchies of First-Order Logic

Throughout the article, we assume fixed a finite alphabet A. We denote by A∗ the set of all words
over A (including the empty word ε) and by A+ the set of all nonempty words over A. If u,v ∈ A∗
are words over A, we denote by u · v or uv the word obtained by concatenation of u and v and
by alph(u) the alphabet of u, i.e., the smallest subset B of A such that u ∈ B∗. A language over A
is a subset of A∗. In this article, we work with regular languages. These languages have several
equivalent characterizations, as they can be defined by

—monadic second-order logic,
—finite automata,
—regular expressions,
—finite monoids.

The two hierarchies that we investigate in this article are contained within a strict subclass of
regular languages that we define now: the class of first-order definable languages.

First-Order Logic. We view words as logical structures made of a sequence of positions. Each
position has a label in the alphabet A and can be quantified. We denote by “<” the linear order
over the positions. We work with first-order logic, FO(<), using the following predicates:

—for each a ∈ A, a unary predicate Pa that selects positions labeled with an a.
—a binary predicate “<” for the linear order.

To every first-order sentence φ, one can associate the language {w ∈ A∗ | w |= φ} of words that
satisfy φ. For instance, the sentence ∃xPa (x) defines the language of all words having at least one
“a.” Hence, FO(<) defines a class of languages: the class of all languages that can be defined by
an FO(<) sentence. For the sake of simplifying the presentation, we will abuse notation and use
FO(<) to denote both the logic and the associated class of languages.

Order Hierarchy. One classifies first-order formulas by counting the number of alternations be-
tween existential and universal quantifiers in the prenex normal form of the formula. For i ∈ N , a
formula is said to be Σi (<) (resp., Πi (<)) if its prenex normal form has either

—exactly (i − 1) quantifier alternations (i.e., exactly i quantifier blocks) and starts with an
existential quantifier (resp., with a universal quantifier) or

—strictly less than (i − 1) quantifier alternations (i.e., strictly less than i quantifier blocks).

For example, a formula whose prenex normal form is

∀x1∀x2∃x3∀x4 φ (x1,x2,x3,x4) (with φ quantifier-free)

is Π3 (<). Observe that a Πi (<) formula is by definition the negation of a Σi (<) formula. Finally, a
BΣi (<) formula is a finite Boolean combination of Σi (<) formulas. As for full first-order logic, we
will abuse notations and use Σi (<), Πi (<), andBΣi (<) to denote both the logics and the associated
classes of languages. Finally, we denote by Δi (<) the class of languages that can be defined by both
a Σi (<) and a Πi (<) formula1. It is known [58] that this gives a strict infinite hierarchy of classes
of languages as represented in Figure 1. In the article, we call this hierarchy the order hierarchy.

1Note that, strictly speaking, Δi (<) is not a logic: there is no notion of a “Δi (<) formula.”

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

Going Higher in First-Order Quantifier Alternation Hierarchies on Words 12:7

Fig. 1. Quantifier alternation hierarchies.

It turns out that quantifier alternation can be used to define another natural hierarchy within
first-order logic, which we now describe.

Enriched Hierarchy. Observe that in full first-order logic, several natural relations can be defined
using the linear order:

—Position x is the first one:min(x)
def
= ∀y ¬(y < x).

—Position x is the last one:max (x)
def
= ∀y ¬(x < y).

—Position y is the successor of position x : (y = x + 1)
def
= x < y ∧ ¬(∃z x < z ∧ z < y).

Therefore, adding these relations as predicates in the signature of first-order logic does not increase
its expressive power: FO(<) and the enriched logic FO(<,+1,min,max) define the same class of

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

12:8 T. Place and M. Zeitoun

languages. However, observe that replacing the predicates min,max or +1 with their definitions
may increase the quantifier alternation of the formula. For example,

∃x∃y y = x + 1 ∧ Pa (x) ∧ Pb (y) has no alternation, while

∃x∃y (x < y ∧ ¬(∃z x < z ∧ z < y)) ∧ Pa (x) ∧ Pb (y) has one alternation.

Hence, it is not immediate whether fragments of the order hierarchy have the same expressive
power as their enriched counterpart. In fact, it is known that the predicate +1 cannot be freely
defined in any logic of the order hierarchy. Hence, we get a second hierarchy, also depicted in
Figure 1. That this hierarchy is also strict follows from the work of Brzozowski and Knast [19] and
Thomas [113, 115]. In this article, we call it the enriched hierarchy.

2.2 The Membership and Separation Problems

We now present the two decision problems investigated in this article, called membership and
separation. Both problems can be defined for any class of languages and, therefore, in particular
for any class corresponding to a level in either the order or the enriched hierarchy.

The Membership Problem. Fix a class of languages C. The membership problem for C is as
follows:

INPUT: A regular language L.
OUTPUT: Does L belong to C?

Usually, an algorithm solving the membership problem for C is called a decidable characterization
of C. Note that, in general, there is no guarantee that there exists such an algorithm. In fact, one
can actually build classes of regular languages having an undecidable membership problem from
decidable ones using standard operators [1, 10, 88]. However, such classes are usually ad hoc; we
have yet to find a natural class of regular languages having an undecidable membership problem.

Decidable characterizations are known for FO(<) [54, 91] and up to the Σ2 level in both hier-
archies [8, 32, 33, 45, 71, 76, 94] (see Section 3 for more details). In this article, we expand this
knowledge and prove decidable characterizations for the levels BΣ2, Δ3, Σ3, and Π3 in both hier-
archies. These new results rely on the investigation of a deeper problem that we now define: the
separation problem.

The Separation Problem. Let L,L0,L1 be languages. We say that L separates L0 from L1 if

L0 ⊆ L and L1 ∩ L = ∅.

For a class C of languages, we say that L0 is C-separable from L1 if some language in C separates
L0 from L1. Note that when C is closed under complement, then L ∈ C separates L0 from L1 if and
only ifA∗ \ L (which also belongs to C) separates L1 from L0. Observe, however, that when C is not
closed under complement (e.g., when C = Σi or C = Πi), the definition is not symmetrical: it may
be the case that L0 is C-separable from L1, while L1 is not C-separable from L0. The separation
problem for C is as follows:

INPUT: Two regular languages L0 and L1.
OUTPUT: Is L0 C-separable from L1?

The separation problem is a refinement of the membership problem. Observe that asking whether
a language L is C-separable from its complement is equivalent to asking whether L ∈ C, since

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

Going Higher in First-Order Quantifier Alternation Hierarchies on Words 12:9

the only potential separator is L itself. Hence, since regular languages are effectively closed under
complement, membership immediately reduces to separation.

The separation problem is known to be decidable for full FO(<) [35, 37] thanks to a result of
Almeida [4], who proved that the problems solved in these papers are equivalent to separation. A
direct proof for FO(<) has been obtained recently by the authors [82, 85]. Separation is also known
decidable up to Δ2 in both hierarchies [28, 80, 83]. In this article, we present a solution for Σ2 and
Π2 in both hierarchies.

Note that while we obtain results for both the order and enriched hierarchies, we mostly work
with the order hierarchy. For the enriched hierarchy, it is known that for each level, both the
membership [75, 102] and the separation problem [83, 96] can be reduced to the same problem for
the level’s counterpart in the order hierarchy. We present these reductions in Section 12. In other
sections, we work with the order hierarchy only.

3 HISTORY

We presented in Section 2.1 two hierarchies within first-order logic, defined in purely logical terms.
Historically, the very same hierarchies were first considered in a language theoretic framework
and were given combinatorial definitions. In this section, we review the history related to these
hierarchies, starting with this language theoretic point of view.

We face a compromise between two natural approaches. The first approach would be to present
results in a purely chronological order at the risk of getting bogged down in details and thereby
missing central threads. The second would be to simply highlight major ideas that have emerged
throughout the years at the cost of possibly losing the time line. For the sake of readability, we
choose a hybrid approach: we shall review the main trends and milestones, but we adopt a chrono-
logical view for each of them.

We organize this section as follows. In Section 3.1, we motivate why such hierarchies have been
considered and present their combinatorial definitions. In Section 3.2, we connect the combina-
torial and logical definitions. In Section 3.3, we focus on developments that lead to solutions of
membership problems for fragments of these hierarchies. We shall explain along the way how
research on these hierarchies actually influenced a wide scientific domain.

The literature on these hierarchies is abundant. In this article, we focus only on some specific
aspects. For more details and a complete bibliography, refer to the papers surveying the subject,
e.g., by Brzozowski [17], Eilenberg [30], Weil [121], Thomas [116], and Pin [60, 63, 64, 66, 68, 84]
and to the literature cited in these papers.

3.1 From Schützenberger’s Theorem to Concatenation Hierarchies

We first introduce two concatenation hierarchies defined in combinatorial terms with the motiva-
tion of classifying regular languages. Note that we recall their definition only in this section. In
subsequent sections, we shall present connections between these hierarchies and logical ones and
focus on tools that were developed to investigate them.

The definitions of these hierarchies have their source in Schützenberger’s Theorem [91], which
provides an algorithm to decide whether a regular language is star-free. Recall that star-free lan-
guages are built from singleton languages using a finite number of times.

—Concatenation products: If K and L are star-free, then so is KL = {xy | x ∈ K , y ∈ L}.
—Boolean combinations: Any finite Boolean combination of star-free languages is star-free.

Schützenberger’s Theorem [91] states that a language is star-free if and only if its syntactic
monoid is aperiodic. The key point is that aperiodicity of a finite monoid is a decidable property. All
proofs of this result, either close to the original one [25, 39, 50, 57, 69, 77] or using alternate ideas,

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

12:10 T. Place and M. Zeitoun

Table 1. Some Variations in the Definition of the Dot-Depth Hierarchy

such as [30, 55] or [29, 123], build a star-free expression from an aperiodic language. However, as
explained in the introduction, this expression may be unnecessarily complicated. In particular, it
may involve avoidable interleavings between the complement and concatenation operations.

The Dot-Depth Hierarchy. The question addressed by Brzozowski and Cohen [18] when they de-
fined the dot-depth hierarchy was to classify star-free languages according to this complexity: the
level assigned to a language is the minimal nesting between complement and concatenation that is
necessary to express it with a star-free expression (hence, the name: “dot” means “concatenation”).
Its definition is motivated by understanding the interplay between Boolean operations and one of
the fundamental operations involved in the definition of rationality, namely, the concatenation
product of languages, as defined above.

Defining the hierarchy amounts to (1) defining a base level, numbered 0, consisting of “simple”
languages, and (2) defining how to build level i + 1 from level i for each natural integer i . This step
can be decomposed in two substeps:

—Level i + 1
2 is the closure of level i under finite unions and (possibly marked) products.

—Level i is the closure of level i + 1
2 under finite Boolean combinations.

Levels of the form i + 1
2 for an integer i are called half levels. They were missing in the original

definition but introduced later by Perrin and Pin [58]. There are actually several variations of the
dot-depth hierarchy in the literature (see Table 1). These variants consist of choosing the interpre-
tation domain (A+ or A∗), or the base level, or the precise way to go from an integer level to the
next half level. To define half levels, several closure operators have been considered in addition
to finite unions, such as closure under usual product of languages or marked product instead of
product, defined as follows for a ∈ A:

KaL = {xay | x ∈ K , y ∈ L}.

These minor adjustments were motivated by the needs of each paper. For instance, the definition of
Thomas [113] is convenient to establish a correspondence between this hierarchy and the enriched
hierarchy at all levels, including level 0 (whose logical definition also differs slightly from ours).
Likewise, Pin and Weil [76] consider only languages of nonempty words to elegantly formulate a
correspondence with algebraic classes. It is easy to get lost in all of these variations, but what the
reader should remember is that these changes are harmless: the definitions coincide on all levels,
except possibly on level 0 (with the restriction that levels of hierarchies over A+ consist of traces
over A+ of languages belonging to hierarchies over A∗). In particular, for each level, all variants
have the same decidability status with respect to the problems that we consider.

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

Going Higher in First-Order Quantifier Alternation Hierarchies on Words 12:11

The Polynomial Closure. Historically, the most investigated concatenation operator is the
marked product used, e.g., in the definition of Pin [66] of the dot-depth hierarchy (last line of
Table 1). The operation that associates to a class of languages its closure under finite unions and
marked products is called polynomial closure [91]. It is the common operation employed for going
from level i to level i + 1

2 in the dot-depth and in another hierarchy that we now present. In other
words, this new hierarchy differs from the dot-depth only by the choice of base level.

The Straubing-Thérien Hierarchy. Ten years after the dot-depth was defined, Straubing [101,
102] and Thérien [109] independently considered a similar and also natural hierarchy. As before,
its definition is by induction: one starts from a simple class of languages (which is level 0 of this
hierarchy), and one then applies, alternately, two closure operations to obtain larger classes of
languages:

—The class of languages of level 0 is {∅,A∗}.
—For any integer i � 0, level i + 1

2 is the polynomial closure of level i .
—Languages of level i + 1 are the finite Boolean combinations of languages of level i + 1

2 .

Comparing the definition of the hierarchies (last line of Table 1 for the dot-depth) yields induc-
tively that each level in the Straubing-Thérien hierarchy is contained in the corresponding level
of the dot-depth hierarchy. The containment is actually strict; this makes it natural to investigate
the exact relationship between the two hierarchies. Also, clearly, both hierarchies fully cover all
star-free languages.

Strictness of the Hierarchies. The first natural question is whether these definitions actually
yield strict (or infinite, this is equivalent in this case) hierarchies or whether they collapse. The
dot-depth hierarchy was shown to be strict by Brzozowski and Knast [19] for alphabets of size at
least 2 on integer levels: one can show that Ln defined inductively by L0 = ε and Ln = (aLn−1b)∗

is at level n in the dot-depth hierarchy. Another proof of the fact that the hierarchy is strict based
on algebra was given by Straubing [101]. Yet other proofs were presented by Thomas [114, 115],
using arguments based on Ehrenfeucht-Fraïssé games. All of these proofs easily imply that the
hierarchy is strict on all levels, including half levels.

Regarding the Straubing-Thérien hierarchy, strictness was established by Margolis and Pin [52]
(see also [110] for a short proof). Strictness actually follows from a more general result of Straubing
[102] that connects both hierarchies (see below).

The fact that both hierarchies are strict makes it relevant to investigate the membership prob-
lem at each level of each of these hierarchies. Relatively few results are known, but this question
motivated a wealth of fruitful ideas. We shall describe progress in this line of research in Section
3.3. First, let us connect the combinatorial definitions with the ones relying on first-order logic,
which we presented in Section 2.1.

3.2 Connections with Logic

The interest in the dot-depth and Straubing-Thérien hierarchies increased after relationships were
discovered in the 1980s—first by Thomas, then by Perrin and Pin—between them and logical hier-
archies. Recall that we defined two alternation hierarchies within first-order logic in Section 2: the
order hierarchy, which counts alternations between blocks of existential and universal quantifiers
for formulas in the signature {<, Pa | a ∈ A}, and the enriched hierarchy, which counts the same
alternations for formulas in the signature {<, +1, min, max, Pa | a ∈ A}.

Recall also that Schützenberger [91] proved that star-free languages are exactly first-order de-
finable ones. Thomas [113] discovered a more precise correspondence, level by level, between

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

12:12 T. Place and M. Zeitoun

the dot-depth hierarchy of star-free languages and the enriched quantifier alternation hierarchy
within FO. Note that Thomas [113] did not actually state the result for half levels, as they were not
considered. However, it can be easily derived from the arguments of the paper.

Theorem 3.1 (Thomas [113]). Let i � 0. Then,

—A language has dot-depth i if and only if it is definable in BΣi (<,+1,min,max).
—A language has dot-depth i + 1

2 if and only if it is definable in Σi+1 (<,+1,min,max).

This connection with finite model theory and descriptive complexity sustained an earlier in-
formal statement by Brzozowski [17] arguing that dot-depth is a relevant complexity parameter.
The argument was based on the fact that star-free expressions can express feedback-free circuits,
and that concatenation increases the depth of such circuits: since concatenation (or “dot” operator)
is linked to the sequential rather than the combinational nature of a language, the number of con-
catenation levels required to express a given aperiodic language should provide a useful measure of
complexity. Since it was known that the nonelementary complexity of standard problems for FO is
tied to quantifier alternation [100], Theorem 3.1 brought mathematical evidence that the level in
the dot-depth hierarchy of a language is indeed a meaningful complexity measure, thus supporting
Brzozowski’s intuition.

A statement similar to Theorem 3.1 was established by Perrin and Pin [58] for the Straubing-
Thérien hierarchy, which corresponds to the order hierarchy.

Theorem 3.2 (Perrin and Pin [58]). Let i � 0 be an integer. Then,

—A language has level i in the Straubing-Thérien hierarchy if and only if it is definable in
BΣi (<).

—A language has level i + 1
2 in the Straubing-Thérien hierarchy if and only if it is definable in

Σi+1 (<).

In addition, Perrin and Pin [58] introduced half levels as the closure under finite unions and
intersections of marked products of the preceding level (it turns out that the intersection is actually
useless; see [9, 67]). Finally, they extended the correspondence to infinite words.

The results obtained during the 1970s and the 1980s fostered many connections among several
communities of researchers, working in automata theory, semigroup theory, or finite model theory,
and laid the ground of a clean framework, with tools from these different fields. The research effort
continued in the 1990s, in particular with the developments of algebraic methods to investigate
membership problems.

3.3 Connections with Algebra: The Syntactic Approach

Knowing that both hierarchies are strict and that they capture a meaningful complexity measure,
the most natural question is whether we can compute the level in each of these hierarchies of an
input regular language. This corresponds to solving membership for each level. Even though the
membership problem is standard at present, it is only after Schützenberger’s work that it was iden-
tified as the salient problem to look at. Moreover, Schützenberger [91] also proposed a convenient
tool to solve this problem, namely, the syntactic monoid. See [63] for a comprehensive survey on
this topic.

Syntactic Monoids: Definition and Seminal Result. The syntactic congruence ∼L of a language
L, defined by Schützenberger [90], relates those words that cannot be distinguished by the language
when embedded in the same context. Formally,

u ∼L v ⇐⇒ (∀x ,y ∈ A∗, xuy ∈ L ⇔ xvy ∈ L).

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

Going Higher in First-Order Quantifier Alternation Hierarchies on Words 12:13

The key result of Myhill and Nerode [56] implies that a language is regular if and only if this
congruence has a finite index. Hence, in this case, the quotient set A∗/∼L is a computable finite
monoid, called the syntactic monoid of the language. An easy-to-check but important property is
that L is a union of ∼L-classes, so that the so-called syntactic morphism from A∗ to A∗/∼L that
maps a word to its ∼L-class recognizes L (in the sense that L is a union of ∼L-classes; thus, it is the
preimage of a subset of the syntactic monoid under the syntactic morphism).

Schützenberger’s Theorem precisely states that a language is star-free if and only if it is aperi-
odic, i.e., its syntactic monoid satisfies the equation

xω = xω+1,

where ω represents some large integer, which can be computed from the language as well. This
means that for every element x of the syntactic monoid of the language, the equality xω = xω+1

has to hold. Since the syntactic monoid of the input language is finite and computable from any
representation of the language, checking whether it is aperiodic is a decidable property. To sum up,
Schützenberger’s Theorem [91] reduces a nontrivial semantic property (to be definable in some
fragment for a language) into a purely syntactic, easily testable condition (to satisfy an equation
for a finite, computable algebra).

The importance of this result stems from two reasons:

—First, Schützenberger established membership as the standard problem that is worth inves-
tigating in order to understand a class of regular languages. This is justified, since obtaining
a decidable characterization requires a deep insight about the class, as this amounts to cap-
turing in a single algorithm all properties that can be expressed within the class.

—Schützenberger also proposed a methodology that proved successful in solving other mem-
bership problems. Let us briefly explain the core of his strategy. The hardest direction is to
build a star-free expression for a language whose syntactic monoid is aperiodic. The key
observation is that either all languages recognized by a syntactic monoid are star-free or
none of them is. Hence, instead of building a star-free expression for a single language, one
may rather do so for all languages recognized by its syntactic morphism. The payoff of
this approach may not be immediate, as the goal is more demanding than the original one.
Yet, the languages recognized by the syntactic monoid are connected to one another, which
makes the method amenable to induction as soon as one can decompose each language into
simpler ones using only star-free operations.

Despite the current acknowledgment of the impact of Schützenberger’s methodology, about 10
more years were necessary to cement it as a fundamental approach.

Validation of the Syntactic Approach. Notable breakthroughs after Schützenberger’s Theorem
were obtained by Simon, a student of Brzozowski, in his PhD dissertation [93] shortly after the
dot-depth hierarchy was defined. His results had a major impact on research in the theoretical
computer science community; two results are central in the context of this article. They both char-
acterize important subclasses of level 1 [20, 21, 94]:

a) The class of locally testable languages, i.e., such that membership of a word in such a
language is determined only by looking at infixes, prefixes, infixes up to a given length.
This result was also obtained independently by McNaughton [53]. It is easy to check that
these languages form a subclass of dot-depth 1.

b) The class of piecewise testable languages, i.e., such that membership of a word in such a
language is determined only by looking at its scattered subwords up to a given length. It is
the Boolean algebra generated by languages of the form A∗a1A

∗ · · ·A∗anA
∗. This is exactly

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

12:14 T. Place and M. Zeitoun

the first level of the Straubing-Thérien hierarchy, corresponding to the classBΣ1 (<). Note,
however, that this hierarchy was not already defined at that time.

Before presenting other results about the hierarchies, let us comment on these results and ex-
plain why they deeply influenced the theoretical computer science landscape.

—The main reason why Simon’s results were recognized as important is that they supported
Schützenberger’s methodology as the “right” one to tackle membership questions, by un-
derlining the key role played by the syntactic monoid in automata theory. Schützenberger
and Simon both used the same strategy in order to obtain their decidable characterizations
by reducing membership to checking equations on the syntactic monoid. This common
approach was further validated by Eilenberg [30], who established a one-to-one correspon-
dence between varieties of regular languages and varieties of finite monoids. It was com-
plemented by a theorem of Reiterman [87] (see also [11]), which shows that these algebraic
classes can be described by a (possibly infinite) set of equations (such as xω = xω+1 for ape-
riodic monoids, which characterize star-free languages). Note, however, that Eilenberg’s
and Reiterman’s theorems are generic results, useless for actual characterizations. They do
not provide a uniform solution to all membership problems: the actual decidable character-
ization depends, of course, on the class under investigation (the topic of this article is pre-
cisely to establish such characterizations for levels in the hierarchies). Yet, Eilenberg’s and
Reiterman’s theorems entail that every class of regular languages that forms a variety can
be characterized by equations satisfied by all syntactic monoids of languages of the class.
All integer levels in the hierarchies are indeed varieties. This can be verified directly from
the definition, and follows also from the original ones of the hierarchies, e.g., [101, 109] (see
also [71, 76]). For this reason, a major research direction was to understand the variety of
finite monoids associated to them. In this article, we provide equations for BΣ2 (<).

—A second reason why the study on the hierarchies in general and Simon’s results in particu-
lar were recognized as important is that they connected several areas: automata theory and
finite semigroup theory but also combinatorics on words (see [89] or, more recently, [42])
and finite model theory. They received a number of proofs, either reminiscent of the orig-
inal ones [40, 48, 59, 69], or using arguments of different flavors. For instance, just for the
case of piecewise testable languages, Straubing and Thérien [106] gave an alternate proof
based on an early use of ordered monoids in automata theory. Ordered monoids turned out
to be a key notion in the study of the hierarchies (see below), and the result was reproved
by Henckell and Pin [36]. Almeida [2, 3] presented a proof based on profinite topology,
Higgins [38] a proof using representations by transformation semigroups, and Klíma [43] a
purely algebraic one. Simon’s decision criteria for both classes were refined to understand
the computational hardness of the associated membership problems [23, 98] and to improve
the complexity of original algorithms [44, 62, 65, 97, 118, 119].

—Last, Simon’s work contains ingredients that inspired several researchers to solve other
membership problems. For instance, the result on locally testable languages [21] introduces
the notion of graph congruence, reused by Knast [46] to give a membership algorithm for
level 1 of the dot-depth hierarchy. It should be noted that McNaughton’s independent proof
of the same result [53] has been equally influential. Simon’s result also motivated the quest
for a characterization of the class of locally threshold-testable languages, where member-
ship of a word depends not only on the set of infixes but also on the number of such in-
fixes counted up to a threshold. This class was characterized by Beauquier and Pin [12, 13]
by relying on a deep paper of Thérien and Weiss [111] that reused graph congruences (a
completely different proof by Bojańczyk [14] relies on the decidability of Presburger logic

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

Going Higher in First-Order Quantifier Alternation Hierarchies on Words 12:15

and Parikh’s theorem). Graph congruences, in turn, are the premises of the framework de-
veloped by Tilson [117] based on the work of Straubing [102] and motivated by difficult
decision problems in semigroup theory (in particular, the decidability of the well-known
Krohn-Rhodes hierarchy, which classifies languages according to serial decomposition).

Following Simon’s results, level 1 in the dot-depth hierarchy was successfully characterized by
Knast. The proof is, however, much more technical. To sum up,

—Simon [94] characterized level 1 in Straubing-Thérien hierarchy or, equivalently, the frag-
ment BΣ1 (<) of first-order logic.

—Knast [45, 46] characterized level 1 in the dot-depth hierarchy or, equivalently, the fragment
BΣ1 (<,+1,min,max) of first-order logic.

While these results and others for classes outside the hierarchies gather evidence that the syn-
tactic approach is relevant to tackle membership problems, the time intervals between significant
contributions regarding levels in the hierarchy show that the problem is difficult. Despite a wealth
of results toward a solution for level 2, the last complete statement until the conference version of
the present article [81] regarding integer levels went back to Knast [45, 46].

Connections between the Hierarchies. It should be noted that after Knast’s result, researchers
became primarily focused on the Straubing-Thérien hierarchy rather than on the dot-depth one.
This is due to an important result of Straubing [102], who proved that it is the most fundamental
of the two from the membership point of view. More precisely, for any integer level i � 2, mem-
bership for level i in the dot-depth hierarchy can be effectively reduced to membership for the
same level in the Straubing-Thérien hierarchy. This was generalized to half levels by Pin and Weil
[75]. This explains why we also work with the Straubing-Thérien hierarchy in this article. We shall
detail the actual reductions in Section 12.

Limits of the Syntactic Approach. In view of Straubing’s result, the principal objective of re-
searchers became to solve membership for level 2 in the Straubing-Thérien hierarchy (at that time,
half levels were not already defined). While a lot of effort was devoted to solving this problem, this
proved very difficult. Over the years, several attempts were made:

—First, partial results were obtained by restricting the set of possible input languages. For
example, level 2 was characterized by Straubing [104] for languages over an alphabet of
size 2. Other partial results were obtained by Cowan [27], building on results of Weil [122]
and Straubing and Weil [107].

—Second, many upper bounds of the actual level 2 were introduced. Usually defined by a set
of equations and having a decidable membership problem, these upper bounds were often
presented as conjectures. When such a conjecture was disproved, a new one was proposed
to tighten the gap between the proposed candidate and the actual level 2. For instance,
Straubing [103, 104] proposed such a candidate and proved with Weil that it holds in some
particular cases [107]. Another version was proposed by Pin and Weil [72], and refined by
them in [74]. More recently, Almeida and Klíma [5] disproved the conjecture of Straubing
and proposed a new candidate [6]. All of these conjectures actually provided strict upper
bounds for level 2.

—A third approach was to reduce the decidability of level 2 to distinct mathematical prob-
lems. A remarkable example is the relationship between the decidability of level 2 and
a purely algebraic problem. This connection was discovered by Pin and Straubing [70]:
they considered the variety generated by all finite monoids of upper triangular Boolean

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

12:16 T. Place and M. Zeitoun

matrices, and proved that it corresponds exactly to level 2 in the Straubing-Thérien hierar-
chy. Unfortunately, this problem turned out to be as hard as the original one.

—This last approach led to another purely algebraic problem, also equivalent to deciding level
2 in the dot-depth hierarchy. It asks to decide membership of a finite monoid in the variety
of monoids denoted by PJ. In a nutshell, if V is a variety of finite monoids, the class PV

stands for the variety of finite monoids generated by powersets of elements of V (indeed,
the powerset 2M of any monoid M can be naturally endowed itself with a monoid struc-
ture). Such varieties were deeply investigated; see, for example, [51]. The variety of finite
monoids J is simply the class associated with the variety of piecewise testable languages in
Eilenberg’s correspondence.

To sum up, solving membership for level two of the Straubing-Thérien and dot-depth hierarchies
also yields a solution to several major open problems in three different domains: automata and
formal languages, logic and finite model theory, and finite semigroup theory.

Half Levels and Ordered Monoids. All of these attempts underlined that level 2 was difficult
to attack directly. This motivated the investigation of the half levels, introduced by Perrin and
Pin [58]. At first glance, they may seem to be just an additional refinement, but this is not the
case. First, half levels are arguably more fundamental than integer levels, since each integer level
can be reconstructed from the preceding half level by closure under Boolean operations. Also,
importantly, half levels are simpler to deal with, and understanding them is a first step toward
membership algorithms for integer levels. For instance, gathering enough information about level
3
2 is crucial in our approach to the solution of the membership problem at level 2.

The main issue with half levels is that they are not closed under complement. This is a problem
for generalizing Schützenberger’s methodology, which translates the semantic membership prob-
lem into a property of the syntactic monoid. The reason why the syntactic approach works for
“varieties” is that, for such a class C, either all or none of the languages recognized by a syntactic
monoid belong to C. This is precisely what fails for half levels, since a language is recognized by a
monoid if and only if its complement is recognized as well. In other words, the syntactic monoid
is not well suited to capture classes that are not closed under complement and, therefore, has to
be adapted if one wants to generalize Eilenberg’s Theorem.

Nonetheless, Arfi [8, 9] managed to show that levels 1
2 and 3

2 of the Straubing-Thérien hierarchy
have decidable membership and to describe the associated classes of languages. This is very easy
for level 1

2 . A downside of this approach for level 3
2 is that it relied on involved results of Hashiguchi

[34], thus hiding the core of the argument. Note also that Straubing’s transfer result did not apply
to half levels, since it relied on the correspondence between varieties of languages and varieties
of finite semigroups. This made it relevant to investigate level 3

2 in the dot-depth hierarchy as
well, a task successfully achieved by Glaßer and Schmitz [32, 33]. However, this combinatorial and
technical proof is not easily amenable to generalization.

This made it crucial to understand what could be saved from Schützenberger’s approach. In fact,
Arfi’s characterization for level 1

2 is explicitly stated as a property to be satisfied by the syntactic
monoid. This property is not an equation but rather is a closure property of the accepting set of the
language. This led Pin [61] to develop an Eilenberg-Schützenberger methodology for classes that
are not closed under complement. Pin’s idea was to equip monoids with a partial order relation
compatible with multiplication and to constrain accepting sets to be upward closed. This yields
an adapted notion of recognizability, for which the set of languages recognized by an ordered
syntactic monoid is no longer closed under complement but still carries enough structure and
information to recover the generic methodology [61], including equational descriptions of such
classes [73]. Cleaner decidability membership algorithms were subsequently re-obtained for level

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

Going Higher in First-Order Quantifier Alternation Hierarchies on Words 12:17

3
2 [15, 71, 76]. Instead of Hashiguchi’s black box result, the proofs in these papers rely on a simple
tool that we shall also use: the factorization forest Theorem of Simon [95]. Finally, Straubing’s
results connecting the Straubing-Thérien and the dot-depth hierarchies were also generalized to
this new setting [75], thus giving an alternate proof of the decidability of level 3

2 in the dot-depth
hierarchy.

Level 2 and Above. This article continues this research effort. As explained in the introduction,
a key ingredient in our approach is to consider the separation problem, which is more demanding
than membership. The core of our results is a solution to this problem for Σ2 (<), i.e., the level
3
2 in the Straubing-Thérien hierarchy (for which membership is already known to be decidable).
We are then able to obtain membership algorithms for both Σ3 (<) and BΣ2 (<) by building upon
this first separation algorithm. This highlights the fact that a solution for the separation problem
associated to some class carries information that can be exploited to tackle weaker problems (such
as membership) for more complicated classes. In particular, a good illustration of this is the fact
that our membership algorithm for Σ3 (<) follows from a generic connection between separation
and membership: for any integer i , a separation algorithm for Σi (<) yields a membership algorithm
for Σi+1 (<). On the other hand, our membership algorithm for BΣ2 (<) results from a specific and
detailed analysis of the separation algorithm for level Σ2 (<).

Finally, note that while we work with the order hierarchy (i.e., the Straubing-Thérien hierarchy)
in most sections, we come back to the enriched hierarchy (i.e., the dot-depth hierarchy) at the end
of the article. Using previously known transfer theorems, we are able to lift all results that we have
proved for levels in the order hierarchy to the same levels in the enriched hierarchy.

4 TOOLS

In this section, we recall the definitions of two well-known combinatorial tools used several times
in the article:

—The Ehrenfeucht-Fraïssé game variant corresponding to levels of the order hierarchy, which
are a means to capture their expressive power in terms of games. For more on Ehrenfeucht-
Fraïssé games, see [41, 49, 105].

—The definition of regular languages in terms of monoids. This definition makes it possible to
use convenient combinatorial results, in particular, Simon’s Factorization Forests Theorem,
which we also present in this section.

4.1 Logical Tools: Ehrenfeucht-Fraïssé Games

It is standard practice to classify first-order formulas according to their quantifier rank, i.e., the
length of the longest sequence of nested quantifiers in the formula. For example, the formula

∀x Pa (x) ⇒ ((∃y (y < x ∧ Pc (y)) ∧ (∃y∃z (x < y < z) ∧ Pb (y)))

has quantifier rank 3.
Note that the notion of quantifier rank is different from the notion of quantifier alternation.

In particular, one may verify that there is a finite number of nonequivalent first-order sen-
tences of any fixed rank, while there are infinitely many nonequivalent sentences of quantifier
alternation 0.

We use the quantifier rank to associate to our logics binary relations over the set A∗. We begin
with the logics Σi (<). Let k, i ∈ N and w,w ′ ∈ A∗. We write

w �k
i w ′

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

12:18 T. Place and M. Zeitoun

if every Σi (<) formula of quantifier rank k satisfied byw is also satisfied byw ′. Observe that since
a Πi (<) formula is the negation of a Σi (<) formula, we have that w �k

i w ′ if and only if every
Πi (<) formula of quantifier rank k satisfied by w ′ is also satisfied by w . Moreover, the following
facts are immediate from the definition.

Fact 4.1. For all k, i ∈ N , �k
i is a preorder.

Fact 4.2. For all k, i ∈ N , a language L ⊆ A∗ can be defined by a Σi (<) formula of rank k if and

only if L is saturated by �k
i , i.e., if and only if

L = {w | there exists w ′ ∈ L such that w ′ �k
i w }.

We now extend this definition to the logics BΣi (<). Let k, i ∈ N and w,w ′ ∈ A∗. We write
w �k

i w ′ ifw andw ′ satisfy the same BΣi (<) formulas of quantifier rank k . By definition, BΣi (<)
formulas are finite Boolean combinations of Σi (<) formulas. We thus obtain the following two
facts:

Fact 4.3. For all k, i ∈ N , �k
i is the equivalence relation induced by �k

i , i.e.,

w �k
i w ′ if and only if w �k

i w ′ and w ′ �k
i w .

Moreover, for all fixed k, i ∈ N , �k
i has finite index.

Fact 4.4. For all k, i ∈ N , a language L ⊆ A∗ can be defined by a BΣi (<) formula of rank k if and

only if L is a union of equivalence classes of �k
i , that is, if and only if

L = {w | there exists w ′ ∈ L such that w ′ �k
i w }.

We can now define Ehrenfeucht-Fraïssé games. A specific Ehrenfeucht-Fraïssé game can be
associated to every logic. Here, we define the game tailored to the logics Σi (<) in the quantifier
alternation hierarchy. This means that these games characterize the preorders �k

i (and, therefore,
by Fact 4.3, also the equivalence �k

i).

Ehrenfeucht-Fraïssé Games. Before giving the definition, a remark is in order. There are actually
two ways to define the class of Σi (<)-definable languages. First, one can consider all first-order
formulas and say that a formula is Σi (<) if it has at most i blocks of quantifiers once rewritten in
prenex normal form. However, one could also restrict the set of allowed formulas to only those
that are already in prenex form and have at most i blocks of quantifiers. While this does not change
the class of Σi (<)-definable languages as a whole, this changes the set of formulas of quantifier
rank k for a fixed k . Therefore, this changes the preorder �k

i . This means that there is a version of
the Ehrenfeucht-Fraïssé game for each definition. In this article, we use the version corresponding
to the definition that considers all first-order formulas.

Let i � 1. We define the game associated to Σi (<). The board of the game consists of two words
w,w ′ ∈ A∗ and there are two players, called Spoiler and Duplicator. Moreover, initially, there exists
a distinguished word among w,w ′ that we call the active word (this word may change as the play
progresses). The game is set to last a predefined number k of rounds. When the play starts, both
players have k pebbles. Finally, there is a parameter that gets updated during the game, a counter
c called the alternation counter. Initially, c is set to 0 and has to be bounded by i − 1.

At the start of each round j, Spoiler chooses a word, either w or w ′. Spoiler can always choose
the active word, in which case both c and the active word remain unchanged. However, Spoiler can
only choose the word that is not active when c < i − 1, in which case the active word is switched
and c is incremented by 1 (this means that the active word can be switched at most i − 1 times). If
Spoiler chooses w (resp., w ′), Spoiler puts a pebble on a position x j in w (resp., x ′j in w ′).

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

Going Higher in First-Order Quantifier Alternation Hierarchies on Words 12:19

Duplicator must answer by putting a pebble at a position x ′j in w ′ (resp., x j in w). Moreover,
Duplicator must ensure that all pebbles that have been placed up to this point satisfy the following
condition: for all �1, �2 � j, the labels at positions x

�1
,x ′

�1
are the same, and x�1 < x�2 if and only if

x ′
�1
< x ′

�2
.

Duplicator wins if Duplicator manages to play for all k rounds, and Spoiler wins as soon as
Duplicator is unable to play.

Lemma 4.5 (Game definition of �k
i (Ehrenfeucht-Fraïssé)). For all k, i ∈ N andw,w ′ ∈ A∗,

w �k
i w ′ if and only if Duplicator has a winning strategy for playing k rounds in the Σi (<) game

played over w,w ′ with w as the initial active word.

Note that we will often use Lemma 4.5 implicitly and alternate between the original and the
game definition of �k

i . We now present a few classical lemmas on Ehrenfeucht-Fraïssé games that
we reuse several times in our proofs. We begin with a lemma stating that �k

i is a precongruence,
i.e., that it is compatible with the concatenation product.

Lemma 4.6 (Precongruence Lemma). Let i ∈ N and let w1,w
′
1,w2,w

′
2 ∈ A∗. Then,

(w1 �k
i w ′1 and w2 �k

i w ′2) ⇒ w1w2 �k
i w ′1w

′
2.

Proof. By Lemma 4.5, Duplicator has winning strategies in the Σi (<) games over w1,w
′
1 and

w2,w
′
2, with w1,w2 as initial active words, respectively. These strategies can be easily combined

into a strategy for the Σi (<) game over w1w2 and w ′1w
′
2, with w1w2 as initial active word. We

conclude that w1w2 �k
i w ′1w

′
2. �

The second lemma is a well-known property of full first-order logic, which implies that, unlike
monadic second-order logic, first-order logic cannot express modulo counting. This property is
called aperiodicity.

Lemma 4.7 (Aperiodicity Lemma). Let k,k1,k2 ∈ N be such that k1,k2 � 2k − 1. Let v ∈ A∗.
Then,

for all i ∈ N, vk1 �k
i vk2 .

Proof. This is well known for full first-order logic and can be verified by induction on k (see
[105, pp. 44–46] for details). �

We finish with another classical property, which we call the Σi -property. Contrary to the pre-
congruence or aperiodicity properties, the Σi -property is specific to Σi (<). It will be central in the
proofs.

Lemma 4.8 (Σi -property Lemma). Let i ∈ N , and let k, �, r , �′, r ′ ∈ N be such that �, r , �′, r ′ � 2k

and let u,v ∈ A∗ such that v �k
i u. Then, we have: that

u�ur �k
i+1 u

�′vur ′ .

Proof. Let w = u�ur and w ′ = u�′vur ′ . We prove that w �k
i+1 w

′ using an Ehrenfeucht-Fraïssé
argument: we prove that Duplicator has a winning strategy for the game in k rounds for Σi+1 (<)
played onw,w ′ withw as the initial active word. The proof goes by induction on k . We distinguish
two cases depending on the value, 0 or 1, of the alternation counter c after Spoiler has played the
first round.

Case 1: c = 1. In this case, by definition of the game, it suffices to prove thatw ′ �k
i w . From our

hypothesis, we already know thatv �k
i u. Moreover, it follows from Lemma 4.7 thatu�′ �k

i u� and
ur ′ �k

i ur−1. It then follows from Lemma 4.6 that w ′ �k
i w .

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

12:20 T. Place and M. Zeitoun

Case 2: c = 0. By definition, this means that Spoiler has played on some position x inw . There-
fore, x is inside a copy of the word u. Since w contains at least 2k+1 copies of u, by symmetry, we
can assume that there are at least 2k copies of u to the right of x . We now define a position x ′ in-
sidew ′ that will serve as Duplicator’s answer. We choose x ′ so that it belongs to a copy of u inside
w ′ and is at the same relative position inside this copy, as x is in its own copy of u. Therefore, to
fully define x ′, it only remains to define the copy of u in which we choose x ′. Let n be the number
of copies of u to the left of x in w , i.e., x belongs to the (n + 1)th copy of u starting from the left
of w . If n < 2k−1 − 1, then x ′ is chosen inside the (n + 1)th copy of u starting from the left of w ′.
Otherwise, x ′ is chosen inside the 2k−1th copy of u starting from the left ofw ′. Observe that these
copies always exist and occur before the factor v , since �′ � 2k .

Letw = wpuwq andw ′ = w ′puw
′
q , where the two distinguished u factors are the copies contain-

ing positions x ,x ′. By definition of the game, it suffices to prove thatwp �k−1
i+1 w ′p andwq �k−1

i+1 w ′q
to conclude that Duplicator can play for the remaining k − 1 rounds. If n < 2k−1 − 1, then, by
definition, wp = w

′
p ; therefore, it is immediate that wp �k−1

i+1 w ′p . Otherwise, both wp and w ′p are

concatenations of at least 2k−1 − 1 copies of u. Therefore, wp �k−1
i+1 w ′p follows Lemma 4.7. Finally,

observe that by definition,wq andw ′q are of the formwq = u
�1ur andw ′q = u

�′1vur ′ for some �1 and

�′1 such that �1 + r � 2k (by the assumption made at the beginning of Case 2) and �′1, r
′ � 2k−1 (by

the choice made by Duplicator and hypothesis on r ′). Therefore, it is immediate by induction on
k that wq �k−1

i+1 w ′q . �

4.2 Algebraic Tools: Monoids and Simon’s Factorization Forests Theorem

A semigroup is a set S equipped with an associative multiplication (s, t) �→ st . A monoid M is a
semigroup in which there exists a neutral element denoted 1M . Observe that A∗ is a monoid with
concatenation as the multiplication and ε as the neutral element.

An element e of a semigroup is idempotent if ee = e . Given any finite semigroup S , it is well
known that there is a number ω (S), denoted by ω when S is understood from the context, such
that sω is an idempotent for each element s of S : sω = sωsω .

Monoids are a standard tool to recognize regular languages. Let L be a language and M be a
monoid. We say that L is recognized by M if there exists a monoid morphism α : A∗ → M and an
accepting set F ⊆ M such that L = α−1 (F). Kleene’s theorem states that a language is regular if and
only if it can be recognized by a finite monoid.

The usual approach to characterizing a class of regular languages is to abstract it as a class of
monoids, each recognizing only languages in the class and such that, conversely, any language is
recognized by one of these monoids. For such an approach to work, the class of languages has to
fulfill some properties. In particular, since any monoid recognizing a language also recognizes its
complement, this approach makes sense only when the class of languages is closed under comple-
ment (among other operations).

In this article, however, we investigate classes of languages, such as Σi (<), that are not closed
under complement. For such classes, one needs to use ordered monoids as recognizing structures.
An ordered monoid is a monoid endowed with a partial order �, which is compatible with multi-
plication: s � t and s ′ � t ′ imply ss ′ � tt ′.

We say that L is recognized by an ordered monoid M if there exist a monoid morphism α : A∗ →
M and an upward closed accepting set F ⊆ M such that L = α−1 (F). One also says that α recognizes
L. The condition for F of being upward closed means that if s ∈ F and s � t , then also t ∈ F . Note
that ifα recognizes L, althoughA∗ \ L = α−1 (M \ F), the setM \ F is not necessarily upward closed;
hence, A∗ \ L is not necessarily recognized by α . Note that if a language L is recognized by an
ordered monoid (M,�), then the complement of L is recognized by the ordered monoid (M,�).

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

Going Higher in First-Order Quantifier Alternation Hierarchies on Words 12:21

Syntactic Ordered Monoid of a Language. Given a regular language L, one may compute a
canonical finite ordered monoid that recognizes it as follows. The syntactic preorder �L of a lan-
guage L is defined on pairs of words in A∗ by w �L w ′ if, for all u,v ∈ A∗, uwv ∈ L ⇒ uw ′v ∈ L.
Similarly, we define≡L , the syntactic equivalence of L, as follows:w ≡L w ′ ifw �L w ′ andw ′ �L w .
One can verify that �L and ≡L are compatible with multiplication. Therefore, the quotient ML of
A∗ by ≡L is a monoid that we call the syntactic monoid of L. The associated morphism is called
the syntactic morphism of L. Moreover, the partial order on ML induced by the preorder �L makes
ML an ordered monoid. It is called the syntactic ordered monoid of L (the notion was first intro-
duced by Schützenberger [90]). One can check that the syntactic ordered monoid can be effectively
computed from L. See [61] for details.

Morphisms and Separation. When working on separation, we consider as input two regular
languages L0,L1. It will be convenient to have a single monoid recognizing both of them rather
than having to deal with two objects. This can always be assumed without loss of generality, as
such a monoid can easily be constructed as follows. Let M0,M1 be monoids recognizing L0,L1

together with the morphisms α0,α1, respectively. Then, M0 ×M1 equipped with the component-
wise multiplication (s0, s1) (t0, t1) = (s0t0, s1t1) is a monoid that recognizes both L0 and L1 with the
morphism α : w �→ (α0 (w),α1 (w)).

Alphabet-Compatible Morphisms. In our Σ2-separation algorithm, it will be convenient to
work with morphisms that satisfy an additional property. A morphism α : A∗ → M is said to be
alphabet compatible if, for allu,v ∈ A∗, α (u) = α (v) implies that alph(u) = alph(v). Note that when
α is alphabet compatible, alph(s) is well defined for all s ∈ M as the unique subset B ofA such that,
for all u ∈ α−1 (s), we have that alph(u) = B (if s has no preimage, then we simply let alph(s) = ∅).

To any morphism α : A∗ → M into a finite monoid M , we associate a morphism β , called the
alphabet completion of α , that recognizes all languages recognized by α and is alphabet compatible.
If α is already alphabet compatible, then β = α . Otherwise, observe that 2A is a monoid with union
as the multiplication. Hence, we can define β as the morphism:

β : A∗ → M × 2A

w �→ (α (w), alph(w)).

It is straightforward to verify that any language recognized by a morphism into a finite (ordered)
monoid is also recognized by its alphabet completion.

Simon’s Factorization Forests Theorem. In several of our proofs, we make use of a combina-
torial result on monoids: Simon’s Factorization Forests Theorem [95]. We state this theorem here.
For more details on factorization forests and a proof of the theorem, see [15, 24, 26, 47].

Let M be a finite monoid and α : A∗ → M a morphism. An α-factorization forest is an ordered
unranked tree whose nodes are labeled by words inA∗ and such that for any inner node x with label
w , if x1, . . . ,xn are its children listed from left to right with labels w1, . . . ,wn , then w = w1 · · ·wn .
Moreover, any node in the forest must be of one of the three following kinds:

— leaf nodes, which are labeled by either a single letter or the empty word;
—binary nodes, which have exactly two children; or
— idempotent nodes, which have an arbitrary number of children whose labelsw1, . . . ,wn sat-

isfy α (w1) = · · · = α (wn) = e for some idempotent e ∈ M .

If w ∈ A∗, an α-factorization forest for w is an α-factorization forest whose root is labeled by w .

Theorem 4.9 ([47, 95]). For all wordsw ∈ A∗, there exists an α-factorization forest forw of height
at most 3|M | − 1.

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

12:22 T. Place and M. Zeitoun

5 Σi -CHAINS AND Σi -JUNCTURES

In this section, we introduce our last tool, the set of Σi -chains. It is specific to the paper and is
central to all of our results. Such a set can be associated to any morphism α : A∗ → M , and the
notion is designed with the separation problem for Σi and BΣi in mind: both problems can be
reduced to the computation of this set.

In this section, we only give the definition of Σi -chains. The link with separation and member-
ship is discussed in Section 6. We split the presentation into two parts. In the first part, we define
Σi -chains. In the second part, we define a refined notion: Σi -junctures. This second notion carries
more information than standard Σi -chains and is actually more than we need to make the link
with separation. However, we will have to work with this stronger notion in order to be able to
compute Σ2-chains in Section 7.

5.1 Σi -Chains

Chains. Let M be a finite monoid. A chain for M is a word over the alphabet M , i.e., an element of
M∗. A remark about notation is in order here. A word is usually denoted as the concatenation of
its letters. Since M is a monoid, this would be ambiguous here since st could either mean a word
with 2 letters s and t , or the product of s and t in M . To avoid confusion, we will write (s1, . . . , sn)
a chain for M of length n. Note that when M is clear from the context, we will simply speak of
chains, leaving M implicit.

For all n ∈ N , observe that Mn , the set of chains of length n, is a monoid when equipped with
the component-jwise multiplication. In this article, we denote chains by s̄, t̄ , . . . and sets of chains
by S,T , As explained above, given a monoid M , we are not interested in all chains for M but
rather only in those that carry information with respect to the logic Σi (<) and some morphism
α : A∗ → M , which we call the Σi -chains for α .

Σi -Chains. Fix i ∈ N , we begin by defining a set of Σi [k]-chains for each fixed quantifier rank
k . The set of Σi -chains will then be the intersection of all sets of Σi [k]-chains.

When i = 0, we let by convention Ck
i [α] = M∗ for all k . Otherwise, when i � 1, we let

(s1, . . . , sn) ∈ Ck
i [α] if there exist w1, . . . ,wn ∈ A∗ with

{
w1 �k

i · · · �k
i wn and

∀j, α (w j) = sj .

We can now define the set of Σi -chains for α as the set

Ci [α] =
⋂

k

Ck
i [α].

Remark. Observe that the set of Σi [k]-chains of length 2 can be viewed as an abstraction of �k
i

over the set M with respect to α . An important observation is that this abstraction is no longer a
preorder: in general, this is a nontransitive relation. This is because (r , s) and (s, t) are Σi [k]-chains
of length 2 if and only if there are words u,v mapped to r , s and v ′,w mapped to s, t , respectively,
such that u �k

i v and v ′ �k
i w . However, v and v ′ may be completely unrelated. In particular, this

means that the whole set of Σi [k]-chains carries more information than the set of Σi [k]-chains of
length 2 only.

It will often be convenient to speak only of Σi -chains of a given fixed length. For any fixed
n ∈ N , we let Ck

i,n[α] be the set of Σi [k]-chains of length n for α , i.e., Ck
i,n[α] = Ck

i [α] ∩Mn . We
define Ci,n[α] similarly. We have the following lemma.

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

Going Higher in First-Order Quantifier Alternation Hierarchies on Words 12:23

Fig. 2. Closure properties of Σi -chains (example of Ci [α]).

Lemma 5.1. For every i,k,n ∈ N ,

Ci [α] ⊆ Ck+1
i [α] ⊆ Ck

i [α].

Ci,n[α] ⊆ Ck+1
i,n [α] ⊆ Ck

i,n[α].

Moreover, for all i,n ∈ N , there exists κi,n ∈ N such that, for every k � κi,n ,

Ci,n[α] = Cκi,n

i,n [α] = Ck
i,n[α].

Proof. The first property is immediate from the definitions. The existence of κi,n follows from
the first property and the fact that, for all fixed n, Mn is a finite set. �

Note that, for a given k , the set Ck
i,n[α] can be computed by brute force by calculating all �k

i -
classes inA∗ (which can be done by enumerating all of the finitely many nonequivalent formulas of
rank k in Σi (<)). Therefore, computing (an upper bound on) κi,n immediately yields computability
of Ci,n[α]. However, while the existence of κi,n is easy to prove, its computation is nontrivial. It
may happen that Ck

i,n[α] = Ck+1
i,n [α], but Ck+1

i,n [α] � Ck+2
i,n [α]. We will obtain a bound on κi,n as a

by-product of our algorithm for computing Σi -chains presented in Section 7.

Closure Properties. We finish the definitions by stating simple closure properties of the sets
Ck

i [α] and Ci [α]: closure under subwords, closure under stutter, and closure under product. These
three properties are illustrated in an example in Figure 2, where chains are represented pictorially:
we draw the chain (s1, s2, . . . , sn) as

Observe first that since the relation �k
i is transitive for all i,k , the sets Ck

i [α] and Ci [α] are
closed under subwords.

Fact 5.2. Let i,k ∈ N and let X = Ci [α] or X = Ck
i [α]. Then, X is closed under subwords. That

is, for all (s1, . . . , sn) ∈ X and all j � n, we have that (s1, . . . , sj−1, sj+1, . . . , sn) ∈ X.

An interesting consequence of Fact 5.2 is that, by Higman’s lemma, Ci [α] and Ck
i [α] are both

regular languages over the alphabet M . However, this observation is essentially useless in our
argument, as Higman’s lemma provides no way for actually computing a recognizing device for
the language Ci [α].

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

12:24 T. Place and M. Zeitoun

Fig. 3. Juncture
(
s0,

{
(r1, r2), (s1), (t1, t2, t3)

})
.

Another immediate property of Ci [α] and Ck
i [α] is closure under duplication of letters (also

called stutter).

Fact 5.3. Let i,k ∈ N and let X = Ci [α] or X = Ck
i [α]. Then, X is closed under stutter. That is,

for all (s1, . . . , sn) ∈ X and all j � n, we have that (s1, . . . , sj , sj , . . . , sn) ∈ X.

Finally, since �k
i is compatible with the concatenation operation for every k (see Lemma 4.6,

the precongruence Lemma), it is immediate that Σi -chains of length n are closed under product
(i.e., component-wise multiplication).

Fact 5.4. For all i,k,n ∈ N , both Ci,n[α] and Ck
i,n[α] are submonoids of Mn .

This ends the definition of Σi -chains. This leaves two issues.

—First, we need to explain the link between the computation of Σi -chains and our decision
problems. We establish this link in Section 6. For example, we show that the separation
problem for Σi (<) reduces to the computation of all Σi -chains of length 2.

—The second issue is finding an algorithm that, given a morphism α , computes the set of
associated Σi -chains. We will present such an algorithm for Σ2-chains in Section 7. However,
this algorithm has to work with a refined notion called “Σi -junctures.” We now define this
notion.

5.2 Σi -Junctures

Our algorithm computes more than we actually need to solve separation. The crucial information
is to determine when several Σi -chains with the same first element can be “synchronized.” To
explain what we mean, consider two Σi -chains (s, t1) and (s, t2) of length 2. By definition, for all
k , there exist words w,w1,w

′,w2 whose images under α are s, t1, s, t2, respectively, and such that
w �k

i w1 and w ′ �k
i w2. In some cases (but not all), it will be possible to choose w = w ′ for all k .

The goal of the notion of Σi -junctures is to record the cases in which this is true. The reason why
we need to capture this extra information is that (1) it can be computed inductively, which is not
clear for Σi -chains, and (2) it contains more information than Σi -chains do.

We first define the generic notion of juncture, and then a specific notion, dedicated to our prob-
lem, called Σi -juncture.

Junctures. Let M be a finite monoid. A juncture for M is a pair (s,S) where s ∈ M and S ⊆ M∗ is
a set of chains. If (s,S) is a juncture and t̄ = (t1, . . . , tn) is a chain, we write t̄ ∈ (s,S) if

t1 = s and (t2, . . . , tn) ∈ S.
Thus, a juncture (s,S) abstracts a set of chains all having the same first element, namely, s . Al-
though we will not use it, it is convenient to view a juncture as an M-labeled tree, where only the
root is branching. Figure 3 pictures the juncture (s0, {(r1, r2), (s1), (t1, t2, t3)}), which abstracts the
set of chains {(s0, r1, r2), (s0, s1), (s0, t1, t2, t3)} “synchronized” at s0.

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

Going Higher in First-Order Quantifier Alternation Hierarchies on Words 12:25

Fig. 4. The juncture
{
s0,

{
(r1, r2, r3), (s1, s2, s3), (t1, t2, t3)

}}
∈ M × 2M3

.

If (s,S) and (t ,T) are junctures, we write (s,S) ⊆ (t ,T) when s = t and S ⊆ T , i.e., when
{s̄ | s̄ ∈ (s,S)} ⊆ {t̄ | t̄ ∈ (t ,T)}. In other words, this means that the tree representing (s,S) is
obtained from the tree representing (t ,T) by simply removing some branches from the root.

Note that a chain is, in particular, a juncture. For this reason, we use the same notation for sets
of chains and sets of junctures: R,S,T , If T is a set of junctures, we define ↓T , the downset
of T , as the set

↓T =
{
(r ,R) | ∃(s,S) ∈ T , (r ,R) ⊆ (s,S)

}
.

In other words, ↓T is the set of junctures represented by trees obtained by possibly removing
some branches to trees in T .

Finally, for any n � 1, a juncture (s,S) is said to have length n whenS ⊆ Mn−1, i.e., when chains
s̄ ∈ (s,S) all have the same length n. In this article, we shall use only these junctures, such as the
one pictured in Figure 4.

Observe that, for all n � 1, the set M × 2Mn−1
of junctures of length n is a monoid for the fol-

lowing operation:

(s,S) · (t ,T) = (s · t , S · T) =
(
st , {s̄t̄ ∈ Mn−1 | s̄ ∈ S, t̄ ∈ T }

)
.

As for chains, we are not interested in all junctures but rather only in those that carry information
with respect to Σi (<) for some i . We call these particular junctures Σi -junctures.

Σi -Junctures. To define Σi -junctures, we mimic the definition of Σi -chains. Fix i � 1. We begin
by defining a set of Σi [k]-junctures for each fixed quantifier rank k . For all k ∈ N , we define the
set J k

i [α] of Σi [k]-junctures for α . Let (t ,T) be a juncture. We let (t ,T) ∈ J k
i [α] if

—all chains in T have the same length, say, n − 1, and
—there exists w ∈ A∗ such that α (w) = t , and for all chains (t2, . . . , tn) ∈ T , there exist
w2, . . . ,wn ∈ A∗ satisfying

w �k
i w2 �k

i · · · �k
i wn , (1)

and for all j = 2, . . . ,n,

α (w j) = tj . (2)

We call such a word w a k-witness of the Σi [k]-juncture. With the tree representation of Σi [k]-
junctures, as in Figure 4, this means that we can actually label each node by two values: one in the
finite monoid M (the same value as in Figure 4), and one in A∗, such that

—for every node whose labeling in M is s and whose labeling inA∗ isu, we have that α (u) = s ,
and

—for every edge from a node labeled u ∈ A∗ to one of its children labeled v ∈ A∗, we have
that u �k

i v .

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

12:26 T. Place and M. Zeitoun

Thus, a k-witness of the Σi [k]-juncture is a possible word-labeling of the root.
We finally define Ji [α], the set of Σi -junctures for α as the set

Ji [α] =
⋂

k

J k
i [α].

An immediate observation, already mentioned above, is that Σi -junctures carry at least as much
information as Σi -chains, as stated in the following fact.

Fact 5.5. Let i � 1 and let (s1, . . . , sn) be a chain. Then,

(s1, . . . , sn) ∈ Ci [α] if and only if
(
s1,

{
(s2, . . . , sn)

})
∈ Ji [α].

Recall that we will restrict ourselves to junctures of a fixed length n � 1. We denote by J k
i,n[α]

and Ji,n[α] the corresponding restrictions:

J k
i,n[α] = J k

i [α] ∩ (M × 2Mn−1
),

Ji,n[α] = Ji [α] ∩ (M × 2Mn−1
).

For example, the Σi -juncture of Figure 4 belongs to Ji,4[α]. Observe that Lemma 5.1 can be gen-
eralized to Σi -junctures, as stated in the following lemma.

Lemma 5.6. For every i � 1 and k,n ∈ N , we have that

Ji [α] ⊆ J k+1
i [α] ⊆ J k

i [α].

Ji,n[α] ⊆ J k+1
i,n [α] ⊆ J k

i,n[α].

Moreover, for all i,n ∈ N , there exists �i,n ∈ N such that for every k � �i,n ,

Ji,n[α] = J �i,n

i,n [α] = J k
i,n[α].

Note that it is immediate from the definitions that the bound �i,n in Lemma 5.6 is also an upper
bound onκi,n in Lemma 5.1. We will obtain an upper bound on �2,n when proving the completeness
of our algorithm computing Σ2-junctures in Section 7.

Closure Properties. We finish the section by generalizing the closure properties of Σi -chains to
Σi -junctures. An illustration of all four closure properties can be found in Figure 5.

The first property we state is closure under subsets.

Fact 5.7. Let i,k � 1 and let X = Ji [α] or X = J k
i [α]. Then, X is closed under the following

operation: for all (r ,R) ∈ X and all R′ ⊆ R, we have that (r ,R′) ∈ X. In other words, we have that
↓X = X.

We now generalize closure under subwords to Σi -junctures.

Fact 5.8. Let i,k � 1 and let X = Ji [α] or X = J k
i [α]. Then, X is closed under the following

operation: let (r ,R) ∈ X and let R′ be a set of chains of the same length that are all subwords of
chains in R. Then, (r ,R′) ∈ X.

We next generalize closure under stutter to Σi -junctures.

Fact 5.9. Let i,k � 1 and let X = Ji [α] or X = J k
i [α]. Then, X is closed under the following

operation: let (r ,R) ∈ X and let R′ be a set of chains of the same length, each of the form r j r̄ ′, where
j � 0 and r̄ ′ is a stutter of some chain in R. Then, (r ,R′) ∈ X.

It remains to generalize closure under product.

Fact 5.10. For all k,n ∈ N , Ji,n[α] and J k
i,n[α] are submonoids of M × 2Mn−1

.

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

Going Higher in First-Order Quantifier Alternation Hierarchies on Words 12:27

Fig. 5. Closure properties of Σi -junctures (example on Ji [α]).

6 GENERIC RESULTS: FROM Σi -CHAINS TO SEPARATION AND MEMBERSHIP

In this section, we make explicit the connection between Σi -chains and our two decision prob-
lems: membership and separation. For all levels in the hierarchy, we prove that both problems
can be reduced to the computation of specific information about the set of Σi -chains associated
to a morphism recognizing both input languages. Of course, the amount of required information
depends on whether we consider Σi (<) or BΣi (<) and on whether we consider membership or
separation. Note that in order to be stated and proved, all of these theorems require only Σi -chains:
Σi -junctures are not needed. The section is organized into three parts.

—In the first one, we explain the most immediate link: separation for Σi (<) reduces to com-
puting all Σi -chains of length 2.

—In the second part, we prove that deciding membership for Σi (<) requires less information:
only the Σi−1-chains of length 2 are needed.

—In the last part, we prove reductions for BΣi (<).

6.1 The Separation Problem for Σi (<)

Theorem 6.1. Let L1,L2 be regular languages that are both recognized by a morphism α : A∗ → M
into a finite monoid M and let F1, F2 ⊆ M be the corresponding accepting sets. Let i ∈ N . Then, the
following properties hold:

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

12:28 T. Place and M. Zeitoun

(1) L1 is Σi (<)-separable from L2 if and only if, for all s1, s2 ∈ F1, F2, we have that (s1, s2) �
Ci [α].

(2) L1 is Πi (<)-separable from L2 if and only if, for all s1, s2 ∈ F1, F2, we have that (s2, s1) �
Ci [α].

Theorem 6.1 reduces Σi (<)-separation to finding an algorithm that, given a morphism α , com-
putes all of the associated Σi -chains of length 2. This computation is simple when i = 1, and actu-
ally already known [80]. In Section 7, we present an algorithm for the case i = 2. In fact, we do not
compute Σi -chains directly: our algorithm computes the more general set of Σi -junctures, Ji [α],
and Σi -chains are then recovered from this set using Fact 5.5. This makes Theorem 6.1 effective
for i � 2. The problem has also been solved recently for i � 3, although the proof is much more
involved [78]. We finish this section with the proof of Theorem 6.1.

Proof of Theorem 6.1. We prove Item (1). Item (2) is obtained by symmetry. Assume first
that L1 is Σi (<)-separable from L2 and let K be a separator. By contradiction, suppose that there
exist s1, s2 ∈ F1, F2 such that (s1, s2) ∈ Ci [α]. By definition, we know that K can be defined by a
Σi (<) formula. Let k be its quantifier rank. By hypothesis, we have that (s1, s2) ∈ Ck

i [α] so that
there exist w1,w2 mapped by α to s1, s2, respectively, such that w1 �k

i w2. In particular, we obtain
w1 ∈ L1 ⊆ K andw2 ∈ L2. Moreover, by choice of k and sincew1 �k

i w2, we also have thatw2 ∈ K .
This is a contradiction since K is by hypothesis a separator; thus, it cannot intersect L2.

It remains to prove the other direction. Assume that, for all s1, s2 ∈ F1, F2, we have that (s1, s2) �
Ci [α] and let � = κi,2 be as defined in Lemma 5.1, that is, such that Ci,2[α] = Cκi,2

i,2 [α]. We claim
that the language

K = {w | ∃w1 ∈ L1 such that w1 ��
i w },

which is Σi (<)-definable by Fact 4.2, is a separator. Indeed, K clearly contains L1. If K intersects
L2, then, by definition of �, there would exist s1, s2 ∈ F1, F2 such that (s1, s2) ∈ Ci [α], which is false
by hypothesis. �

Remark. Note that the above proof of Theorem 6.1 shows that if two languages recognized by
α are Σi (<)-separable, then they are separable by a Σi (<) formula of rank at most κi,2. In other
words, the rank k at which the sets Ck

i,2[α] stabilize is an upper bound for the rank of possible
separators of languages recognized by α .

6.2 The Membership Problem for Σi (<)

We now prove that solving membership for Σi (<) requires less information than separation: only
the Σi−1-chains of length 2 need to be computed.

Theorem 6.2. Let i � 1 and let L be a regular language and α : A∗ → M be its syntactic morphism.
For all i � 1, L is definable in Σi (<) if and only if M satisfies the following property:

sω � sωtsω for all (t , s) ∈ Ci−1[α]. (3)

It follows from Theorem 6.2 that it suffices to compute the Σi−1-chains of length 2 in order to
decide whether a language is definable in Σi (<). Also, observe that when i = 1, by definition we
have that (t , 1M) ∈ C0[α] for all t ∈ M . Therefore, Equation (3) implies that 1M � t for all t ∈ M .
Conversely, multiplying this inequality on the left and on the right by sω yields back (3) for all
s, t ∈ C0[α]. Consequently, Equation (3) may be rephrased as 1M � t for all t ∈ M , which is the
already known equation for Σ1 (<) [76]. Similarly, when i = 2, (3) can be rephrased as sω � sωtsω

whenever t is a scattered subword of s (meaning that t is the image under α of a word a1 · · ·an

and s the image of a word of the formv0a1v1 · · ·vn−1anvn , where the ai s are letters and thevi s are
possibly empty words). Again, this is the previously known equation for Σ2 (<) [15, 76].

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

Going Higher in First-Order Quantifier Alternation Hierarchies on Words 12:29

Observe that by definition of Πi (<) and Δi (<), we get characterizations for these classes as im-
mediate corollaries: recall that a language is Πi (<)-definable if its complement is Σi (<)-definable,
and that it is Δi (<)-definable if it is both Σi (<)-definable and Πi (<)-definable.

Corollary 6.3. Let L be a regular language and let α : A∗ → M be its syntactic morphism. For all
i � 1, the following properties hold:

—L is definable in Πi (<) if and only if M satisfies sω � sωtsω for all (t , s) ∈ Ci−1[α].
—L is definable in Δi (<) if and only if M satisfies sω = sωtsω for all (t , s) ∈ Ci−1[α].

It now remains to prove Theorem 6.2. For the proof, we assume that i � 2 (a proof for the case
i = 1 can be found in [76]). We begin with the simpler “only if” direction, which is an application
of Lemma 4.8 and is stated in the next proposition.

Proposition 6.4. Let L be a Σi (<)-definable language and let α : A∗ → M be its syntactic mor-
phism. Then, α satisfies (3).

Proof. By hypothesis, L is defined by some Σi (<) formula φ. Let k be its quantifier rank. Let
(t , s) ∈ Ci−1[α]. We need to prove that sω � sωtsω . Since (t , s) ∈ Ci−1[α], by definition, there ex-
ist v,u such that α (v) = t , α (u) = s and v �k

i−1 u. By the Σi -Property Lemma (Lemma 4.8), we
immediately obtain

u2k ωu2k ω �k
i u2k ωvu2k ω .

It follows from the Precongruence Lemma (Lemma 4.6) that, for any w1,w2 ∈ A∗, we have that

w1u
2k ωu2k ωw2 �k

i w1u
2k ωvu2k ωw2.

By choice ofk and definition of �k
i , this means thatw1u

2k ωw2 ∈ L implies thatw1u
2k ωvu2k ωw2 ∈ L.

By definition of the syntactic preorder, this means that sω � sωtsω . �

It now remains to prove the harder “if” direction of Theorem 6.2. We use induction to construct
a formula for the language L. We rely on Simon’s Factorization Forest Theorem for the induction,
which we state in the following proposition.

Proposition 6.5. Let i � 2 and let α : A∗ → M be a morphism into a finite ordered monoid M
that satisfies (3). Then for all h � 1 and all s ∈ M , there exists a Σi (<) formula φ such that for all
w ∈ A∗:

—if w |= φ then s � α (w).
—if α (w) = s and w admits an α-factorization forest of height at most h then w |= φ.

Assume for now that Proposition 6.5 holds and let L be a regular language whose syntactic
morphism α : A∗ → M satisfies Equation (3). Given h = 3|M | − 1, for all s ∈ M , we denote by
φs the Σi formula associated to s by Proposition 6.5. Since, by Theorem 4.9, all words admit an
α-factorization forest of height at most 3|M | − 1, we have that

(1) if w |= φs , then s � α (w).
(2) if α (w) = s , then w |= φs .

Let F be the accepting set of L and define φ =
∨

s ∈F φs . By Item (2) above, we have that L ⊆ {w |
w |= φ}. Moreover, by definition of recognizability by an ordered monoid, the set F is upward
closed, that is, if s ∈ F and s � t , then t ∈ F . Hence, Item (1) above implies that {w | w |= φ} ⊆ L.
We conclude that φ defines L. This finishes the proof of Theorem 6.2. It now remains to prove
Proposition 6.5.

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

12:30 T. Place and M. Zeitoun

Proof of Proposition 6.5. Let h � 1 and s ∈ M . We construct the formula by induction on h.
Assume first thath = 1. Note that the words having an α-factorization forest of height at most 1 are
either single letters or the empty word. Consider the language Ls = {w | |w | � 1 and α (w) = s}.
Since Ls is finite, it can be defined by a Σi (<) formula φ (since i � 2, for any word w , one can
easily define a Σ2 (<) formula whose only model is w). By definition, φ satisfies the conditions of
Proposition 6.5.

Assume now that h > 1. There are two cases depending on whether s is idempotent or not. We
treat the idempotent case (the other case is essentially a simpler version of this proof). Hence, we
assume that s is an idempotent, which we denote by e . We first construct φ and then prove that it
satisfies the conditions of the proposition. It is defined as the disjunction of several formulas that
we define first.

Using Induction. For all t ∈ M , one can use induction to construct a Σi (<) formulaψt such that,
for all w ∈ A∗,

—if w |= ψt , then t � α (w).
—if α (w) = t and w admits an α-factorization forest of height at most (h − 1), then w |= ψt .

By restricting quantifications, one can modify each of these formulas to construct two other for-
mulasψ �

t (x) andψ r
t (x), both having a single free variable x and such that

—w,x |= ψ �
t (x) if and only if the prefix u of w obtained by keeping only positions y < x sat-

isfiesψt .
—w,x |= ψ r

t (x) if and only if the suffix v of w obtained by keeping only positions y � x sat-
isfiesψt .

Note that these formulas do not have extra quantifiers so that they also belong to Σi (<).

Using Πi−1. Recall that by Lemma 5.1, there exists an integer κ such that, for all k � κ

Ck
i−1,2[α] = Ci−1,2[α]

Consider the language

K =
⋃

w ∈α−1 (e)

{u | u �κ
i−1 w }.

By choice of κ, for anyu ∈ K , we have that (α (u), e) ∈ Cκ
i−1,2[α] = Ci−1,2[α]. Since e = e2, one may

use Equation (3) to obtain that for all u ∈ K

e � eα (u)e . (4)

Moreover, by the dual version of Fact 4.2, K can be defined by a Πi−1 (<) formula Γ (Γ is Σi (<)). We
define Γ(x ,y) as the formula with two free variables x ,y such that w,x ,y |= Γ(x ,y) if and only if
x < y and the infix u obtained by keeping all positions z inw such that x � z < y satisfies Γ. Note
again that this formula can be chosen in Σi (<).

Definition of φ. Finally, we can define the desired formula. It is the disjunction of three subfor-
mulas. Intuitively, the first captures words having an α-factorization forest of height at most h − 1;
the second captures words having an α-factorization forest of height h and whose root is a binary
node; and the thirdcaptures words with an α-factorization forest of height h and whose root is an
idempotent node.

φ = ψe ∨ �
�
∨

t1t2=e

∃x ψ �
t1

(x) ∧ψ r
t2

(x)�� ∨
(
∃x∃y x < y ∧ψ �

e (x) ∧ Γ(x ,y) ∧ψ r
e (y)
)

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

Going Higher in First-Order Quantifier Alternation Hierarchies on Words 12:31

Note that, by definition, φ is a Σi (<) formula. We need to prove that it satisfies the conditions of
the proposition.

Choose some w ∈ A∗ and assume first that w |= φ. We need to prove that e � α (w).

—If w |= ψe , then this is by definition ofψe .
—If w |= ∃x ψ �

t1
(x) ∧ψ r

t2
(x) for t1t2 = e , then, by definition, w = w1w2 with t1 � α (w1) and

t2 � α (w2). It follows that e = t1t2 � α (w1w2) = α (w).
—Finally, if w |= ∃x∃y x < y ∧ψe (x) ∧ Γ(x ,y) ∧ψe (y), we obtain that w = w1uw2 with e �
α (w1), u ∈ K , and e � α (w2). By Equation (4), we know that e � eα (u)e � α (w1uw2) =
α (w), which terminates this direction.

Conversely, assume that α (w) = e and thatw admits an α-factorization forest of height at most
h. We have to prove that w satisfies φ. There are again three cases.

—First, if w has an α-factorization forest of height at most h − 1, then w |= ψe , so w |= φ.
—Second, if w admits an α-factorization forest of height h whose root is a binary node,

then w = w1w2 with w1,w2 admitting forests of height at most h − 1. Let t1 = α (w1) and
t2 = α (w2). Observe that t1t2 = α (w) = e . By the induction hypothesis and definition of the
formulasψt , we have that w1 |= ψt1 and w2 |= ψt2 ; hence, w |= ∃x ψ �

t1
(x) ∧ψ r

t2
(x). It follows

that w |= φ since t1t2 = e .
—Finally, if w admits an α-factorization forest of height h whose root is an idempotent node,

then w = w1uw2 with α (w1) = α (u) = α (w2) = e and w1,w2 admitting forests of height at
most h − 1. It follows that w1 |= ψe and w2 |= ψe . Moreover, since α (u) = e , it is immedi-
ate that u ∈ K ; hence, u |= Γ. We conclude that w |= ∃x∃y x < y ∧ψ �

e (x) ∧ Γ(x ,y) ∧ψ r
e (y),

whence w |= φ.

This concludes the proof of Proposition 6.5. �

6.3 Separation and Membership for BΣi (<)

In this last part, we prove that being able to compute more information about the set of Σi -chains
yields solutions to both separation and membership for BΣi (<). What is needed is a property
called alternation, which we define now.

Alternation. Let M be a finite monoid. We say that a chain (s1, . . . , sn) ∈ M∗ has alternation � if
there are exactly � indices i such that si � si+1. We say that a set of chainsS has bounded alternation
if there exists a bound � ∈ N such that all chains in S have alternation at most �.

Theorem 6.6. Let L1,L2 be regular languages, both recognized by the same morphism α : A∗ →
M into a finite monoid M and let F1, F2 ⊆ M be their respective accepting sets. Let i ∈ N . Then, L1

is BΣi (<)-separable from L2 if and only if, for all s1, s2 ∈ F1, F2, s1 � s2 and Ci [α] ∩ {s1, s2}∗ has
bounded alternation.

Theorem 6.6 reduces the separation problem for BΣi (<) to finding an algorithm that, given a
morphism α , computes all pairs (s1, s2) ∈ M2 such that Ci [α] ∩ {s1, s2}∗ has bounded alternation.
The problem has been solved when i = 1 in [80]. Above i = 1, the problem remains open, even
when i = 2. Note that, due to closure of Ci [α] under subwords, Ci [α] ∩ {s1, s2}∗ has unbounded
alternation if and only if it contains the language of all chains (s1, s2, s1, s2, . . . , s1, s2), which we
denote by (s1, s2)∗.

Before proving Theorem 6.6, we establish a simple corollary stating that solving membership for
BΣi (<) requires slightly less information. This statement will allow us to solve membership for
BΣ2 (<) in Section 8.

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

12:32 T. Place and M. Zeitoun

Corollary 6.7. Let L be a regular language and let α : A∗ → M be its syntactic morphism. Then,
L is definable in BΣi (<) if and only if Ci [α] has bounded alternation.

Proof. Recall that L is BΣi (<)-definable if and only if L is BΣi (<)-separable from its comple-
ment. We prove both directions by contrapositive. Let F = α (L) be the accepting set of L.

Assume first that L is not definable in BΣi (<). By Theorem 6.6, this means that there exist
s, t ∈ M such that s ∈ F and t � F and Ci [α] ∩ {s, t }∗ has unbounded alternation. Hence, Ci [α] has
unbounded alternation.

For the converse, we use the fact that α is the syntactic morphism of L. Assume that Ci [α] has
unbounded alternation. By definition and since Ci [α] is closed under subwords, this means that
there exist s, t ∈ M such that Ci [α] ∩ {s, t }∗ has unbounded alternation. Since α is the syntactic
morphism of L, there exist r , r ′ ∈ M such that either rsr ′ ∈ F and rtr ′ � F or rtr ′ ∈ F and rsr ′ � F .
In both cases, Ci [α] ∩ {rsr ′, rtr ′}∗ has unbounded alternation, since Σi -chains are closed under
product. By Theorem 6.6, it follows that L is not BΣi (<)-separable from its complement, whence
it is not definable in BΣi (<). �

It remains to prove Theorem 6.6, which we do in the rest of this section.

Proof of Theorem 6.6. There are two directions, both proved by contrapositive.
Assume first that L1 is not BΣi (<)-separable from L2. We have to find s1, s2 ∈ F1, F2 such that

s1 = s2 or such that Ci [α] ∩ {s1, s2}∗ has unbounded alternation. Using Fact 4.4, for all k , one can
findw1,k ∈ L1 andw2,k ∈ L2 such thatw1,k �k

i w2,k . Since M is finite, we may assume without loss
of generality that there exist s1, s2 ∈ M such that, for all k , α (w1,k) = s1 and α (w2,k) = s2. Observe
that, by definition, s1 ∈ F1 and s2 ∈ F2. If s1 = s2, then we are done. Otherwise, s1 � s2 and we prove
that Ci [α] ∩ {s1, s2}∗ has unbounded alternation. Indeed, for all k , we have that

w1,k �k
i w2,k �k

i w1,k �k
i w2,k �k

i w1,k �k
i w2,k �k

i · · ·

Hence, by definition, (s1, s2)∗ ⊆ Ci [α], which terminates the proof of this direction.
Conversely, assume that there exist s1 ∈ F1 and s2 ∈ F2 such that Ci [α] ∩ {s1, s2}∗ has unbounded

alternation. We prove that L1 and L2 are not BΣi (<)-separable. More precisely, we show that, for
all k ∈ N , there exist w1 ∈ L1 and w2 ∈ L2 such that w1 �k

i w2. The result will then follow from
Fact 4.4 again.

Let k ∈ N and let n be the number of equivalence classes of �k
i (recall that �k

i has finite index).
Consider the chain (s1, s2)n+1 ∈ Ck

i [α], that is, the chain (s1, s2, s1, s2, . . . , s1, s2) of length 2(n + 1).
By definition, there exist words u1, . . . ,un+1 mapped to s1 under α and v1, . . . ,vn+1 mapped to s2

under α , such that

u1 �k
i v1 �k

i u2 �k
i v2 �k

i · · · �k
i un+1 �k

i vn+1.

By choice of n and by the pigeonhole principle, we get that j < j ′ such that uj �k
i uj′ . Hence,

uj �k
i vj �k

i uj′ �k
i uj .

It follows that uj �k
i vj and it suffices to choose w1 = uj and w2 = vj to terminate the proof. �

7 COMPUTING Σ2-CHAINS

In this section, we present an algorithm that, given a morphism and an integer n � 1 as input,
computes all associated Σ2-chains of length n. We already know by Theorems 6.1 and 6.2 that
achieving this for n = 2 yields an algorithm deciding the separation problem for Σ2 (<) and Π2 (<)
and algorithms deciding the membership problem for Σ3 (<), Π3 (<), and Δ3 (<). In Section 8, we
will obtain as well an algorithm deciding the membership problem for BΣ2 (<).

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

Going Higher in First-Order Quantifier Alternation Hierarchies on Words 12:33

Note that our algorithm is designed to work with alphabet-compatible morphisms only. As
shown in the next lemma, this not restrictive: the problem of computing the Σ2-chains associated
to any morphism can always be reduced to this case.

Lemma 7.1. Let i � 1 and n � 1. Given α : A∗ → M a morphism into a finite monoid M and β :
A∗ → M × 2A its alphabet completion, we have the following property:

Ci,n[α] =
{
(s1, . . . , sn) | there exist B1, . . . ,Bn ∈ 2A such that ((s1,B1), . . . , (sn ,Bn)) ∈ Ci,n[β]

}
.

Proof. It is immediate from the definitions that for all k > 0, we have that

Ck
i,n[α] =

{
(s1, . . . , sn) | there exist B1, . . . ,Bn ∈ 2A such that ((s1,B1), . . . , (sn ,Bn)) ∈ Ck

i,n[β]
}
.

Now, from Lemma 5.1, there exists some k ∈ N such that Ck
i,n[α] = Ci,n[α] and Ck

i,n[β] =
Ci,n[β]. �

We can now present the algorithm. We organize the section into three parts. In the first, we
describe the separation algorithm itself. The two remaining parts are devoted to the proofs of its
soundness and completeness.

7.1 An Algorithm that Computes Σ2-chains

For the remainder of this section, we fix an alphabet-compatible morphism α : A∗ → M into a finite
monoid M . Recall that this means that, for every s ∈ M , alph(s) is well defined as alph(w) for any
w ∈ α−1 (s). For any fixed n � 1, we explain how to compute the following two sets:

(1) the set C2,n[α] of Σ2-chains of length n for α .
(2) the set J2,n[α] of Σ2-junctures of length n for α .

In fact, our algorithm directly computes the second item, i.e., J2,n[α]. Recall that, by Fact 5.5, this
is enough to obtain the first item as well. Note that considering Σ2-junctures is necessary for the
technique to work, even if we are interested only in computing Σ2-chains.

Outline. We begin by explaining what our algorithm does. For this outline, assume that n = 2.
Observe that, for all w ∈ A∗, we have that (α (w), {α (w)}) ∈ J2,2[α]. The algorithm starts from
the set containing only these trivial Σ2-junctures and then saturates this set with two operations,
which both preserve membership in J2,2[α]. Let us describe these two operations.

—The first one is multiplication: by Fact 5.10, J2,2[α] is a submonoid of M × 2M .
—The second operation exploits the following specific property of Σ2 (<), which is a conse-

quence of the Σi -property Lemma (Lemma 4.8): for all words u,v,w,w ′, we have that

∀k ∃�
[
w �k

2 u, w �k
2 v and alph(w ′) = alph(w)

]
=⇒ w2� �k

2 u�w ′v� . (5)

This is why Σ2-junctures are needed: in order to use this property, we need to have a single

word w such that w �k
2 u and w �k

2 v , and this information is not provided by Σ2-chains
alone. Once abstracted at the monoid level, Equation (5) yields an operation stating that
whenever (s,S) belongs to J2,2[α], then so does (s,S)ω · (1M ,T) · (s,S)ω , where T is the
set {t | alph(t) = alph(s)}. Note that this is also where we need α to be alphabet compatible.

Let us now formalize this procedure and generalize it to arbitrary length.

Algorithm. As we explained, our algorithm is a least fixed point. We start from a set of trivial
Σ2-junctures and saturate this set with two operations until stabilization. Denote by n � 1 the

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

12:34 T. Place and M. Zeitoun

common length of all chains in junctures we want to compute. We initialize our fixed-point algo-
rithm with Dn ⊆ M × 2Mn−1

defined by

Dn =
{
(α (w), {(α (w), . . . ,α (w))}) | w ∈ A∗

}
.

We now describe our fixed-point operation. To any set of juncturesR ⊆ M × 2Mn−1
, we associate

another subset Satn (R) of M × 2Mn−1
containing R, defined as a lowest fixed point (with respect to

inclusion). We will then prove that, for all n, one can extract from Satn (Dn) the set J2,n[α] (and,
therefore, also C2,n[α] by Fact 5.5).

For length n = 1, we simply define Sat1 as the identity, i.e., Sat1 (R) = R. This is because, by
definition, J2,1[α] = D1. We now define Satn for a length n � 2. For R ⊆ M × 2Mn−1

, we define
Satn (R) as the smallest subset ofM × 2Mn−1

containingR and satisfying the three following closure
properties:

(Op1) ↓ Satn (R) ⊆ Satn (R).
(Op2) Satn (R) · Satn (R) ⊆ Satn (R).

(Op3) For all (s,S) ∈ Satn (R), if T =
{
(t1, . . . , tn−1) ∈ C2,n−1[α] | alph(t1) = alph(s)

}
, then

(s,S)ω · (1M ,T) · (s,S)ω ∈ Satn (R).

It is straightforward that Satn (R) can be effectively computed from R and C2,n−1[α] using a small-
est fixpoint algorithm. Note however that the definition of Satn is parametrized by the set C2,n−1[α],
i.e., the set of Σ2-chains of length n − 1. This means that in order to compute Satn , we need to have
previously computed the Σ2-chains of length n − 1. This set can be computed by the same algo-
rithm at stage n − 1: indeed, from its output Satn−1 (Dn−1), one can compute the set of Σ2-junctures
of length n − 1, and then by Fact 5.5, the set of all Σ2-chains of length n − 1.

This finishes the definition of the algorithm. Its soundness and completeness are stated in the
following proposition.

Proposition 7.2. Given n � 1 and �2,n = 9n |M |2 · 2 |M |n−1
, we have that

J2,n[α] = J �2,n

2,n [α] = Satn (Dn). (6)

Proposition 7.2 establishes both soundness and completeness of the algorithm:

—the inclusion Satn (Dn) ⊆ J2,n[α] gives its soundness: Satn (Dn) consists only of Σ2-
junctures of length n,

—the containment Satn (Dn) ⊇ J2,n[α] gives its completeness: the set Satn (Dn) contains all
Σ2-junctures of length n.

It also establishes a bound �2,n on a sufficient quantifier rank, whose existence was already known
from Lemma 5.6. This bound is a by-product of the proof of the algorithm. It is of particular interest
for separation and Theorem 6.1. Indeed, one can prove that, for any two languages that are Σ2 (<)-
separable and recognized by α , the separator can be chosen with quantifier rank �2,2 (refer to
Remark 6.1). From Theorem 6.1, we also get decidability of the separation problem for Σ2 (<), as
stated in the following corollary.

Corollary 7.3. Given as input two regular languages L1,L2, it is decidable to test whether L1 can
be Σ2 (<)-separated (resp., Π2 (<)-separated) from L2.

Similarly, we get decidability of the membership problem for Σ3 (<), Π3 (<), and Δ3 (<) from
Theorem 6.2.

Corollary 7.4. Given as input a regular language L, the following problems are decidable:

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

Going Higher in First-Order Quantifier Alternation Hierarchies on Words 12:35

—whether L is definable in Σ3 (<).
—whether L is definable in Π3 (<).
—whether L is definable in Δ3 (<).

Moreover, we will see in Section 8 that an algorithm for the membership problem for BΣ2 (<)
can also be obtained by relying on Proposition 7.2.

It now remains to prove Proposition 7.2, that it is the soundness and completeness of the algo-
rithm. We devote the rest of Section 7 to this proof.

We proceed by induction on n. Observe that when n = 1, all three sets J2,n[α], J �2,n

2,n [α], and
Satn (Dn) are, by definition, all equal to Dn . Therefore, the result is immediate for n = 1.

Assume now that n � 2 and let �2,n and �2,n−1 be defined as in Proposition 7.2. Our induction
hypothesis implies the following fact.

Fact 7.5. We have that J2,n−1[α] = J �2,n−1

2,n−1 [α]. In particular, C2,n−1[α] = C�2,n−1

2,n−1 [α].

We shall prove the following inclusions, which clearly entail Equation (6) and Proposition 7.2:

J2,n[α] ⊆ J �2,n

2,n [α] ⊆ Satn (Dn) ⊆ J2,n[α].

That J2,n[α] ⊆ J �2,n

2,n [α] is immediate from Fact 5.6. Hence, two inclusions are left to prove:

—Satn (Dn) ⊆ J2,n[α] (corresponding to soundness).

—J �2,n

2,n [α] ⊆ Satn (Dn) (corresponding to completeness).

We give each proof its own section: soundness is shown in Section 7.2 and completeness in
Section 7.3. Note that Fact 7.5 (i.e., induction on n) is used only for proving completeness.

7.2 Soundness of the Algorithm

In this section, we prove that Satn (Dn) ⊆ J2,n[α]. This is a consequence of the following
proposition.

Proposition 7.6. For all k ∈ N , Satn (Dn) ⊆ J k
2,n[α].

Since, by definition, J2,n[α] =
⋂

k ∈N J k
2,n[α], it is immediate from Proposition 7.6 that

Satn (Dn) ⊆ J2,n[α], which terminates the soundness proof.

Proof of Proposition 7.6. Let k ∈ N . It is immediate from the definitions that Dn ⊆ J k
2,n[α].

Hence, by definition of Satn , it suffices to prove that J k
2,n[α] is closed under Operations (Op1),

(Op2), and (Op3), i.e., that

(1) ↓ J k
2,n[α] ⊆ J k

2,n[α].

(2) J k
2,n[α] · J k

2,n[α] ⊆ J k
2,n[α].

(3) for all (s,S) ∈ J k
2,n[α], if T = {(t1, . . . , tn−1) ∈ C2,n−1[α] | alph(t1) = alph(s)}, then

(s,S)ω · (1M ,T) · (s,S)ω ∈ J k
2,n[α].

Item (1) is exactly Fact 5.7: J k
2,n[α] is closed under subsets. That Item (2) holds follows from Fact

5.10: J k
2,n[α] is a submonoid of M × 2Mn−1

. It remains to prove Item (3). For this, let (s,S) and T
be as in Item (3). Let B = alph(s). Let

(r ,R) = (s,S)ω · (1M ,T) · (s,S)ω .

We have to prove that R belongs to J k
2,n[α].

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

12:36 T. Place and M. Zeitoun

Let h = ω × 22k , where ω = ω (M × 2Mn−1
), so that, by definition, (s,S)ω = (s,S)h = (s,S)2h .

Therefore:
(r ,R) = (s,S)h · (1M ,T) · (s,S)h .

Since (s,S) ∈ J k
2,n[α], there exists a k-witness u ∈ A∗ for (s,S), i.e., such that

α (u) = s,

and for every Σ2-chain (s2, . . . , sn) ∈ S, there exist u2, . . . ,un ∈ A∗ satisfying{
u �k

2 u2 �k
2 · · · �k

2 un ,
∀j, α (uj) = sj .

(7)

Observe that α (u) = s implies that alph(u) = alph(s) = B. Let

w = u2h

so that alph(w) = alph(u) = B and α (w) = α (u)2h = s2h = r . We prove that (r ,R) ∈ J k
2,n[α] with

w as k-witness. It suffices to show that, for any chain (r2, . . . , rn) ∈ R, there existw2, . . . ,wn ∈ A∗
satisfying w �k

2 w2 �k
2 · · · �k

2 wn and such that α (w j) = r j for all j.
Let (r2, . . . , rn) ∈ R. By definition of R, we have that (r2, . . . , rn) = (s ′2t2s

′′
2 , . . . , s

′
ntns

′′
n) with

(s ′2, . . . , s
′
n),(s ′′2 , . . . , s

′′
n) ∈ Sh and (t2, . . . , tn) ∈ T . Since (s ′2, . . . , s

′
n) ∈ Sh , using h times Equa-

tion (7) and the fact that �k
2 is a precongruence (Lemma 4.6), we obtain words u ′2, . . . ,u

′
n ∈ A∗

such that {
uh �k

2 u ′2 �k
2 · · · �k

2 u ′n
∀j, α (u ′j) = s

′
j .

(8)

Similarly, since (s ′′2 , . . . , s
′′
n) ∈ Sh , we get that u ′′2 , . . . ,u

′′
n ∈ A∗ such that{

uh �k
2 u ′′2 �k

2 · · · �k
2 u ′′n

∀j, α (u ′′j) = s ′′j .
(9)

On the other hand, since (t2, . . . , tn) ∈ T , we obtain that alph(t2) = B and (t2, . . . , tn) ∈ C2,n−1[α].
Hence, we get words v2, . . . ,vn ∈ A∗, such that{

v2 �k
2 · · · �k

2 vn

∀j � 2, α (vj) = tj .
(10)

Observe that this implies, in particular, that alph(v2) = B. For all j � 2, we let

w j = u
′
jvju

′′
j .

Note that, for all j � 2, α (w j) = s
′
jtjs
′′
j = r j . It remains to prove that w �k

2 w2 �k
2 · · · �k

2 wn to

terminate the proof. That w2 �k
2 · · · �k

2 wn is immediate by Equations (8), (9), and (10), since �k
2

is a precongruence (by Lemma 4.6 again). Since w = u2h , the remaining inequality to prove is

uhuh �k
2 u ′2v2u

′′
2 . (11)

Since �k
2 is a precongruence by Lemma 4.6, we know by Equations (8), (9), and (10) thatuhv2u

h �k
2

u ′2v2u
′′
2 . Therefore, to establish Equation (11), it suffices to prove that

uhuh �k
2 uhv2u

h . (12)

Recall that, by definition, alph(v2) = alph(u) = B. Therefore, it is straightforward that

v2 �k
1 u2k

. (13)

Now, Equation (12) follows from Lemma 4.8 in view of the choice of h = ω × 22k and of Equa-
tion (13). �

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

Going Higher in First-Order Quantifier Alternation Hierarchies on Words 12:37

7.3 Completeness of the Algorithm

We prove that, for any � � �2,n = 9n |M |2 · 2 |M |n−1
, we have that J �

2,n[α] ⊆ Satn (Dn). We denote
by kn the size of the set of junctures of length n, i.e.,

kn = |M × 2Mn−1 |.

In particular, this means that �2,n = 9n |M |kn . The proof is by induction and relies on Simon’s
Factorization Forests Theorem. To state the induction, we need more terminology.

Generated Junctures. Let k ∈ N , w ∈ A∗. We let дk
n (w) ∈ M × 2Mn−1

be the maximal juncture of
J k

2,n[α] that hasw as a k-witness. Formally, letting дk
n (w) = (α (w),G), we have that (t2, . . . , tn) ∈

G if and only if there exist w2, . . . ,wn ∈ A∗ satisfying

—for all j, α (w j) = tj .
—w �k

2 w2 �k
2 · · · �k

2 wn .

By definition, any дk
n (w) is a Σ2[k]-juncture of length n: дk

n (w) ∈ J k
2,n[α]. Moreover, by definition,

we have that

J k
2,n[α] = ↓

{
дk

n (w) | w ∈ A∗
}
.

We illustrate this definition with two lemmas that will be useful in the proof. The first states that
дk

n (w) gets smaller as k gets larger.

Lemma 7.7. Let w ∈ A∗, n ∈ N and k < �. We have that

д�n (w) ⊆ дk
n (w).

Proof. Immediate from the fact that if k < �, then for all u,v , u ��
2 v ⇒ u �k

2 v . �

Our second lemma is a decomposition result that we will use several times.

Lemma 7.8 (Decomposition Lemma). Let w,w ′ ∈ A∗ and k � 1. Then,

дk
n (ww ′) ⊆ дk−1

n (w) · дk−1
n (w ′).

Proof. Let (r ,R) = дk
n (ww ′), (s,S) = дk−1

n (w), and (t ,T) = дk−1
n (w ′). By definition, r =

α (ww ′), s = α (w), and t = α (w ′); hence, r = st . It remains to prove that R ⊆ S · T . Let
(r2, . . . , rn) ∈ R. By definition, there exist u2, . . . ,un such that for all j, α (uj) = r j , and

ww ′ �k
2 u2 �k

2 · · · �k
2 un . (14)

Using (n − 1) times a simple Ehrenfeucht-Fraïssé argument, one for each �k
2 relation in Equa-

tion (14), we obtain that all words uj can be decomposed as uj = vjv
′
j such that

w �k−1
2 v2 �k−1

2 · · · �k−1
2 vn

w ′ �k−1
2 v ′2 �k−1

2 · · · �k−1
2 v ′n .

For instance, v2 and v ′2 are obtained by playing the k-round Ehrenfeucht-Fraïssé game over ww ′

and u2, where the first move of Spoiler is to play in ww ′ on the first letter of w ′. The answer of
Duplicator in u2 splits this word into two factors, v2 and v ′2.

Now for all j, let sj = α (vj) and tj = α (v ′j). By definition, we have that (s2, . . . , sn) ∈ S and
(t2, . . . , tn) ∈ T . Moreover, by definition,

(r2, . . . , rn) = (s2t2, . . . , sntn).

It follows that (r2, . . . , rn) ∈ S · T , which terminates the proof. �

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

12:38 T. Place and M. Zeitoun

We can now prove that J �
2,n[α] ⊆ Satn (Dn) when � � �2,n (recall that �2,n = 9n |M |kn , where

kn = |M × 2Mn−1 |). This is a consequence of the next proposition.

Proposition 7.9. Let � � �2,n and w ∈ A∗; then, д�n (w) ∈ Satn (Dn).

It is immediate from Proposition 7.9 that, for any � � �2,n ,
{
д�n (w) | w ∈ A∗

}
⊆ Satn (Dn). Since

we know that J �
2,n[α] = ↓

{
д�n (w) | w ∈ A∗

}
, we obtain that J �

2,n[α] ⊆ ↓ Satn (Dn) = Satn (Dn),
which yields completeness.

It therefore remains to prove Proposition 7.9. The proof is once again by induction on the height
of the α-factorization forest ofw . We state the induction in the following proposition. Recall again
that kn = |M × 2Mn−1 | is the size of the set of junctures of length n.

Proposition 7.10. Let h � 1 and let k � h · 3kn + �2,n−1. Then, for every w ∈ A∗ that admits an

α-factorization forest of height at most h, we have that дk
n (w) ∈ Satn (Dn).

Proposition 7.9 is a consequence of Proposition 7.10. This is because

—anyw ∈ A∗ admits an α-factorization forest of height at most 3|M | − 1, by Theorem 4.9, and
—one can verify that �2,n � (3|M | − 1) · 3kn + �2,n−1.

We now prove Proposition 7.10. Note that this is where we use Fact 7.5, i.e., induction on n.
As in the statement of Proposition 7.10, takeh � 1, k � h · 3kn + �2,n−1 and letw ∈ A∗ admitting

an α-factorization forest of height at most h. We need to prove that дk
n (w) ∈ Satn (Dn). The proof

is by induction on h.
If h = 1, then w admits an α-factorization forest that is a leaf. In that case, w is a single-letter

word a ∈ A or the empty word ε . Observe that k � 2. Therefore, one can check that the language
{w } is definable in Σ2 (<); hence,дk

n (w) = (α (w), {(α (w), . . . ,α (w))}). It follows thatдk
n (w) ∈ Dn ⊆

Satn (Dn), which finishes the proof for this case.
Assume now that h > 1. If the α-factorization forest of w is again a leaf, we conclude as above.

Otherwise, we apply induction to the factors given by this factorization forest. In particular, we will
use Lemma 7.8 (the Decomposition Lemma) to decompose дk

n (w) according to this factorization
forest. Then, once the factors have been treated by induction, we will use the operations in the
definition of Satn to lift the result to the whole word w . We distinguish two cases depending on
the nature of the topmost node in the α-factorization forest of w .

Case 1: The topmost node is a binary node. We use induction on h and Operation (Op2) in the
definition of Satn . By hypothesis, w = w1w2 with w1,w2 words admitting α-factorization forests
of respective heights h1,h2 � h − 1. Observe that

k − 1 � (h − 1) × 3kn + �2,n−1.

Therefore, we can apply our induction hypothesis to w1,w2 and we obtain that дk−1
n (w1) ∈

Satn (Dn) and дk−1
n (w2) ∈ Satn (Dn). By Operation (Op2) in the definition of Satn , it is immedi-

ate that дk−1
n (w1) · дk−1

n (w2) ∈ Satn (Dn). Moreover, by Lemma 7.8 (the Decomposition Lemma),
дk

n (w) ⊆ дk−1
n (w1) · дk−1

n (w2). It follows from Operation (Op1) thatдk
n (w) ∈ ↓ Satn (Dn), which con-

cludes this case.

Case 2: The topmost node is an idempotent node. This is the most involved case. We use
induction on h and the two operations in the definition of Satn . Note that this is also where Fact
7.5 (i.e., induction on n in the general proof of Proposition 7.2) is used. We let

e = α (w).

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

Going Higher in First-Order Quantifier Alternation Hierarchies on Words 12:39

Observe that by hypothesis of this case, e is an idempotent. Let

B = alph(w) = alph(e).

Also, let
T =

{
(t1, . . . , tn−1) ∈ C2,n−1[α] | alph(t1) = B

}
. (15)

Since one can test the alphabet of a word in Σ2 (<), all elements of any Σ2-chain of T actually have
alphabet B.

We begin by summarizing our hypothesis: w admits what we call an (e,p)-decomposition.

(e,p)-Decompositions. For the rest of the section, we let p = (h − 1) × 3kn + �2,n−1. Let u ∈ A∗.
We say that u admits an (e,p)-decomposition u1, . . . ,um if

a) u = u1 · · ·um ,
b) for all j, α (uj) = e and
c) for all j, дp

n (uj) ∈ Satn (Dn).

Note that (b) means that α (uj) is a constant idempotent. In particular, since α is alphabet compat-
ible, this also implies that all factors ui have the same alphabet as e , namely, B. Using Fact 7.5 (i.e.,
induction on n in the general proof of Proposition 7.2), we obtain the following fact.

Fact 7.11. For any (e,p)-decomposition u1, . . . ,um of a word and for all i � j, we have that

д
p
n (ui · · ·uj) ⊆ (e,T), where T is defined by Equation (15).

Proof. By definition, the “root” of the juncture д
p
n (ui · · ·uj) is labeled by α (ui · · ·uj) = e .

Therefore, we may let (e,T ′) = дp
n (ui · · ·uj). Since p � �2,n−1, that T ′ ⊆ C2,n−1[α] follows from

Lemma 7.7 and Fact 7.5. Let (t1, . . . , tn−1) ∈ T ′; we have to prove that alph(t1) = B. This is be-
cause t1 = α (v) for some word v satisfying ui · · ·uj �p

2 v . Since p � 2, it follows that alph(v) =
alph(ui · · ·uj) = B, which terminates the proof. �

We now use the hypothesis of Case 2 to conclude that w admits an (e,p)-decomposition.

Fact 7.12. The word w admits an (e,p)-decomposition.

Proof. By hypothesis of Case 2, there exists a decomposition w1, . . . ,wm of w that satisfies
points (a) and (b). Moreover, for all j, w j admits an α-factorization forest of height hj � h − 1.
Therefore, point (c) is obtained by induction hypothesis on h. �

Recall that we want to prove that дk
n (w) ∈ Satn (Dn). In general, the number of factorsm in the

(e,p)-decomposition of w can be arbitrarily large. In particular, it is possible that k − (m − 1) < p.
This means that we cannot simply use Lemma 7.8 as we did in the previous case to conclude
that дk

n (w) ⊆ д
p
n (w1) · · ·дp

n (wm). However, we will partition w1, . . . ,wm as a bounded number of
subdecompositions that we can treat using the second operation in the definition of Satn . The
partition is given by induction on a parameter of the (e,p)-decomposition w1, . . . ,wm , which we
define now.

Index of an (e,p)-decomposition. Recall that kn = |M × 2Mn−1 | and let u ∈ A∗ that admits an
(e,p)-decomposition u1, . . . ,um . Let (f ,F) ∈ M × 2Mn−1

be an idempotent and j � m; we say that
(f ,F) can be inserted at position j if there exists i � (kn − 1) such that

д
p
n (uj−i) · · ·дp

n (uj) · (f ,F) = д
p
n (uj−i) · · ·дp

n (uj).

The index of the (e,p)-decomposition u1, . . . ,um is the number of distinct idempotents (f ,F) ∈
M × 2 |M |

n−1
that can be inserted at some position j � m. Observe that, by definition, the index of

any (e,p)-decomposition is bounded by kn .

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

12:40 T. Place and M. Zeitoun

Lemma 7.13. Let u ∈ A∗ admitting an (e,p)-decomposition u1, . . . ,um of index д. Then, for all k̂

such that k̂ � д + 2kn + p, we have that дk̂
n (u) ∈ Satn (Dn).

Before proving this lemma, we use it to conclude Case 2. We know that w admits an (e,p)-
decomposition of index д � kn . By definition, k � 3kn + p; hence, it is immediate from Lemma
7.13 that дk

n (w) ∈ Satn (Dn). It now remains to prove Lemma 7.13.

Proof of Lemma 7.13. The proof goes by induction on the indexд. Whenm � kn , the result can
be obtained from Lemma 7.8 by using (m − 1) times the argument that we used in Case 1. Assume

now that m > kn and fix some number k̂ � д + 2kn + p. We have to show that дk̂
n (u) ∈ Satn (Dn).

We rely on the following fact: �

Fact 7.14. There exists a position j � kn and an idempotent (e,E) ∈ Satn (Dn) that can be inserted
at position j.

Proof. Since all дp
n (wi) belong to the monoid M × 2Mn−1

whose size is kn , it follows from the
pigeonhole principle that there exist j < j ′ � kn + 1 such that

д
p
n (w1) · · ·дp

n (w j) = д
p
n (w1) · · ·дp

n (w j′).

Hence, it suffices to take (e,E) = (д
p
n (w j+1) · · ·дp

n (w j′))
ω . Note that (e,E) ∈ Satn (Dn) because of

Item (c) in the definition of (e,p)-decompositions and Operation (Op2) in the definition of Satn . �

Note that Fact 7.14 shows that if д = 0 (the base case of our induction), then we must have that
m � kn , a case that was already treated.

Denote by j � kn a position given by Fact 7.14, and let � � m be the largest integer such that
(e,E) can be inserted at position �. In particular, j � �. Using Lemma 7.8, we get that

дk̂
n (u) ⊆ дk̂−1

n (u1 · · ·u�) · дk̂−1
n (u�+1 · · ·um).

By definition, u�+1, . . . ,um is an (e,p)-decomposition and it has an index strictly smaller than that
of u1, . . . ,um (by definition of �, there is no position between � + 1 and m at which (e,E) can be
inserted). Hence, it is immediate by induction hypothesis in Lemma 7.13 that

дk̂−1
n (u�+1 · · ·um) ∈ Satn (Dn).

It now remains to prove that дk̂−1
n (u1 · · ·u�) ∈ Satn (Dn). The result will then follow from Opera-

tions (Op1) and (Op2) in the definition of Satn . We distinguish two cases depending on the distance
between j and �.

Case (a). Assume first that � � j + kn . In that case, since j � kn , we have that � � 2kn . The result
can then be obtained from Lemma 7.8 by using � − 1 times the same argument as the one that we
used in Case 1.

Case (b). It remains to treat the case when � > j + kn . This is where Operation (Op3) in the
definition of Satn is used. Consider the following:

(e,R) = д
p
n (u1) · · ·дp

n (uj)
(e,T ′) = д

p
n (uj+1 · · ·uj−kn

) · дp
n (u�−(kn−1)) · · ·дp

n (u�).

Note that we know from Item (c) in the definition of (e,p)-decompositions and Operation (Op2) in
the definition of Satn that (e,R) ∈ Satn (Dn). Moreover, using Fact 7.11, we obtain that (e,T ′) ⊆
(e,T).

Observe that (k̂ − 1) − (j + kn − 1) � p. Hence, using j + kn − 1 times the Decomposition
Lemma (Lemma 7.8) and Lemma 7.7, we obtain that

дk̂−1
n (u1 · · ·u�) ⊆ (e,R) · (e,T ′).

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

Going Higher in First-Order Quantifier Alternation Hierarchies on Words 12:41

By definition, (e,E) ∈ Satn (Dn) can be inserted at both positions j and �. Hence, we have that

дk̂−1
n (u1 · · ·u�) ⊆ (e,R) · (e,E) · (e,T ′) · (e,E).

We now prove that (e,E) · (e,T ′) · (e,E) ∈ Satn (Dn). Since we already know that (e,R) ∈
Satn (Dn), it will then follow from Operations (Op1) and (Op2) that дk̂−1

n (u1 · · ·u�) ∈ Satn (Dn).
Since (e,E) ∈ Satn (Dn) and alph(e) = B, it follows from Operation (Op3) in the fixed-point

procedure that:

(e,E) · (e,T ′) · (e,E) ⊆ (e,E) · (e,T) · (e,E) = (e,E) · (1M ,T) · (e,E) ∈ Satn (Dn).�

We conclude from Operation (Op1) that (e,E) · (e,T ′) · (e,E) ∈ Satn (Dn), which terminates the
proof.

8 DECIDABLE CHARACTERIZATION OF BΣ2 (<)

In this section, we present our decidable characterization for BΣ2 (<). We already proved a (non-
effective) characterization of BΣ2 (<) in Section 6 using the notion of alternation.

Recall that a chain (s1, . . . , sn) ∈ M∗ has alternation � if there are exactly � indices i such that
si � si+1. Recall also that a set of chains S has bounded alternation if there exists a bound � ∈ N
such that all chains in S have alternation at most �. We know by Corollary 6.7 that a regular
language L is definable in BΣi (<) if and only if Ci [α] has bounded alternation with α as the
syntactic morphism of L.

In this section, we prove that a third equivalent (effective) criterion can be given in the special
case i = 2. This criterion is presented as an equation that needs to be satisfied by the alphabet
completion of the syntactic morphism of the language. This equation is parametrized by junctures
of length 2 through a relation that we now define.

Alternation Schema. Let α : A∗ → M be an alphabet-compatible monoid morphism. An alterna-
tion schema for α is a triple (s, s1, s2) ∈ M3 such that there exist (r1,R1), (r2,R2), (e,E) ∈ J2,2[α]
with (e,E) idempotent, and such that

—alph(e) = alph(s).
—s = r1er2.
—s1 ∈ R1 · E.
—s2 ∈ E · R2.

Observe that the set of all alternation schemas for α can be computed from J2,2[α].
The purpose of alternation schemas is to abstract over M a property of words relatively to

Σ2 (<): if (s, s1, s2) is an alternation schema then, for all k ∈ N , there existw,w1,w2 ∈ A∗, mapped,
respectively, to s, s1, s2 under α and such that, for all u ∈ alph(s)∗, w �k

2 w1uw2 (see Lemma 8.4
below).

We now have all the terminology we need to state our decidable characterization of BΣ2 (<).

Theorem 8.1. Let L be a regular language and let α : A∗ → M be the alphabet completion of its
syntactic morphism. The three following properties are equivalent:

(1) L is definable in BΣ2 (<).
(2) C2[α] has bounded alternation.
(3) α satisfies the following equation:

(s1t1)ωs (t2s2)ω = (s1t1)ωs1ts2 (t2s2)ω

for (s, s1, s2) and (t , t1, t2) alternation schemas such that alph(s) = alph(t).
(16)

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

12:42 T. Place and M. Zeitoun

We know from Proposition 7.2 that all Σ2-chains of length 3 and all alternation schemas asso-
ciated to α can be computed. Hence, the third item of Theorem 8.1 can be decided and we get the
desired corollary.

Corollary 8.2. Given as input a regular language L, it is decidable to test whether L is definable
in BΣ2 (<).

Note that the characterization ofBΣ2 (<) that we present in Theorem 8.1 is different from the one
presented in the conference version of this article [81]. The characterization of [81] was relying
on three equations, Equation (16) and the following two equations, which are parametrized by
Σ2-chains of length 3.

sω
1 s

ω
3 = sω

1 s2s
ω
3

sω
3 s

ω
1 = sω

3 s2s
ω
1

for all (s1, s2, s3) ∈ C2[α]. (17)

It turns out that Equation (17) is actually a consequence of Equation (16). We state this property
in the next lemma.

Lemma 8.3. Let α : A∗ → M be an alphabet-compatible morphism into a finite monoid M . If α
satisfies Equation (16), then α satisfies Equation (17) as well.

Proof. Assume that α satisfies Equation (16) and let (s1, s2, s3) ∈ C2[α]. We have to prove that
sω

1 s
ω
3 = s

ω
1 s2s

ω
3 and sω

3 s
ω
1 = s

ω
3 s2s

ω
1 . We prove only the first equality, since the other one is obtained

symmetrically.
We claim that (sω

1 , s
ω
1 , s

ω
3) and (sω

1 s2, s
ω
1 , s

ω
3) are alternation schemas. Assuming this claim, note

that since (s1, s2, s3) is a Σ2-chain, we have in particular alph(s1) = alph(s2) = alph(s3), whence
alph(sω

1) = alph(sω
1 s2). It follows from Equation (16) that

(sω
1 s

ω
1)ωsω

1 (sω
3 s

ω
3)ω = (sω

1 s
ω
1)ωsω

1 s
ω
1 s2s

ω
3 (sω

3 s
ω
3)ω .

This exactly says that sω
1 s

ω
3 = s

ω
1 s2s

ω
3 , as desired.

Let us now prove the claim. Observe that since (s1, s2, s3) ∈ C2[α], it is immediate from the
definition of Σ2-chains and Σ2-junctures that (s1, {s1, s3}) ∈ J2,2[α] and (s2, {s3}) ∈ J2,2[α]. We
begin by proving that (sω

1 , s
ω
1 , s

ω
3) is an alternation schema. Let (e,E) = (s1, {s1, s3})ω ∈ J2,2[α]

and (r1,R1) = (r2,R2) = (1M , {1M }) ∈ J2,2[α]. By definition, sω
1 = e = r1er2, sω

1 ∈ E = R1E, and
sω

3 ∈ E = ER2. It follows that (sω
1 , s

ω
1 , s

ω
3) is an alternation schema.

Finally, we prove that (sω
1 s2, s

ω
1 , s

ω
3) is also an alternation schema. Again, let (e,E) =

(s1, {s1, s3})ω ∈ J2,2[α]. Recall our algorithm for computingJ2,2[α] (see Section 7). Since alph(s3) =
alph(s1) = alph(e), we know from Operation (Op3) in the algorithm that

(e,E) · (1M , (s3)ω−1) · (e,E) ∈ J2,2[α].

By closure under downset, it follows that ((s1)ω , {(s3)2ω−1}) ∈ J2,2[α]. We define (r1,R1) =
(1M , {1M }) ∈ J2,2[α] and (r2,R2) = ((s1)ω , {(s3)2ω−1}) · (s2, {s3}) = ((s1)ωs2, {(s3)ω }) ∈ J2,2[α]. By
definition, (s1)ωs2 = r1er2, (s1)ω ∈ R1E, and (s3)ω ∈ ER2. Finally, alph(e) = alph(sω

1 s2). It follows
that (sω

1 s2, s
ω
1 , s

ω
3) is an alternation schema. �

Note that we still use Equation (17) in the proof of Theorem 8.1, as it will be more convenient
to use it instead of Equation (16) in some places.

Another important remark is that there are similarities between Theorem 8.1 and a theorem
of Bojańczyk and the first author [16] that states the decidable characterization of an entirely
different formalism: Boolean combination of open sets of infinite trees. In [16] as well, the authors
present a notion of “chains” tailored to their formalism (although they do not make the link with

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

Going Higher in First-Order Quantifier Alternation Hierarchies on Words 12:43

separation). This is not surprising, as the notion of chain is quite generic for formalisms defined
by Boolean combinations and what is specific is the algorithms computing them.

A more surprising fact is that our equations are very similar to the ones stated in [16]. Despite
this fact, since the formalisms are of a different nature, the way the chains of [16] and the way
our Σ2-chains are constructed are completely independent. This also means that the proofs are
also mostly independent. However, we do reuse several combinatorial arguments of [16] at the
end of the proof. One could say that the proofs are both (very different) setups to apply similar
combinatorial arguments in the end.

It now remains to prove Theorem 8.1. Observe that we already know from Corollary 6.7 and
Lemma 7.1 that 1⇔ 2. To conclude the proof, we shall show that 1⇒ 3 and 3⇒ 2. The direction
3⇒ 2 is the most involved proof of this article. We devote three sections to this proof. In Section
9, we define a key object for this proof: chain trees. We then use this object to reduce the proof to
two independent propositions that are then proved in Sections 10 and 11.

We finish this section with the much easier 1⇒ 3 direction. Assume that L is aBΣ2 (<)-definable
language and let α : A∗ → M be the alphabet completion of its syntactic morphism. We prove that
α satisfies Equation (16). This is an Ehrenfeucht-Fraïssé argument. We begin with a lemma on
alternation schemas, which formalizes the property that we sketched above.

Lemma 8.4. Assume that (s, s1, s2) is an alternation schema. Then, for all k ∈ N , there exist
w,w1,w2 ∈ A∗ such that:

—α (w) = s,α (w1) = s1 and α (w2) = s2.
—for all u ∈ alph(s)∗, w �k

2 w1uw2.

Proof. This is proved using Lemma 4.8. Fix an alternation schema (s, s1, s2) and k ∈ N . Let
(r1,R1), (r2,R2), (e,E) ∈ J2,2[α] be as in the definition of alternation schemas.

Let h = 22k . Since (e,E) is idempotent, we have that (e,E)h = (e,E). By definition of Σ2-
junctures, we obtain words v1,v

′
1,v2,v

′
2,x ,x

′
1,x
′
2 ∈ A∗ satisfying the following properties:

a) α (v1) = r1, α (v2) = r2, α (x) = e , α (v ′1x
′
1) = s1, α (x ′2v

′
2) = s2.

b) v1x
h �k

2 v ′1x
′
1 and xhv2 �k

2 x ′2v
′
2.

Letw = v1x
2hv2,w1 = v

′
1x
′
1 andw2 = x ′2v

′
2. It follows from Item (a) that α (w) = r1er2 = s , α (w1) =

s1 and α (w2) = s2. Finally, since α is alphabet compatible, we have that alph(x) = alph(e) and by
definition of alternation schemas, alph(e) = alph(s). Therefore, it is immediate using Ehrenfeucht-
Fraïssé games that, for any wordu ∈ alph(s)∗,u �k

1 xh . It then follows from Lemma 4.8 that x2h �k
2

xhuxh , whence by Lemma 4.6, that w �k
2 v1x

huxhv2. Finally, using Item (b), we conclude that
w �k

2 w1uw2. �

We can now use Lemma 8.4 to prove that α satisfies Equation (16). Let (s, s1, s2) and (t , t1, t2) be
alternation schemas such that alph(s) = alph(t). Letw,w1,w2 ∈ A∗ of images s, s2, s2 and z, z1, z2 ∈
A∗ of images t , t1, t2 satisfying the conditions of Lemma 8.4. We prove that, for any u,v ∈ A∗,

u[(z1w1)N z (w2z2)N]v �k
2 u[(z1w1)N z1wz2 (w2z2)N]v, (18)

where again N = 2kω. By definition of the alphabet completion of the syntactic monoid, of the
alphabetic conditions and since L is defined by a BΣ2 (<) formula of rank k , Equation (16) will
follow. Since alph(s) = alph(t), the words w,w1,w2 and z, z1, z2 given by Lemma 8.4 satisfy

z �k
2 z1wz2, (19)

w �k
2 w1zw2. (20)

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

12:44 T. Place and M. Zeitoun

Using Lemma 4.6, we may multiply Equation (19) by u (z1w1)N on the left and by (w2z2)Nv on the
right:

u (z1w1)N z (w2z2)Nv �k
2 u (z1w1)N z1wz2 (w2z2)Nv .

For the converse direction, from Lemma 4.7, we have that (z1w1)N �k
2 (z1w1)N−1 and (w2z2)N �k

2
(w2z2)N−1. Using Equation (20) and Lemma 4.6 again, we conclude that

u (z1w1)N z1wz2 (w2z2)Nv �k
2 u (z1w1)N−1z1 (w1zw2)z2 (w2z2)N−1v,

i.e.,

u (z1w1)N z1wz2 (w2z2)Nv �k
2 u (z1w1)N z (w2z2)Nv .

9 PROOF OF THEOREM 8.1: CHAIN TREES

In this section, we begin the proof of the difficult direction of Theorem 8.1. Given an alphabet-
compatible morphism α : A∗ → M , we prove that if Equation (16) is satisfied, then C2[α] has
bounded alternation. More precisely, we prove the contrapositive: if C2[α] has unbounded alter-
nation, then the equation is not satisfied.

To prove this, we rely on a new notion: “chain trees.” Chain trees are a means to analyze how
Σ2-chains with high alternation are built. In particular, we will use them at the end of the section
to decide which equation is contradicted. Intuitively, a chain tree is associated to a single Σ2-chain
and represents a computation of our least fixed-point algorithm of Section 7 that generates this
Σ2-chain.

As we explained in the previous section, one can find connections between our proof and that
of the decidable characterization of Boolean combination of open sets of trees [16]. In [16] as well,
the authors consider a notion of “chains,” which corresponds to open sets of trees and analyze
how they are built. This is achieved with an object called a “Strategy Tree.” Though strategy trees
and chain trees share the same purpose, i.e., analyzing how chains are built, there is no connection
between the notions themselves since they deal with completely different objects.

We organize the section in two subsections. First, we define the general notion of chain trees.
Then, we use chain trees to reduce the proof of Theorem 8.1 to two independent propositions (we
will then prove these two propositions in Sections 10 and 11).

9.1 Definition

Let α : A∗ → M be an alphabet-compatible morphism into a finite monoid M . We associate to α a
set TC[α] of chain trees. As we explained, a chain tree is associated to a single Σ2-chain for α and
represents a way to compute this Σ2-chain using our least fixed-point algorithm. However, recall
that this algorithm does not work directly with chains but rather with the more general notion of
junctures. For this reason, we actually define two notions:

(1) The set TJ [α] of juncture trees associated to α . Each tree in TJ [α] represents an actual
computation of the least fixed-point algorithm. Hence, we can associate the result of this
computation to the tree: this Σ2-juncture is called the juncture value of the tree.

(2) The set TC[α] of chain trees. Each tree in TC[α] instantiates a juncture tree of TJ [α]
and is associated to a specific Σ2-chain that belongs to its juncture value. This Σ2-chain is
called the chain value of the chain tree.

Juncture Trees. For any n � 1, a juncture tree T of level n for α is an ordered unranked tree that
may have four types of nodes: product nodes, operation nodes, initial leaves, and ports. To each
node that is not a port, we associate a juncture value, valJ (x) ∈ M × 2Mn−1

, by induction on the
structure of the tree. Intuitively, each type of node corresponds to a stage of the least fixed-point

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

Going Higher in First-Order Quantifier Alternation Hierarchies on Words 12:45

algorithm while constructing the juncture value of the tree. We now give a precise definition of
each type of node.

— Initial Leaves. An initial leaf x is labeled with a constant Σ2-chain (s, . . . , s) ∈ C2,n[α]. We
let valJ (x) = (s, {(s, . . . , s)}) ∈ J2,n[α]. Initial leaves correspond to the set Dn of trivial
Σ2-junctures, which serves to initialize the least fixed-point algorithm when it starts.

—Ports. A port is an unlabeled leaf whose parent has to be an operation node. In particular, a
port may never be the root of the tree. Ports have no juncture value and are simply place-
holders that get replaced by true leaves when the juncture tree is instantiated into a chain
tree (see below).

—Product Nodes. A product node x is unlabeled. It has exactly two children, x1 and x2, which
may be of any node type except “port.” We let valJ (x) = valJ (x1) · valJ (x2). Product nodes
correspond to Operation (Op2) in the fixed-point algorithm.

—Operation Nodes. An operation node x is unlabeled and has exactly 3 children x1,x2, and x3

from left to right. The middle child x2 has to be a port. The left and right children x1 and x3

may be of any node type except “port.” However, the trees rooted in x1 and x3 must be iden-

tical. Moreover, we require valJ (x1) = valJ (x3) to be an idempotent (e,E) of M × 2Mn−1
. Fi-

nally, we let the juncture value of the operation node x as valJ (x) = (e,E) · (1M ,T) · (e,E)
with T = {(t1, . . . , tn−1) ∈ C2,n−1[α] | alph(t1) = alph(e)}. Operation nodes and ports cor-
respond to Operation (Op3) in the fixed-point algorithm.

We denote by TJ [α] the set of juncture trees that can be associated to α . If T ∈ TJ [α], we
denote by valJ (T) the juncture value of the root of T . An example of juncture tree is given in
Figure 6. The following proposition is essentially an alternate statement of Proposition 7.2.

Proposition 9.1. Let n � 1. Then,

J2,n[α] = ↓
{
valJ (T) | T ∈ TJ [α] with level n

}
,

J2[α] = ↓
{
valJ (T) | T ∈ TJ [α]

}
.

Proof. Immediate from Proposition 7.2. �

Chain Trees. Chain trees are obtained by instantiating juncture trees. Let T be a juncture tree
and let n be its level. An instantiation of T is a new tree T ′ which is obtained from T by replacing
all ports with new operation leaves.

An operation leaf x is labeled with a chain of length n. Moreover, this chain has to satisfy an
additional condition with respect to its parent. Observe first that since ports carry no information
in juncture trees, valJ (t) remains well defined for any node t ofT ′ that is not a new operation leaf.
Since x replaces a port, its parent z has to be an operation node. We ask the label of x to be chosen in
valJ (z), i.e., in the juncture (e,E) · (1M ,T) · (e,E), where (e,E) is the (idempotent) juncture value

shared by the left and right children of z and T =
{
(t1, . . . , tn−1) ∈ C2,n−1[α] | alph(t1) = alph(e)

}
.

Note that by Proposition 9.1, this means that the label of x belongs to C2,n[α].
For every juncture tree T , we denote by �T � the set of instantiations of T (see Figure 7 for an

example). The setTC[α] of chain trees associated to α is the set
⋃

T ∈TJ [α] �T �. Finally, ifR ∈ TC[α]
is of level n, to every node x of R, we associate a second value valC (x) ∈ Mn , called the chain value
of x . If x is an initial (resp., operation) leaf, valC (x) is simply the label of x . If x is a product node
with children x1 and x2, then valC (x) = valC (x1) · valC (x2). Finally, if x is an operation node with
children x1,x2, and x3, then valC (x) = valC (x1) · valC (x2) · valC (x3). We let valC (R) be the chain
value of the root of R. The following facts are immediate from the definitions.

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

12:46 T. Place and M. Zeitoun

Fig. 6. An example of juncture tree of level n.

Fact 9.2. Let T ∈ TC[α] and let x1, . . . ,xm be its leaves listed from left to right. Then, valC (T) =
valC (x1) · · · valC (xm).

Fact 9.3. Let T ∈ TC[α] of level n and let x be a node of T . Then, valC (x) ∈ C2,n[α].

We now prove that the definition of chain trees matches our purpose, i.e., that the set of Σ2-
chains is exactly the set of values of trees in TC[α]. This is a corollary of the following proposition.

Proposition 9.4. Let T ∈ TJ [α]. Then,

valJ (T) =
{
valC (T ′) | T ′ ∈ �T �

}
. (21)

Proof. Before proving the statement, note that valJ (T) is a juncture, while the right member
of Equation (21) is a set of chains. To simplify the notation, we identify in this proof the juncture
valJ (T) in Equation (21) with the set of chains that it contains, i.e., {(s, s̄) | {(s, {s̄})} ⊆ valJ (T)}.

We proceed by induction on the structure of T (which is shared with any chain tree T ′ ∈ �T �).
IfT is a single initial leaf, then �T � = {T } since there is no port inT to replace, and the result is by
definition. Otherwise, let x be the root of T .

If x is a product node, then let T1 and T2 be the subtrees rooted at its children. By induction
hypothesis, we have that valJ (T1) = {valC (T ′1) | T ′1 ∈ �T1�} and valJ (T2) = {valC (T ′2) | T ′2 ∈ �T2�}.

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

Going Higher in First-Order Quantifier Alternation Hierarchies on Words 12:47

Fig. 7. An instantiation of the juncture tree in Figure 6.

By definition, valJ (T) = valJ (T1) · valJ (T2) and{
valC (T ′) | T ′ ∈ �T �

}
=
{
valC (T ′1) · valC (T ′2) | T ′1 ∈ �T1� and T ′2 ∈ �T2�

}
,

which terminates this case.
If x is an operation node, let R be the single juncture tree that is rooted in both its left and

right children and let (e,E) = valJ (R). By definition, valJ (T) = (e,E) · (1M ,T) · (e,E) with T =
{(t1, . . . , tn−1) ∈ C2,n−1[α] | alph(t1) = alph(e)}. Moreover, since (e,E) is idempotent by definition,
we have that

valJ (T) = (e,E) · (e,E) · (1M ,T) · (e,E) · (e,E).

This terminates the proof since the set of values that can be given to an operation leaf replacing the
port child of x is exactly (e,E) · (1M ,T) · (e,E) and, by induction hypothesis, (e,E) = valJ (R) =
{valC (R′) | R′ ∈ �R�}. �

The following corollary states that the set of Σ2-chains is exactly the set of chain values of chain
trees and is immediate from Proposition 9.1 and Proposition 9.4.

Corollary 9.5. Let B ⊆ A, n ∈ N . Then,

C2,n[α] =
{
valC (T) | T ∈ TC[α] with level n

}
,

C2[α] =
{
valC (T) | T ∈ TC[α]

}
.

Alternation and Recursive Alternation of a Chain Tree. The alternation of a chain tree is the
alternation of its chain value. We say that a set of chain trees S has unbounded alternation if the set
{valC (T) | T ∈ S} has unbounded alternation. Note that, by Proposition 9.4, C2[α] has unbounded
alternation if and only if TC[α] has unbounded alternation.

In the proof, we will be interested in another property of chain trees: recursive alternation. Re-
cursive alternation corresponds to the maximal alternation of labels at operation leaves in the tree.

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

12:48 T. Place and M. Zeitoun

More precisely, if T is a chain tree, its recursive alternation is the largest integer j such that there
exists an operation leaf in T whose label has alternation j. An important idea in the proof is to
separate the case when we can find a set of chain trees with unbounded alternation but bounded
recursive alternation from the converse one. This is what we do in the following section.

9.2 Applying Chain Trees to Theorem 8.1

We prove that 3 ⇒ 2 in Theorem 8.1. Let α : A∗ → M be an alphabet-compatible morphism into
a finite monoid M . We have to prove that if α satisfies Equation (16), then C2[α] has bounded
alternation.

The proof is by contrapositive. We assume that C2[α] has unbounded alternation and prove that
α does not satisfy the equation. Using chain trees, we separate the argument into two independent
cases. These two cases are stated in the following propositions.

Proposition 9.6. Assume that there exists a set of chain trees S ⊆ TC[α] with unbounded alter-
nation but bounded recursive alternation. Then, α does not satisfy both equations in Equation (17).

Proposition 9.7. Assume that there exists a set of chain trees S ⊆ TC[α] with unbounded alter-
nation and that all such sets have unbounded recursive alternation. Then, α does not satisfy Equation
(16).

Proposition 9.6 and Proposition 9.7 are both involved and proved in Section 11 and Section 10,
respectively. We finish this section by using them to conclude the proof of Theorem 8.1.

By hypothesis,C2[α] has unbounded alternation. Hence, it follows from Corollary 9.5 thatTC[α]
also has unbounded alternation. Therefore, there exists at least one set of chain trees S with un-
bounded alternation. If S can be chosen with bounded recursive alternation, it follows from Propo-
sition 9.6 that there is a contradiction to one of the equations in Equation (17) and therefore to
Equation (16) by Lemma 8.3. Otherwise, there is a contradiction to Equation (16) by Proposition
9.7, which terminates the proof.

10 PROOF OF PROPOSITION 9.7

In this section, we prove Proposition 9.7. Recall that we have fixed an alphabet-compatible mor-
phism α : A∗ → M into a finite monoid M . Assume that there exists a set of chain trees S ⊆ TC[α]
with unbounded alternation and that all such sets have unbounded recursive alternation. We need
to prove that α does not satisfy Equation (16).

We rely on a new object that is specific to this case, the chain graph. A chain graph describes
a construction process for a subset of the set of Σ2-chains for α . While this subset may not be
the whole set of Σ2-chains for α , we will prove that, under the hypothesis of Proposition 9.7, it is
sufficient to derive a contradiction to Equation (16).

The Chain Graph. We define a directed graph G[α] = (V ,E) whose edges are unlabeled (E ⊆
V ×V). We call G[α] the chain graph of α . The set V of nodes of G[α] is the set V = M2 ×M . We
now define the set E of edges of G[α]. Let ((p1,p2), s) and ((q1,q2), t) be two nodes of G[α]; then,
E contains an edge from ((p1,p2), s) to ((q1,q2), t) if there exist s1, s2 ∈ M such that (s, s1, s2) ∈ M3

is an alternation schema, p1s1 = q1, and s2p2 = q2. Observe that this definition does not depend
on t .

Define the value of a node ((p1,p2), s) asp1sp2 and its alphabet as alph(s) (recall thatα is alphabet
compatible).

We say that G[α] is recursive if it contains a cycle such that

a) all nodes in the cycle have the same alphabet, and
b) the cycle contains two nodes with different values.

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

Going Higher in First-Order Quantifier Alternation Hierarchies on Words 12:49

Such a cycle is called productive. We now prove Proposition 9.7 as a consequence of the two fol-
lowing propositions.

Proposition 10.1. Assume that G[α] is recursive. Then, α does not satisfy Equation (16).

Proposition 10.2. Assume that there exists a set of chain trees S ⊆ TC[α] with unbounded alter-
nation and that all such sets have unbounded recursive alternation. Then, G[α] is recursive.

Observe that Proposition 9.7 is an immediate consequence of Propositions 10.1 and 10.2. Before
proving them, note that the notion of chain graph is inspired from the notion of strategy graph
in [16]. This is because both notions are designed to derive contradictions to similar equations.
However, our proof remains fairly different from the one of [16]. The reason for this is that the
main difficulty here is proving Proposition 10.2, i.e., going from chain trees (which are unique to
our setting) to a recursive chain graph. On the contrary, the much simpler proof of Proposition
10.1 is similar to the corresponding one in [16].

10.1 Proof of Proposition 10.1

Assume thatG[α] is recursive. By definition, we get a productive cycle in the graphG[α]. We first
prove that we may assume this cycle to consist exactly of two nodes.

Lemma 10.3. If G[α] is recursive, it has a productive cycle with exactly two nodes.

Proof. Since G[α] is recursive, by definition it contains a productive cycle, i.e., a cycle whose
nodes all share the same alphabet and contain two nodes with different values. In particular, the
number n of nodes in the cycle is at least 2. If n = 2, the lemma is immediate. Assume that n � 3;
we prove that G[α] must contain a productive cycle of length n − 1. The lemma will then follow
by induction.

To construct such a productive cycle of length n − 1, it suffices to show that one can replace any
two consecutive nodes

((u1,u2), r) → ((p1,p2), s)

in the cycle by a single one having the same value as ((p1,p2), s). Indeed, since the cycle is of length
at least 3, there exists such an edge, where ((p1,p2), s) is one of the two nodes having distinct values
and the other one is not ((u1,u2), r), meaning that the resulting shortened cycle will still exhibit
two nodes with distinct values.

Pick such an edge in the cycle; by definition, there exists an alternation schema (r , r1, r2) such
that u1r1 = p1 and r2u2 = p2. Consider the node ((u1,u2), r1sr2).

—By definition of an alternation schema and of a productive cycle, alph(r1sr2) = alph(rs) =
alph(s); hence, the node ((u1,u2), r1sr2) has the same alphabet as all nodes in the cycle.

—Its value is u1 (r1sr2)u2 = p1sp2; hence, ((u1,u2), r1sr2) has the same value as ((p1,p2), s).
—By definition of the graph, any node having an outgoing edge to ((u1,u2), r) also has an

outgoing edge to ((u1,u2), r1sr2).
—It remains to show that if there is an edge ((p1,p2), s) → ((q1,q2), t), then there is also an

edge ((u1,u2), r1sr2) → ((q1,q2), t).

Let (s, s1, s2) be an alternation schema such thatp1s1 = q1 and s2p2 = q2 (such an alternation schema
exists by definition of the edges). One can verify that (r1sr2, r1s1, s2r2) is an alternation schema as
well. Moreover, u1r1s1 = p1s1 = q1 and s2r2u2 = s2p2 = q2, which proves that there is an edge from
((u1,u2), r1sr2) to ((q1,q2), t). �

We now conclude the proof of Proposition 10.1: we have to show that α fails Equation (16).
Let ((p1,p2), s) and ((q1,q2), t) be two nodes forming a productive cycle of length 2, as defined in
Lemma 10.3. We get alternation schemas (s, s1, s2) and (t , t1, t2) such that

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

12:50 T. Place and M. Zeitoun

(1) p1sp2 � q1tq2.
(2) alph(s) = alph(t).
(3) p1s1 = q1 and q1t1 = p1; hence, p1 = p1 (s1t1)ω .
(4) s2p2 = q2 and t2q2 = p2; hence, p2 = (t2s2)ωp2.

By combining Items (3) and (4), we obtain that

p1sp2 = p1 (s1t1)ωs (t2s2)ωp2

q1tq2 = p1 (s1t1)ωs1ts2 (t2s2)ωp2.

Hence, since alph(s) = alph(t), Equation (16) would require that p1sp2 = q1tq2, which contradicts
Item (1). We conclude that Equation (16) is not satisfied by α .

10.2 Proof of Proposition 10.2

In the remainder of the section, we assume that α satisfies the hypothesis of Proposition 10.2. We
prove that G[α] is recursive by constructing a productive cycle.

We say that a node ((p1,p2), s) ofG[α] is alternating if for alln, there exists (s1, . . . , sn) ∈ C2,n[α]
such that s1 = s and the chain (p1s1p2, . . . ,p1snp2) has alternation n − 1.

Lemma 10.4. G[α] contains at least one alternating node.

Proof. By hypothesis, C2[α] has unbounded alternation. It follows that there exists a least one
s ∈ M such that there are Σ2-chains with arbitrary high alternation and s as first element. By
definition, the node ((1M , 1M), s) is then alternating. �

For the remainder of the proof, we define B as a minimal alphabet such that there exists an
alternating node ((p1,p2), s) in G[α] with alph(s) = B. By this, we mean that the only C ⊆ B such
that there exists an alternating node ((q1,q2), t) in G[α] with alph(t) = C is B itself.

Lemma 10.5. Let ((p1,p2), s) be an alternating node of G[α] with alph(s) = B. Then, there exists
an alternating node ((q1,q2), t) such that

(1) alph(t) = B.
(2) there exists an edge from ((p1,p2), s) to ((q1,q2), t).
(3) p1sp2 � q1tq2.

By definition,G[α] has finitely many nodes. Therefore, since by Lemma 10.4 there exists at least
one alternating node, it is immediate from Lemma 10.5 that G[α] must contain a cycle witnessing
that G[α] is recursive. This terminates the proof of Proposition 10.2. It remains to prove Lemma
10.5. We present the proof in the next section.

10.3 Proof of Lemma 10.5

Let ((p1,p2), s) be an alternating node of G[α] with alph(s) = B. We need to construct a node
((q1,q2), t) satisfying the conditions of the lemma (i.e., a successor of ((p1,p2), s) with a different
value and the same minimal alphabet B). Since ((p1,p2), s) is alternating, there exists a set of Σ2-
chainsS such that, for every chain (s1, . . . , sn) ofS, we have that s = s1 and (p1s1p2, . . . ,p1snp2) has
alternationn − 1. By Corollary 9.5, this yields a set of chain treesS such thatS = {valC (T) | T ∈ S}.
By construction, S has unbounded alternation and, hence, unbounded recursive alternation by
hypothesis in Proposition 10.2.

We now proceed in two steps. First, we use S to construct a new set of chain trees U and that
satisfies an additional property that we call local optimality. We then choose a tree T ∈ U with
large enough recursive alternation and use it to construct the desired node ((q1,q2), t).

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

Going Higher in First-Order Quantifier Alternation Hierarchies on Words 12:51

Construction of U : Local Optimality. Let us first define local optimality. Note that the definition
depends on the pair (p1,p2). Let T be a chain tree, x be any operation node in T and (t1, . . . , tn) =
valC (x). We say that x is locally optimal if for all i < n, either ti = ti+1 or the chain treeTi obtained
from T by replacing the label of x by (t1, . . . , ti−1, ti , ti , ti+2, . . . , tn) satisfies

(p1, . . . ,p1) · valC (T) · (p2, . . . ,p2) � (p1, . . . ,p1) · valC (Ti) · (p2, . . . ,p2).

Intuitively, this means that for all i , alternating from ti to ti+1 in the label of x is necessary to
maintain the value of the tree (in the context determined by (p1, . . . ,p1) and (p2, . . . ,p2)). We say
that a chain tree T is locally optimal if all of its operation leaves are locally optimal.

Lemma 10.6. There exists a set of locally optimal chain trees U such that for any (u1, . . . ,un) ∈
{valC (T) | T ∈ U }, we have s = u1 and (p1u1p2, . . . ,p1unp2) has alternation n − 1.

Proof. From any chain tree T , we construct a new chain tree T ′ such that

(1) (p1, . . . ,p1) · valC (T) · (p2, . . . ,p2) = (p1, . . . ,p1) · valC (T ′) · (p2, . . . ,p2).
(2) valC (T) and valC (T ′) have the same first element.
(3) T ′ is locally optimal.

It then suffices to let U be the set of all trees T ′ constructed in this way from trees T of S.
Let T be any chain tree of level n. For all i < n, define the i-alternation of T as the number of

operation leaves x in T such that valC (x) = (t1, . . . , tn) with ti � ti+1. Finally, define the index of
T as the sequence of size n − 1 of its i-alternations, ordered increasingly with respect to values of
i . Note that the lexicographic ordering on this set of sequences of fixed length is well founded.

Assume thatT is not locally optimal. We explain how to construct a new chain treeT ′ satisfying
(1), (2) and

(3’) T ′ has strictly smaller index than T .

It then suffices to iteratively apply this construction starting from T until we get the desired lo-
cally optimal tree (which must eventually happen since the ordering on indices of chain trees of
level n is well founded). The construction of T ′ is as follows. Since T is not locally optimal, there
exists an operation leaf x ofT that is not locally optimal. Let (t1, . . . , tn) = valC (x). By hypothesis,
there exists i < n such that ti � ti+1 and the chain tree T ′ obtained by replacing the label of x by
(t1, . . . , ti−1, ti , ti , ti+2, . . . , tn) satisfies 1. Since this replacement does not modify the first compo-
nent of any node, Property 2 is satisfied as well. Finally, by definition, for any j < i ,T ,T ′ have the
same j-alternation andT ′ has strictly smaller i-alternation. It follows thatT ′ has a strictly smaller
index than T , which terminates the proof. �

For the remainder of the section, we assume that U is fixed as the set of locally optimal chain
trees of Lemma 10.6. Observe that, by definition, U has unbounded alternation. Hence, by the
hypothesis in Proposition 10.2, it has unbounded recursive alternation as well.

Construction of the node ((q1,q2), t). We choose a tree T ∈ U . The choice is based on the
following lemma.

Lemma 10.7. There exists an integer k such that, for all t1, t2 ∈ M ,

(t1, t2)k ∈ C2[α]⇒ (t1, t2)∗ ⊆ C2[α].

Proof. If for all t1, t2 ∈ M , we have that (t1, t2)∗ ⊆ C2[α], we choose k = 1. Otherwise, since
C2[α] is closed under subwords (Fact 5.2), if (t1, t2)k � C2[α], then, for all j � k , we have that
(t1, t2) j � C2[α] as well. Therefore, one can define k as the largest integer such that there ex-
ist t1, t2 ∈ M with (t1, t2)k−1 ∈ C2[α] but (t1, t2)k � C2[α] (with the convention that (t1, t2)0 ∈
C2[α]). �

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

12:52 T. Place and M. Zeitoun

Fig. 8. The chain tree T .

Let m = |M |2 × k , with k defined as in Lemma 10.7. Since U has unbounded recursive alterna-
tion, there exists T ∈ U with recursive alternationm. Let n be the level of T .

We now useT to construct the desired node ((q1,q2), t) inG[α] fulfilling all properties of Lemma
10.5. We begin by summarizing all hypotheses that we have on T (these hypotheses are also rep-
resented in Figure 8). Let ū = (u1, . . . ,un) = valC (T) and recall that, by choice of T in U , we
have that u1 = s . Let x1, . . . ,xh be the leaves of T (from left to right). Recall that, by Fact 9.2,
valC (T) = valC (x1) · · · valC (xh).

By definition of recursive alternation, T must contain an operation leaf x ∈ {x1, . . . ,xh } whose
label valC (x) has alternation m. By definition of chain trees, x is the middle child of an operation
node z. We let y,y ′ be the left and right children of this node. Finally, we let j, j ′ � h such that x j+1

is the leftmost leaf that is a descendant of y and x ′j′−1 is the rightmost leaf that is a descendant of
y ′ (see Figure 8). We now define the following chains:

t̄ = (t1, . . . , tn) = valC (x)
v̄ = (v1, . . . ,vn) = valC (y)
v̄ ′ = (v ′1, . . . ,v

′
n) = valC (y ′)

r̄ = (r1, . . . , rn) = valC (x1) · · · valC (x j)
r̄ ′ = (r ′1, . . . , r

′
n) = valC (x j′) · · · valC (xh)

By definition, we have valC (T) = r̄ · v̄ · t̄ · v̄ ′ · r̄ ′. Since x is an operation node, there exists an idem-
potent (e,E) ∈ J2,n[α] such that

—valJ (y) = valJ (y ′) = (e,E).
—v̄, v̄ ′ ∈ (e,E).
— t̄ ∈ (e,E) · (1M ,T) · (e,E) with T =

{
(t1, . . . , tn−1) ∈ C2,n−1[α] | alph(t1) = alph(e)

}
.

By choice of x , t̄ = (t1, . . . , tn) = valC (x) has alternationm = |M |2 · k . It follows from the pigeon-
hole principle that there exist i such that ti � ti+1 and a set I ⊆ {1, . . . ,n − 1} of size at least k
such that for all j ∈ I , tj = ti and tj+1 = ti+1. Note that this implies that the chain (ti , ti+1)k is a
subword of (t1, . . . , tn) and, therefore, is a Σ2-chain. By choice of k (see Lemma 10.7), it follows
that (ti , ti+1)∗ ⊆ C2[α].

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

Going Higher in First-Order Quantifier Alternation Hierarchies on Words 12:53

Recall thatT is locally optimal since it belongs to U . By definition of local optimality, changing
ti+1 to ti in the label valC (x) of the operation node x changes the value valC (T), hence, its (i + 1)th
component. We therefore obtain the following fact.

Fact 10.8. p1ri+1vi+1tiv
′
i+1r

′
i+1p2 � p1ri+1vi+1ti+1v

′
i+1r

′
i+1p2.

We now define the node ((q1,q2), t). We let

q1 = p1ri+1vi+1 and q2 = v
′
i+1r

′
i+1p2.

It is immediate from Fact 10.8 that either q1tiq2 � p1sp2 or q1ti+1q2 � p1sp2. In the first case, we let
t = ti ; in the second case, we let t = ti+1. Note that since (ti , ti+1)∗ ⊆ C2[α] and q1tiq2 � q1ti+1q2,
the node ((q1,q2), t) is alternating by definition.

It remains to prove that

—alph(t) = alph(s) and that
—there is an edge ((p1,p2), s) → ((q1,q2), t) in G[α].

For the proof, we assume that t = ti (the case t = ti+1 is similar).
Observe that in the Σ2-chain, valC (T) = (u1, . . . ,un), u1 = s and ui = p1rivitiv

′
ir
′
ip2. Since

(u1, . . . ,un) is a Σ2-chain, one can verify that all of its elements have the same alphabet; hence,
alph(ui) = alph(s) = B and alph(t) ⊆ B. Now, recall that B was chosen as a minimal alphabet such
that there is an alternating node ((q1,q2), t) with alph(t) = B. Hence, since ((q1,q2), t) is alternat-
ing and alph(t) ⊆ B, we have that alph(t) = B = alph(s).

Finally, we need to prove that there is an edge from ((p1,p2), s) to ((q1,q2), t), i.e., to find s1, s2 ∈
M such that (s, s1, s2) is an alternation schema and p1s1 = q1 and s2p2 = q2. We define s1 = ri+1vi+1

and s2 = v
′
i+1r

′
i+1. That p1s1 = q1 and s2p2 = q2 is immediate by definition of q1 and q2. It remains

to prove that (s, s1, s2) is an alternation schema.
Recall that v̄, v̄ ′ ∈ (e,E) with (e,E) ∈ J2,n[α]. Define F ⊆ M as the set containing all elements

that are at component i of some chain in E. In particular, vi+1,v
′
i+1 ∈ F . It is immediate from

Fact 5.8 (closure of junctures under subwords) that (e,F) ∈ J2,2[α]. Moreover, the idempotency
of (e,E) entails that (e,F) is also idempotent. By Fact 5.2 (closure of chains under subwords), we
have that (r1, ri+1) ∈ C2[α] and (r ′1, r

′
i+1) ∈ C2[α]. Hence, we have that (r1, {ri+1}) ∈ J2,2[α] and

(r ′1, {r ′i+1}) ∈ J2,2[α]. We conclude that s = u1 = r1er
′
1, s1 ∈ {ri+1} · F and s2 ∈ F · {r ′i+1}. Moreover,

by definition, alph(e) = alph(t) = B = alph(s): we conclude that (s, s1, s2) is an alternation schema,
which terminates the proof. �

11 PROOF OF PROPOSITION 9.6

In this section, we prove Proposition 9.6. Recall that we have fixed a morphism α : A∗ → M into
a finite monoid M . Assume that there exists a set of chain trees S ⊆ TC[α] with unbounded al-
ternation but bounded recursive alternation. We need to prove that α does not satisfy one of the
equations in Equation (17). As for the previous section, we will use a new object that is specific to
this case: chain matrices.

Chain Matrices. Let n ∈ N . A chain matrix of length n is a rectangular matrix with n columns
and whose rows belong to C2,n[α]. If M is a chain matrix, we will denote by Mi, j the entry at
row i (starting from the top) and column j (starting from the left) in M . If M is a chain matrix
of length n and withm rows, we call the chain

(
(M1,1 · · ·Mm,1), . . . , (M1,n · · ·Mm,n)

)
, the value

of M . Since C2,n[α] is a monoid by Fact 5.4, the value of a chain matrix is a Σ2-chain. We give an
example with 3 rows in Figure 9.

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

12:54 T. Place and M. Zeitoun

Fig. 9. Value of a chain matrix with 3 rows.

Given a chain matrix M , the alternation of M is the alternation of its value. Finally, the local
alternation of a chain matrix, M , is the largest integerm such that M has a row with alternation
m. We now prove the following two propositions.

Proposition 11.1. Assume that there exists a set of chain trees S ⊆ TC[α] with unbounded alter-
nation and recursive alternation bounded by K ∈ N . Then, there exist chain matrices with arbitrarily
large alternation and local alternation bounded by K .

Proposition 11.2. Assume that there exist chain matrices with arbitrarily large alternation and
local alternation bounded by K ∈ N . Then, α does not satisfy Equation (17).

Proposition 9.6 is an immediate consequence of Proposition 11.1 and 11.2. Note that chain ma-
trices are reused from [16] (in which they are called “strategy matrices”). Moreover, in this case,
going from chain trees to chains matrices (i.e., proving Proposition 11.1) is simple and the main
difficulty is proving Proposition 11.2. This means that while our presentation is different from that
of [16], the fundamental arguments themselves are essentially the same. We give a full proof for
the sake of completeness. We begin by proving Proposition 11.1.

Proof of Proposition 11.1. We prove that, for all n ∈ N , there exists a chain matrix M of
alternation n and local alternation bounded by K . By definition of S, there exists a tree T ∈ S
whose value has alternation n and has recursive alternation bounded by K . Let x1, . . . ,xm denote
the leaves ofT , listed from left to right. By Fact 9.2, valC (T) = valC (x1) · · · valC (xm). Observe that,
by definition, for all i , valC (xi) has alternation bounded by K . Therefore, it suffices to pick M as
them × n matrix, where row i is filled with valC (xi). �

It now remains to prove Proposition 11.2. We proceed as follows: assuming that there exists a
chain matrix M with local alternation bounded by K and very large alternation, we refine M
in several steps to ultimately obtain a chain matrix of a special kind that we call a contradiction
matrix. There are two types of contradiction matrices, increasing and decreasing. Both are chain
matrices of length 6 with the following entries:

where e, f are idempotents and f u2e � f v2e . As the name suggests, the existence of a contradiction
matrix contradicts Equation (17). This is what we state in the following lemma.

Lemma 11.3. If there exists a contradiction matrix, then α does not satisfy Equation (17).

Proof. Assume that we have an increasing contradiction matrix (the other case is treated in a
symmetrical way). Since f u2e � f v2e , either f u2e � f e or f v2e � f e . By symmetry, assume that

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

Going Higher in First-Order Quantifier Alternation Hierarchies on Words 12:55

Fig. 10. A tame chain matrix of length 6.

it is the former. Since e, f are idempotents, this means that f ωu2e
ω � f ωeω . However, by defi-

nition of chain matrices, (e,u2,v2, f) ∈ C2[α] and, therefore, (e,u2, f) ∈ C2[α], which contradicts
the second equation in Equation (17). Note that we used only one-half of Equation (17); the other
half is used in the decreasing case. �

By Lemma 11.3, it suffices to prove the existence of a contradiction matrix to conclude the proof
of Proposition 11.2. This is what we do in the remainder of this section. By hypothesis, we know
that there exist chain matrices with arbitrarily large alternation and local alternation bounded by
K ∈ N . For the remainder of the section, we assume that this hypothesis holds. We use several
steps to prove that we can choose our chain matrices with increasingly strong properties until we
get a contradiction matrix. We use two intermediary types of matrices, which we call Tame Chain
Matrices and Monotonous Chain Matrices. We divide the proof in three sections, one for each step.

11.1 Tame Chain Matrices

Let M be a chain matrix of even length 2� and let j � �. The set of alternating rows for j, denoted
by alt(M , j), is the set {i |Mi,2j−1 �Mi,2j }. Let (s1, . . . , s2�) be the value of M . We say that M
is tame if

a) for all j � �, s2j−1 � s2j ,
b) for all j � �, alt(M , j) is a singleton, and
c) if j � j ′, then alt(M , j) � alt(M , j ′).

We represent a tame chain matrix of length 6 in Figure 10. Observe that the definition considers
only the relationship between odd columns and the next even column. Moreover, observe that a
tame chain matrix of length 2� has, by definition, alternation at least �.

Lemma 11.4. There exist tame chain matrices of arbitrarily large length.

Proof. Letn ∈ N . We explain how to construct a tame chain matrix of length 2n. By hypothesis,
there exists a chain matrix M with local alternation at most K and alternation greater than 2nK .
Let m be the number of rows of M . We explain how to modify M to obtain a matrix satisfying
(a, (b and (c. Recall that Σ2-chains are closed under subwords; therefore, removing columns from
M yields a chain matrix. Since M has alternation greater than 2nK , it is simple to see that by
removing columns, one can obtain a chain matrix of length 2nK that satisfies (a). We denote this
matrix by N . We now proceed in two steps. First, we modify the entries in N to get a matrix P
of length 2nK , satisfying both (a) and (b). Then, we use our bound on local alternation to remove
columns and enforce (c) in the resulting matrix.

Construction of P . Let j � nK such that alt(N , j) is of size at least 2. We modify the matrix
to reduce the size of alt(N , j) while preserving (a). One can then repeat the operation to get the

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

12:56 T. Place and M. Zeitoun

Fig. 11. A monotonous chain matrix (increasing).

desired matrix. Let i ∈ alt(N , j). Let s1 = N1,2j−1 · · ·Ni−1,2j−1 and s2 = Ni+1,2j−1 · · ·Nm,2j−1. We
distinguish two cases.

First, if s1Ni,2j−1s2 � s1Ni,2js2, then, for all i ′ � i , we replace entry Ni′,2j with entry Ni′,2j−1.
One can verify that this yields a chain matrix of length 2nK , local alternation bounded by K .
Moreover, it still satisfies (a), since s1Ni,2j−1s2 � s1Ni,2js2. Finally, alt(N , j) is now a singleton,
namely, {i}.

In the second case, we have that s1Ni,2j−1s2 = s1Ni,2js2. In that case, we replace Ni,2j−1 with
Ni,2j . One can verify that this yields a chain matrix of length 2nK , local alternation bounded by
K . Moreover, it still satisfies (a) since we did not change the value of the matrix. Finally, the size
of alt(N , j) has decreased by 1.

Construction of the tame matrix. We now have a chain matrix P of length 2nK , with local
alternation bounded by K and satisfying both (a) and (b). Since (a) and (b) are satisfied, for all
j � nK , there exists exactly one row i such that Ni,2j−1 � Ni,2j . Moreover, since each row has
alternation at most K , a single row i has this property for at most K indices j. Therefore, it suffices
to remove at most n(K − 1) pairs of odd-even columns to get a matrix that satisfies (c). Since the
original matrix had length 2nK , this leaves a matrix of length at least 2n, as desired. �

11.2 Monotonous Chain Matrices

Let M be a tame chain matrix of length 2n and let x1, . . . ,xn be integers such that, for all j,
alt(M , j) = {x j }. We say that M is a monotonous chain matrix if it has exactly n rows and 1 = x1 <
x2 < · · · < xn = n (in which case the matrix is said to be increasing) or n = x1 > x2 > · · · > xn = 1
(in which case we say the matrix is decreasing). We give a representation of the increasing case in
Figure 11.

Lemma 11.5. There exist monotonous chain matrices of arbitrarily large length.

Proof. Let n ∈ N . We explain how to construct a monotonous chain matrix of length 2n. By
Lemma 11.4, there exists a tame chain matrix M of length 2n2. Let x1, . . . ,xn2 be the indices
such that, for all j, alt(M , j) = {x j }. Note that, by tameness, x j � x j′ for j � j ′. Since the sequence
x1, . . . ,xn2 is of length n2, we can extract, using the Erdös-Szekeres theorem, a monotonous se-
quence of length n, x j1 < · · · < x jn

or x j1 > · · · > x jn
with j1 < · · · < jn . By symmetry, we assume

that it is the former and construct an increasing chain matrix of length n.
Let P be the matrix of length 2n obtained from M by keeping only the pairs of columns

2j − 1, 2j for j ∈ {j1, . . . , jn }. Let x ′1, . . . ,x
′
n be the indices such that, for all j, alt(P, j) = {x ′j }. By

definition, x ′1 < · · · < x ′n . We now want P to have exactly n rows. Note that the rows whose in-
dices do not belong to {x ′1, · · · ,x ′n } are constant chains. We simply merge these rows with others.
For example, if row i is labeled with the constant chain (s, . . . , s), let (s1, . . . , s2n) be the label of

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

Going Higher in First-Order Quantifier Alternation Hierarchies on Words 12:57

row i + 1. We remove row i and replace row i + 1 by the Σ2-chain (ss1, . . . , ss2n). Repeating the
operation yields the desired increasing monotonous chain matrix. �

11.3 Construction of the Contradiction Matrix

We can now use Lemma 11.5 to construct a contradiction matrix and end the proof of Proposition
9.6. We state this in the following proposition.

Proposition 11.6. There exists a contradiction matrix.

The remainder of this section is devoted to the proof of Proposition 11.6. The result follows
from a Ramsey argument. We use Lemma 11.5 to choose a monotonous matrix of sufficiently large
length. Then, we use Ramsey’s Theorem (for hypergraphs with edges of size 3) to extract the
desired contradiction matrix.

We first define the length of the monotonous chain matrix that we need to pick. By Ramsey’s
Theorem, for everym ∈ N , there exists a number φ (m) such that, for any complete 3-hypergraph
with hyperedges colored over the monoid M , there exists a complete sub-hypergraph of sizem in
which all edges share the same color. We choose n = φ (φ (4) + 1). By Lemma 11.5, there exists a
monotonous chain matrix M of length 2n. Since it is monotonous, M has n rows.

By symmetry, we assume that M is increasing and use it to construct an increasing contradic-
tion matrix. We use our choice of n to extract a contradiction matrix from M . We proceed in two
steps, using Ramsey’s Theorem each time. In the first step, we treat all entries above the diagonal
in M and in the second step all entries below the diagonal. We state the first step in the next
lemma.

Lemma 11.7. There exists an increasing monotonous matrix N of length 2 · φ (4) such that all cells
above the diagonal contain the same idempotent f ∈ M .

Proof. This is proved by applying Ramsey’s Theorem to M . Consider the complete
3-hypergraph whose nodes are {0, . . . ,n}. We label the hyperedge {i1, i2, i3}, where i1 < i2 < i3
by the value obtained by multiplying in the monoid M the cells that appear in rows i1 + 1, . . . , i2
in column 2i3 − 1. Observe that since i1 < i2 < i3, by monotonicity, these entries are the same as
in column 2i3. More formally, the label of the hyperedge {i1, i2, i3} with i1 < i2 < i3 is, therefore,

Mi1+1,2i3−1 · · ·Mi2,2i3−1 =Mi1+1,2i3 · · ·Mi2,2i3 .

By choice of n, we can apply Ramsey’s Theorem to this coloring. We get a subset of φ (4) + 1
vertices, say, K = {k1, . . . ,kφ (4)+1} ⊆ {0, . . . ,n}, such that all hyperedges connecting nodes in K
have the same color, say, f ∈ M . For i1 < i2 < i3 < i4 in K , note that the color of the hyperedge
{i1, i3, i4} is, by definition, the product of the colors of the hyperedges {i1, i2, i4} and {i2, i3, i4}.
Therefore, the common color f needs to be an idempotent: f = f f . We now extract the desired
matrix N from M according to the subset K . The main idea is that the new row i in N will be
the merging of rows ki + 1 to ki+1 in M and the new pair of columns 2j − 1, 2j will correspond to
the pair 2kj+1 − 1, 2kj+1 in M .

We first merge rows. For all i � 1, we “merge” all rows from ki + 1 to ki+1 into a single row.
More precisely, this means that we replace the rows ki + 1 to ki+1 by a single row containing the
Σ2-chain

(Mki+1,1 · · ·Mki+1,1, . . . ,Mki+1,2n · · ·Mki+1,2n).

Moreover, we remove the top and bottom rows, i.e., rows 1 to k1 and rows kφ (4)+1 + 1 toφ (4) + 1.
Then, we remove all columns from 1 to 2k2 − 2, all columns from 2kφ (4)+1 + 1 to 2n, and for all
i � 2, all columns from 2ki + 1 to 2ki+1 − 2. One can verify that these two operations applied to-
gether preserve monotonicity. Observe that the resulting matrix N has exactly 2 × φ (4) columns.

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

12:58 T. Place and M. Zeitoun

Moreover, the cell i, 2j in the new matrix contains entry Mki+1,2kj+1 · · ·Mki+1,2kj+1 . In particular,
if j > i , by definition of the set K , this entry is f , which means that N satisfies the conditions of
the lemma. �

It remains to apply Ramsey’s Theorem a second time to the matrix N obtained from Lemma
11.7 to treat the cells below the diagonal and get the contradiction matrix. We state this in the
following last lemma.

Lemma 11.8. There exists an increasing monotonous matrix P of length 6 such that all cells above
the diagonal contain the same idempotent f ∈ M and all cells below the diagonal contain the same
idempotent e ∈ M (i.e., P is an increasing contradiction matrix).

Proof. The argument is identical to the one of Lemma 11.7. This time, we apply it to the matrix
N of length 2 × φ (4) for the cells below the diagonal. The monochromatic set given by Ramsey’s
theorem is of size 4 this time, which, with the above construction, will leave a matrix with 3 rows
and 6 columns. �

12 ADDING SUCCESSOR: THE ENRICHED HIERARCHY

All decidability results that we have proved so far are for fragments of the order hierarchy. In this
section, we transfer these results to the enriched hierarchy. More precisely, we present algorithms
for the following problems:

—the separation problem for Σ2 (<,+1,min,max) and Π2 (<,+1,min,max).
—the membership problem for Σ3 (<,+1,min,max).
—the membership problem for BΣ2 (<,+1,min,max).

For each problem, we actually present a reduction to the same problem for the corresponding
fragment in the order hierarchy; decidability then follows from the results of the previous sections.
The transfer results are not new and were initially presented in [75, 102] for the membership
problem and in [4, 96] and [83] for the separation problem (unlike the former, this latter work also
copes with classes not closed under complement and, therefore, can be applied to Σi (<)). In this
section, we state only the reductions and refer the reader to these papers for proofs.

Note that the reductions that we use are all taken from [83]. In particular, for membership, while
the underlying ideas remain similar to that of [75, 102], the reduction itself is fairly different from
the original one.

We divide the section into two parts. In the first part, we define the main tool used in the reduc-
tions: the morphism of well-formed words. In the second part, we present the reductions themselves.

12.1 Morphism of Well-Formed Words

Fix a morphism α : A∗ → M into a finite monoid M . We define E ⊆ M as the set of idempotents of
α (A+), i.e., E is the set of idempotents of M that are images of a nonempty word. We define a new
alphabet Aα , called alphabet of well-formed words of α , as follows:

Aα =

M
∪ M × E
∪ E ×M
∪ E ×M × E

We will not be interested in all words inA∗α , but only in those that are well formed. A wordw ∈ A∗α
is said to be well formed if one of the two following properties hold:

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

Going Higher in First-Order Quantifier Alternation Hierarchies on Words 12:59

—w = ε or is a single-letter word s ∈ M .
—w = (s1, f1) (e2, s2, f2) (e3, s3, f3) · · · (en , sn) ∈ (S × E) · (E × S × E)∗ · (E × S) and for all 1 �
i � n − 1, we have that fi = ei+1.

The following fact is immediate.

Fact 12.1. The set of well-formed words of A∗α is a regular language.

Observe that one can define a monoid morphism β : A∗α → M by letting β (s) = s for all s ∈ M ,
β ((e, s)) = es for all (e, s) ∈ E ×M , β ((s, e)) = se for all (s, e) ∈ M × E, and β ((e, s, f)) = es f for all
(e, s, f) ∈ E ×M × E. We call β the morphism of well-formed words associated to α .

Associated language of well-formed words. To any language L ⊆ A∗ that is recognized by α ,
one can associate a language of well-formed words L ⊆ A∗α (depending on α):

L =
{
w ∈ A∗α | w is well formed and β (w) ∈ α (L)

}
.

By definition, the language L ⊆ A∗α is the intersection of the language of well-formed words with
β−1 (α (L)). Therefore, it is immediate by Fact 12.1 that it is regular, more precisely:

Fact 12.2. Let L ⊆ A∗ that is recognized by α . Then, the associated language of well-formed words
L ⊆ A∗α is a regular language, and one can compute it from α .

12.2 Reductions

We can now state the reductions; we begin with the separation result.

Theorem 12.3 (Place and Zeitoun [83]). Let L0,L1 be regular languages and let α : A∗ → M
be a morphism into a finite monoid M that recognizes both L0 and L1. Finally, let L0 and L1 be the
languages of well-formed words associated to L0 and L1.

For all i � 1, L0 is Σi (<,+1,min,max)-separable (resp., BΣi (<,+1,min,max)-separable) from L1

if and only if L0 is Σi (<)-separable (resp., BΣi (<)-separable) from L1.

Theorem 12.3 reduces Σi (<,+1,min,max)-separability (resp., BΣi (<,+1,min,max)-
separability) to Σi (<)-separability (resp., BΣi (<)-separability). Since we already know that
Σ2 (<)-separability is decidable (see Corollary 7.3), we get the following corollary:

Corollary 12.4. Given as input two regular languages L1,L2 it is decidable to test whether L1 can
be Σ2 (<,+1,min,max)-separated (resp., Π2 (<,+1,min,max)-separated) from L2.

This terminates our separation results. We now state the membership reduction.

Theorem 12.5 (Place and Zeitoun [83]). Let L be a regular language and let α : A∗ → M be
a morphism into a finite monoid M that recognizes L. Finally, let L be the language of well-formed
words associated to L.

For all i � 3, L is Σi (<,+1,min,max)-definable if and only if L is Σi (<)-definable.
For all i � 2, L is BΣi (<,+1,min,max)-definable if and only if L is BΣi (<)-definable.

Observe that, in contrast to the separation reduction, the membership reduction does not work
for lower levels in the hierarchy. For example, it does not work for BΣ1 (<) and Σ2 (<). This is
essentially because these logics are not powerful enough to express that a word in A∗α is well
formed (this is only possible for logics including and above Π2 (<)).

By combining Theorem 12.5 with Corollaries 7.4 and 8.2, we get the desired corollary.

Corollary 12.6. Given as input a regular language L, the following problems are decidable:

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

12:60 T. Place and M. Zeitoun

—whether L is definable in BΣ2 (<,+1,min,max).
—whether L is definable in Δ3 (<,+1,min,max).
—whether L is definable in Σ3 (<,+1,min,max).
—whether L is definable in Π3 (<,+1,min,max).

13 CONCLUSION

We solved the separation problem for Σ2 (<) using the new notion of Σ2-chains, and we used our
solution to prove decidable characterizations forBΣ2 (<), Δ3 (<), Σ3 (<), and Π3 (<). The main open
problem in this field remains to lift up these results to higher levels in the hierarchy. In particular,
we proved that, for any positive integer i , generalizing our separation solution to Σi (<) (i.e., being
able to compute the Σi -chains of length 2) would yield a decidable characterization for Σi+1 (<),
Πi+1 (<), and Δi+1 (<).

Our algorithm for computing Σ2-chains cannot be directly generalized for higher levels. An
obvious reason for this is the fact that it considers Σ2-chains parametrized by subalphabets. This
parameter is designed to take care of the alternation between levels 1 and 2, but is not adequate for
higher levels. However, this problem has been circumvented for the next level: a new algorithm
to compute Σ3 (<)-chains has been designed and proved in [78]. This requires introducing hy-
brid objects capturing even more information than Σ3 (<)-chains and Σ3 (<)-junctures, and which
are amenable to a recursive computation. Yet, this difficulty is unlikely to be the only problem.
In particular, we do have an algorithm that avoids using the alphabet, but it remains difficult to
generalize. We leave the presentation of this alternate algorithm for further work.

Another orthogonal research direction is to solve separation for BΣi (<) levels. The idea of ex-
ploiting the knowledge on some class to solve separation for the Boolean algebra that it generates
is actually more meaningful for other classes than levels of the alternation hierarchy. Indeed, one
can generalize the relationship between Σi (<)-chains with unbounded alternation and separation
for BΣi (<) (as stated in Theorem 6.6) by replacing the class Σi (<) with any lattice L of regular
languages. Otherwise stated, one can generalize the definitions to make generic the link between
L-chains with unbounded alternation and separation by languages of BL, the Boolean algebra
generated by the lattice L. Even for BΣ2 (<), the problem of determining, for two given elements
s1, s2 of the monoid under consideration, whether the set of chains (s1, s2)∗ only consists of Σi (<)-
chains is still wide open. Solving it may provide intuition for upper levels, but probably requires
new concepts.

REFERENCES

[1] Douglas Albert, Robert Baldinger, and John Rhodes. 1992. Undecidability of the identity problem for finite semi-
groups. The Journal of Symbolic Logic 57, 1 (1992), 179—192.

[2] Jorge Almeida. 1991. Implicit operations on finite J-trivial semigroups and a conjecture of I. Simon. Journal of Pure

and Applied Algebra 69, 3 (1991), 205–218.
[3] Jorge Almeida. 1995. Finite Semigroups and Universal Algebra. World Scientific, Singapore.
[4] Jorge Almeida. 1999. Some algorithmic problems for pseudovarieties. Publicationes Mathematicae Debrecen 54 (1999),

531–552.
[5] Jorge Almeida and Ondrej Klíma. 2009. A counterexample to a conjecture concerning concatenation hierarchies.

Information Processing Letters 110, 1 (2009), 4–7.
[6] Jorge Almeida and Ondrej Klíma. 2010. New decidable upper bound of the 2nd level in the Straubing-Thérien con-

catenation hierarchy of star-free languages. Discrete Mathematics & Theoretical Computer Science 12, 4 (2010), 41–58.
[7] Jorge Almeida and Marc Zeitoun. 1997. The pseudovariety J is hyperdecidable. RAIRO Informatique Théorique et

Applications 31, 5 (1997), 457–482.
[8] Mustapha Arfi. 1987. Polynomial operations on rational languages. In Proceedings of the 4th Annual Symposium on

Theoretical Aspects of Computer Science (STACS’87), Lecture Notes in Computer Science, Franz-Josef Brandenburg, Guy
Vidal-Naquet, and Martin Wirsing (Eds.), Vol. 247. Springer, Berlin, 198–206.

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

Going Higher in First-Order Quantifier Alternation Hierarchies on Words 12:61

[9] Mustapha Arfi. 1991. Opérations polynomiales et hiérarchies de concaténation. Theoretical Computer Science 91, 1
(1991), 71–84.

[10] Karl Auinger. 2010. On the decidability of membership in the global of a monoid pseudovariety. International Journal

of Algebra and Computation 20, 2 (2010), 181–188.
[11] Bernhard Banaschewski. 1983. The Birkhoff theorem for varieties of finite algebras. Algebra Universalis 17, 1 (1983),

360–368.
[12] Danièle Beauquier and Jean-Éric Pin. 1989. Factors of words. In Proceedings of the 16th International Colloquium on

Automata, Languages, and Programming (ICALP’89). Springer, Berlin, 63–79.
[13] Danièle Beauquier and Jean-Éric Pin. 1991. Languages and scanners. Theoretical Computer Science 84, 1 (1991), 3–21.
[14] Mikolaj Bojańczyk. 2007. A new algorithm for testing if a regular language is locally threshold testable. Information

Processing Letters 104, 3 (2007), 91–94.
[15] Mikołaj Bojańczyk. 2009. Factorization forests. In Proceedings of the 13th International Conference on Developments

in Language Theory (DLT’09), Lecture Notes in Computer Science, Volker Diekert and Dirk Nowotka (Eds.), Vol. 5583.
Springer, Berlin, 1–17.

[16] Mikołaj Bojańczyk and Thomas Place. 2012. Regular languages of infinite trees that are Boolean combinations of
open sets. In Proceedings of the 39th International Colloquium on Automata, Languages and Programming (ICALP’12),

Lecture Notes in Computer Science, Artur Czumaj, Kurt Mehlhorn, Andrew M. Pitts, and Roger Wattenhofer (Eds.),
Vol. 7392. Springer, Berlin, 104–115.

[17] Janusz A. Brzozowski. 1976. Hierarchies of aperiodic languages. ITA 10, 2 (1976), 33–49.
[18] Janusz A. Brzozowski and Rina S. Cohen. 1971. Dot-depth of star-free events. Journal of Computer and System Sciences

5, 1 (1971), 1–16.
[19] Janusz A. Brzozowski and Robert Knast. 1978. The dot-depth hierarchy of star-free languages is infinite. Journal of

Computer and System Sciences 16, 1 (1978), 37–55.
[20] Janusz A. Brzozowski and Imre Simon. 1971. Characterizations of locally testable events. In Proceedings of the 12th

Annual Symposium on Switching and Automata Theory (SWAT’71). IEEE, East Lansing, MI, 166–176.
[21] Janusz A. Brzozowski and Imre Simon. 1973. Characterizations of locally testable events. Discrete Mathematics 4, 3

(1973), 243–271.
[22] Julius R. Büchi. 1960. Weak second-order arithmetic and finite automata. Mathematical Logic Quarterly 6, 1-6 (1960),

66–92.
[23] Sang Cho and Dung T. Huynh. 1991. Finite-automaton aperiodicity is PSPACE-complete. Theoretical Computer Sci-

ence 88, 1 (1991), 99–116.
[24] Thomas Colcombet. 2010. Factorization forests for infinite words and applications to countable scattered linear

orderings. Theoretical Computer Science 411, 4-5 (2010), 751–764.
[25] Thomas Colcombet. 2011. Green’s relations and their use in automata theory. In Proceedings of the 5th International

Conference on Language and Automata Theory and Applications (LATA’11), Lecture Notes in Computer Science, Adrian-
Horia Dediu, Shunsuke Inenaga, and Carlos Martín-Vide (Eds.), Vol. 6638. Springer, Berlin, 1–21.

[26] Thomas Colcombet. 2019. The factorisation forest theorem. In Handbook of Automata Theory, Jean-Éric Pin (Ed.).
Vol. I: Theoretical Foundations. Eur. Math. Soc., Zürich. To appear.

[27] David Cowan. 1993. Inverse monoids of dot-depth two. International Journal of Algebra and Computation 03, 04
(1993), 411–424.

[28] Wojciech Czerwiński, Wim Martens, and Tomáš Masopust. 2013. Efficient separability of regular languages by subse-
quences and suffixes. In Proceedings of the 40th International Colloquium on Automata, Languages, and Programming,

(ICALP’13), Lecture Notes in Computer Science, Fedor V. Fomin, Rusins Freivalds, Marta Z. Kwiatkowska, and David
Peleg (Eds.), Vol. 7966. Springer, Berlin, 150–161.

[29] Volker Diekert and Paul Gastin. 2008. First-order definable languages. In Logic and Automata: History and Perspec-

tives, Jörg Flum, Erich Grädel, and Thomas Wilke (Eds.). Texts in Logic and Games, Vol. 2. Amsterdam University
Press, Amsterdam, the Netherlands, 261–306.

[30] Samuel Eilenberg. 1976. Automata, Languages, and Machines. Vol. B. Academic Press, Orlando, FL.
[31] Calvin C. Elgot. 1961. Decision problems of finite automata design and related arithmetics. Transactions of the Amer-

ican Mathematical Society 98, 1 (1961), 21–51.
[32] Christian Glaßer and Heinz Schmitz. 2000. Languages of dot-depth 3/2. In Proceedings of the 17th Annual Symposium

on Theoretical Aspects of Computer Science (STACS’00), Lecture Notes in Computer Science, Horst Reichel and Sophie
Tison (Eds.), Vol. 1770. Springer, Berlin, 555–566.

[33] Christian Glaßer and Heinz Schmitz. 2008. Languages of Dot-Depth 3/2. Theory of Computing Systems 42, 2 (2008),
256–286.

[34] Kosaburo Hashiguchi. 1983. Representation theorems on regular languages. Journal of Computer and System Sciences

27, 1 (1983), 101–115.

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

12:62 T. Place and M. Zeitoun

[35] Karsten Henckell. 1988. Pointlike sets: The finest aperiodic cover of a finite semigroup. Journal of Pure and Applied

Algebra 55 (1988), 85–126.
[36] Karsten Henckell and Jean-Éric Pin. 2000. Ordered monoids and J-trivial monoids. In Algorithmic Problems in Groups

and Semigroups, Jean-Camille Birget, Stuart Margolis, John Meakin, and Mark Sapir (Eds.). Birkhäuser, Boston, MA,
121–137.

[37] Karsten Henckell, John Rhodes, and Benjamin Steinberg. 2010. Aperiodic pointlikes and beyond. International Jour-

nal of Algebra and Computation 20, 2 (2010), 287–305.
[38] Peter M. Higgins. 1997. A proof of Simon’s theorem on piecewise testable languages. Theoretical Computer Science

178, 1-2 (1997), 257–264.
[39] Peter M. Higgins. 2000. A new proof of Schützenberger’s theorem. International Journal of Algebra and Computation

10, 02 (2000), 217–220.
[40] John M. Howie. 1991. Automata and Languages. Clarendon Press, Oxford.
[41] Neil Immerman. 1999. Descriptive Complexity. Springer, Berlin.
[42] Prateek Karandikar, Manfred Kufleitner, and Philippe Schnoebelen. 2015. On the index of Simon’s congruence for

piecewise testability. Information Processing Letters 115, 4 (2015), 515–519.
[43] Ondřej Klíma. 2011. Piecewise testable languages via combinatorics on words. Discrete Mathematics 311, 20 (2011),

2124–2127.
[44] Ondřej Klíma and Libor Polák. 2013. Alternative automata characterization of piecewise testable languages. In De-

velopments in Language Theory. Springer, Berlin, 289–300.
[45] Robert Knast. 1983. A semigroup characterization of dot-depth one languages. RAIRO — Theoretical Informatics and

Applications 17, 4 (1983), 321–330.
[46] Robert Knast. 1983. Some theorems on graph congruences. RAIRO —Theoretical Informatics and Applications 17, 4

(1983), 331–342.
[47] Manfred Kufleitner. 2008. The height of factorization forests. In Proceedings of the 33rd International Symposium on

Mathematical Foundations of Computer Science (MFCS’08), Lecture Notes in Computer Science, Edward Ochmanski
and Jerzy Tyszkiewicz (Eds.), Vol. 5162. Springer, Berlin, 443–454.

[48] Gérard Lallement. 1979. Semigroups and Combinatorial Applications. John Wiley & Sons, New York, NY.
[49] Leonid Libkin. 2004. Elements of Finite Model Theory. Springer, Berlin.
[50] Cláudio L. Lucchesi, Imre Simon, Istvan Simon, Janos Simon, and Tomasz Kowaltowski. 1979. Aspectos Teóricos da

Computação. IMPA, São Paulo. Retrieved February 16, 2019 from http://www.impa.br/opencms/pt/biblioteca/cbm/
11CBM/11_CBM_77_04.pdf.

[51] Stuart W. Margolis and Jean-Éric Pin. 1984. Power monoids and finite J-trivial monoids. Semigroup Forum 29 (1984),
99–108.

[52] Stuart W. Margolis and Jean-Éric Pin. 1985. Products of group languages. In Proceedings of the 5th International

Symposium on Fundamentals of Computation Theory (FCT’85), Lecture Notes in Computer Science, Lothar Budach
(Ed.), Vol. 199. Springer, Berlin, 285–299.

[53] Robert McNaughton. 1974. Algebraic decision procedures for local testability. Mathematical Systems Theory 8, 1
(1974), 60–76.

[54] Robert McNaughton and Seymour A. Papert. 1971. Counter-Free Automata. MIT Press, Cambridge, MA.
[55] Albert R. Meyer. 1969. A note on star-free events. J. ACM 16, 2 (1969), 220–225.
[56] Anil Nerode. 1958. Linear automaton transformations. Proc. Amer. Math. Soc. 9, 4 (1958), 541–544.
[57] Dominique Perrin. 1990. Finite automata. In Formal Models and Semantics. Elsevier, Amsterdam, 1–57.
[58] Dominique Perrin and Jean-Éric Pin. 1986. First-order logic and star-free sets. Journal of Computer and System Sci-

ences 32, 3 (1986), 393–406.
[59] Jean-Éric Pin. 1984. Variétés de Langages Formels. Masson, Paris. English translation: 1986, Varieties of formal lan-

guages, Plenum, New York, NY.
[60] Jean-Éric Pin. 1995. Finite semigroups and recognizable languages: An introduction. In Semigroups, Formal Lan-

guages and Groups. Springer, Berlin, 1–32.
[61] Jean-Éric Pin. 1995. A variety theorem without complementation. Russian Mathematics (Izvestiya Vuzov. Matematika)

39 (1995), 74–83.
[62] Jean-Éric Pin. 1996. The expressive power of existential first order sentences of Büchi’s sequential calculus. In Pro-

ceedings of the 23rd International Colloquium on Automata, Languages, and Programming (ICALP’96). Springer, Berlin,
300–311.

[63] Jean-Éric Pin. 1997. Syntactic semigroups. In Handbook of Formal Languages. Springer, Berlin, 679–746.
[64] Jean-Éric Pin. 1998. Bridges for concatenation hierarchies. In Proceedings of the 25th International Colloquium on

Automata, Languages and Programming (ICALP’98), Lecture Notes in Computer Science, Kim Guldstrand Larsen, Sven
Skyum, and Glynn Winskel (Eds.), Vol. 1443. Springer, Berlin, 431–442.

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

http://www.impa.br/opencms/pt/biblioteca/cbm/11CBM/11_CBM_77_04.pdf
http://www.impa.br/opencms/pt/biblioteca/cbm/11CBM/11_CBM_77_04.pdf

Going Higher in First-Order Quantifier Alternation Hierarchies on Words 12:63

[65] Jean-Éric Pin. 2005. Expressive power of existential first-order sentences of Büchi’s sequential calculus. Discrete

Mathematics 291, 1-3 (2005), 155–174.
[66] Jean-Éric Pin. 2011. Theme and variations on the concatenation product. In Proceedings of the 4th International Con-

ference on Algebraic Informatics (CAI’11), Lecture Notes in Computer Science, Franz Winkler (Ed.), Vol. 6742. Springer,
Berlin, 44–64.

[67] Jean-Éric Pin. 2013. An explicit formula for the intersection of two polynomials of regular languages. In Developments

in Language Theory. Springer, Berlin, 31–45.
[68] Jean-Éric Pin. 2017. The dot-depth hierarchy, 45 years later. In The Role of Theory in Computer Science, Essays Ded-

icated to Janusz Brzozowski, Stavros Konstantinidis, Nelma Moreira, Rogério Reis, and Jeffrey Shallit (Eds.). World
Scientific, Singapore, 177–202.

[69] Jean-Éric Pin. 2018. Mathematical Foundations of Automata Theory. (2018). https://www.irif.fr/∼jep/MPRI/MPRI.
html.

[70] Jean-Éric Pin and Howard Straubing. 1981. Monoids of upper triangular Boolean matrices. In Semigroups. Structure

and Universal Algebraic Problems, S. Schwarz, G. Pollák, and O. Steinfeld (Eds.). Colloquia Mathematica Societatis
Janos Bolyal, Vol. 39. North-Holland, Szeged, Hungary, 259–272.

[71] Jean-Éric Pin and Pascal Weil. 1995. Polynomial closure and unambiguous product. In Proceedings of the 22nd Inter-

national Colloquium on Automata, Languages, and Programming (ICALP’95). Springer, Berlin, 348–359.
[72] Jean-Éric Pin and Pascal Weil. 1996. Profinite semigroups, Mal’cev products and identities. Journal of Algebra 182, 3

(1996), 604–626.
[73] Jean-Éric Pin and Pascal Weil. 1996. A Reiterman theorem for pseudovarieties of finite first-order structures. Algebra

Universalis 35, 4 (1996), 577–595.
[74] Jean-Éric Pin and Pascal Weil. 2001. A conjecture on the concatenation product. RAIRO Informatique Théorique 35,

6 (2001), 597–618.
[75] Jean-Éric Pin and Pascal Weil. 2002. The wreath product principle for ordered semigroups. Communications in Al-

gebra 30 (2002), 5677–5713.
[76] Jean-Éric Pin and Pascal Weil. 1997. Polynomial closure and unambiguous product. Theory of Computing Systems

30, 4 (1997), 383–422.
[77] Nicholas Pippenger. 1997. Theories of Computability. Cambridge University Press, Cambridge, UK.
[78] Thomas Place. 2015. Separating regular languages with two quantifier alternations. In Proceedings of the 30th Annual

ACM/IEEE Symposium on Logic in Computer Science(LICS’15). IEEE, Kyoto, Japan, 202–213.
[79] Thomas Place, Lorijn van Rooijen, and Marc Zeitoun. 2013. Separating regular languages by locally testable and

locally threshold testable languages. In Proceedings of the 33rd IARCS Annual Conference on Foundations of Software

Technology and Theoretical Computer Science (FSTTCS’13), Leibniz International Proceedings in Informatics, Anil Seth
and Nisheeth K. Vishnoi (Eds.), Vol. 24. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany,
363–375.

[80] Thomas Place, Lorijn van Rooijen, and Marc Zeitoun. 2013. Separating regular languages by piecewise testable
and unambiguous languages. In Proceedings of the 38th International Symposium on Mathematical Foundations of

Computer Science (MFCS’13), Lecture Notes in Computer Science, Krishnendu Chatterjee and Jirí Sgall (Eds.), Vol.
8087. Springer, Berlin, 729–740.

[81] Thomas Place and Marc Zeitoun. 2014. Going higher in the first-order quantifier alternation hierarchy on words.
In Proceedings of the 41st International Colloquium on Automata, Languages, and Programming (ICALP’14), Lecture

Notes in Computer Science, Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias (Eds.), Vol. 8572.
Springer, Berlin, 342–353.

[82] Thomas Place and Marc Zeitoun. 2014. Separating regular languages with first-order logic. In Proceedings of the Joint

Meeting of the 23rd EACSL Annual Conference on Computer Science Logic and the 29th Annual ACM/IEEE Symposium

on Logic in Computer Science (CSL-LICS’14), Thomas A. Henzinger and Dale Miller (Eds.). ACM, New York, NY,
75:1–75:10.

[83] Thomas Place and Marc Zeitoun. 2015. Separation and the successor relation. In Proceedings of the 32nd Annual

Conference on Theoretical Aspects of Computer Science (STACS’15), Leibniz International Proceedings in Informatics,
Ernst W. Mayr and Nicolas Ollinger (Eds.), Vol. 30. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl,
Germany, 662–675.

[84] Thomas Place and Marc Zeitoun. 2015. The tale of the quantifier alternation hierarchy of first-order logic over words.
SIGLOG News 2, 3 (2015), 4–17. http://siglog.hosting.acm.org/wp-content/uploads/2015/10/siglog_news_5.pdf.

[85] Thomas Place and Marc Zeitoun. 2016. Separating regular languages with first-order logic. Logical Methods in Com-

puter Science 12, 1 (2016), 1–30.
[86] Klaus Reinhardt. 2002. The complexity of translating logic to finite automata. In Automata, Logics, and Infinite Games:

A Guide to Current Research [outcome of a Dagstuhl seminar, February 2001], Lecture Notes in Computer Science, Erich
Grädel, Wolfgang Thomas, and Thomas Wilke (Eds.), Vol. 2500. Springer, Berlin, 231–238.

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

https://www.irif.fr/jep/MPRI/MPRI.html
https://www.irif.fr/jep/MPRI/MPRI.html
http://siglog.hosting.acm.org/wp-content/uploads/2015/10/siglog_news_5.pdf

12:64 T. Place and M. Zeitoun

[87] Jan Reiterman. 1982. The Birkhoff theorem for finite algebras. Algebra Universalis 14, 1 (1982), 1–10.
[88] John Rhodes. 1999. Undecidability, automata, and pseudovarities of finite semigroups. International Journal of Alge-

bra and Computation 9, 3-4 (1999), 455–474.
[89] Jacques Sakarovitch and Imre Simon. 1997. Subwords. In Combinatorics on Words, Lothaire. Cambridge University

Press, Cambridge, UK. 105–144.
[90] Marcel Paul Schützenberger. 1955-1956. Une théorie algébrique du codage. Séminaire Dubreil. Algèbre et Théorie Des

Nombres 9 (1955-1956), 1–24. http://eudml.org/doc/111094.
[91] Marcel Paul Schützenberger. 1965. On finite monoids having only trivial subgroups. Information and Control 8, 2

(1965), 190–194.
[92] Marcel Paul Schützenberger. 1976. Sur le produit de concaténation non ambigu. Semigroup Forum 13 (1976), 47–75.
[93] Imre Simon. 1972. Hierarchies of events of dot-depth one. Ph.D. Dissertation. University of Waterloo, Waterloo,

Ontario.
[94] Imre Simon. 1975. Piecewise testable events. In Proceedings of the 2nd GI Conference on Automata Theory and Formal

Languages, Helmut Brakhage (Ed.). Springer, Berlin, 214–222.
[95] Imre Simon. 1990. Factorization forests of finite height. Theoretical Computer Science 72, 1 (1990), 65–94.
[96] Benjamin Steinberg. 2001. A delay theorem for pointlikes. Semigroup Forum 63, 3 (2001), 281–304.
[97] Jacques Stern. 1985. Characterizations of some classes of regular events. Theoretical Computer Science 35 (1985),

17–42.
[98] Jacques Stern. 1985. Complexity of some problems from the theory of automata. Information and Control 66, 3 (1985),

163–176.
[99] Larry J. Stockmeyer. 1974. The complexity of decision problems in automata theory and logic. Ph.D. Dissertation.

Massachusetts Institute of Technology, Cambridge, MA. http://opac.inria.fr/record=b1000295.
[100] Larry J. Stockmeyer and Albert R. Meyer. 1973. Word problems requiring exponential time (preliminary report). In

Proceedings of the 5th Annual ACM Symposium on Theory of Computing (STOC’73), Alfred V. Aho, Allan Borodin,
Robert L. Constable, Robert W. Floyd, Michael A. Harrison, Richard M. Karp, and H. Raymond Strong (Eds.). ACM,
New York, NY, 1–9.

[101] Howard Straubing. 1981. A generalization of the Schützenberger product of finite monoids. Theoretical Computer

Science 13, 2 (1981), 137–150.
[102] Howard Straubing. 1985. Finite semigroup varieties of the form V ∗ D. Journal of Pure and Applied Algebra 36 (1985),

53–94.
[103] Howard Straubing. 1986. Semigroups and languages of dot-depth 2. In Proceedings of the 13th International Collo-

quium on Automata, Languages, and Programming (ICALP’86), Lecture Notes in Computer Science, Laurent Kott (Ed.),
Vol. 226. Springer, Berlin, 416–423.

[104] Howard Straubing. 1988. Semigroups and languages of dot-depth two. Theoretical Computer Science 58, 1-3 (1988),
361–378.

[105] Howard Straubing. 1994. Finite Automata, Formal Logic and Circuit Complexity. Birkhauser, Basel, Switzerland.
[106] Howard Straubing and Denis Thérien. 1988. Partially ordered finite monoids and a theorem of I. Simon. Journal of

Algebra 119, 2 (1988), 393–399.
[107] Howard Straubing and Pascal Weil. 1992. On a conjecture concerning dot-depth two languages. Theoretical Computer

Science 104, 2 (1992), 161–183.
[108] Pascal Tesson and Denis Thérien. 2002. Diamonds are forever: The variety DA. In Semigroups, Algorithms, Automata

and Languages, Gracinda M. S. Gomes, Jean Eric Pin, and Pedro V. Silva (Eds.). World Scientific, Singapore, 475–500.
[109] Denis Thérien. 1981. Classification of finite monoids: The language approach. Theoretical Computer Science 14, 2

(1981), 195–208.
[110] Denis Thérien. 2011. The power of diversity. In Descriptional Complexity of Formal Systems, Lecture Notes in Com-

puter Science, Markus Holzer, Martin Kutrib, and Giovanni Pighizzini (Eds.), Vol. 6808. Springer, Berlin, 43–54.
[111] Denis Thérien and Alex Weiss. 1985. Graph congruences and wreath products. Journal of Pure and Applied Algebra

36 (1985), 205–215.
[112] Denis Thérien and Thomas Wilke. 1998. Over words, two variables are as powerful as one quantifier alternation. In

Proceedings of the 30th Annual ACM Symposium on Theory of Computing (STOC’98), Jeffrey Scott Vitter (Ed.). ACM,
New York, NY, 234–240.

[113] Wolfgang Thomas. 1982. Classifying regular events in symbolic logic. Journal of Computer and System Sciences 25,
3 (1982), 360–376.

[114] Wolfgang Thomas. 1984. An application of the Ehrenfeucht-Fraissé game in formal language theory. Mémoires de

la Société Mathématique de France 16 (1984), 11–21.
[115] Wolfgang Thomas. 1987. A concatenation game and the dot-depth hierarchy. In Computation Theory and Logic.

Springer, Berlin, 415–426.

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

http://eudml.org/doc/111094
http://opac.inria.fr/record=b1000295

Going Higher in First-Order Quantifier Alternation Hierarchies on Words 12:65

[116] Wolfgang Thomas. 1997. Languages, automata, and logic. In Handbook of Formal Languages. Springer, Berlin.
[117] Bret Tilson. 1987. Categories as algebra: An essential ingredient in the theory of monoids. Journal of Pure and Applied

Algebra 48, 1–2 (1987), 83–198.
[118] Avraham N. Trahtman. 2001. An algorithm to verify local threshold testability of deterministic finite automata. In

Proceedings of the 4th International Workshop on Implementing Automata, Automata Implementation, Lecture Notes

in Computer Science, Oliver Boldt and Helmut Jürgensen (Eds.),Vol. 2214. Springer, Berlin, 164–173.
[119] Avraham N. Trahtman. 2001. Piecewise and local threshold testability of DFA. In Proceedings of the 13th International

Symposium on Fundamentals of Computation Theory (FCT’01), Lecture Notes in Computer Science, Rusins Freivalds
(Ed.), Vol. 2138. Springer, London, 347–358.

[120] Boris A. Trakhtenbrot. 1961. Finite automata and logic of monadic predicates. Doklady Akademii Nauk SSSR 149
(1961), 326–329. In Russian.

[121] Pascal Weil. 1989. Concatenation product: A survey. In Formal Properties of Finite Automata and Applications. Lecture
Notes in Computer Science, Jean-Éric Pin, Vol. 386. Springer, Berlin, 120–137.

[122] Pascal Weil. 1989. Inverse monoids of dot-depth two. Theoretical Computer Science 66, 3 (1989), 233–245.
[123] Thomas Wilke. 1999. Classifying discrete temporal properties. In Proceedings of the 16th Annual Conference on The-

oretical Aspects of Computer Science (STACS’99), Lecture Notes in Computer Science, Christoph Meinel and Sophie
Tison (Eds.), Vol. 1563. Springer, Berlin, 32–46.

Received February 2016; revised October 2018; accepted January 2019

Journal of the ACM, Vol. 66, No. 2, Article 12. Publication date: March 2019.

