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motivation

Traditional Verification

Exhaustive verification methods are extremely valuable to ensure
system-wide correctness.

They often require developing an abstract model of the system and may
suffer from the infamous state-explosion problem.
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motivation

Traditional Verification

Exhaustive verification methods are extremely valuable to ensure
system-wide correctness.

They often require developing an abstract model of the system and may
suffer from the infamous state-explosion problem.

Runtime Verification

Runtime verification (RV) refers to a technique, where a monitor checks at
run time whether or not the execution of a system under inspection satisfies a
given correctness property.

RV complements exhaustive verification techniques as well as
underapproximated methods such as testing and tracing.
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motivation

RV in Distributed Systems

Designing a decentralized runtime monitor for a distributed system is an
especially difficult task since it deals with

» computing global snapshots at run time, and
» estimating the total order of events

in order for the monitor to reason about the temporal behavior of the system.
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Central Monitor

» J. Joyce, G. Lomow, K. Slind, B. Unger. Monitoring Distributed Systems
(ACM TOCS 1987).
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Related Work

Central Monitor

» J. Joyce, G. Lomow, K. Slind, B. Unger. Monitoring Distributed Systems
(ACM TOCS 1987).

No Formal Treatment

» P. Fraigniaud, S. Rajsbaum, M. Roy, C. Travers. The Opinion Number of
Set-Agreement (OPODIS 2014)

» P. Fraigniaud, S. Rajsbaum, C. Travers. On the Number of Opinions
Needed for Fault-Tolerant Run-Time Monitoring in Distributed Systems.
(RV 2014)
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Fault-free Setting

» H. Chauhan, V. K. Garg, A. Natarajan, N. Mittal. A Distributed
Abstraction Algorithm for Online Predicate Detection. (SRDS 2013)

» M. Mostafa, B. Bonakdarpour. Decentralized Runtime Verification of LTL
Specifications in Distributed Systems. (IPDPS 2015)

» Koushik Sen, Abhay Vardhan, Gul Agha, Grigore Rosu: Efficient
Decentralized Monitoring of Safety in Distributed Systems. (ICSE 2004)
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Contributions

Claim

Existing RV logics cannot monitor distributed applications in a consistent
fashion, where monitors may crash.

Contributions

» A multi-valued logic, LTLok.4 for monitoring distributed applications
subject to crash faults.

» The corresponding monitor synthesis and RV algorithm.
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Let’s cook!

Ingredients

» Informal stuff:

> Maurice’s talk

> Sergio’s talk

> Corentin’s talk

> Pierre’s “opinions”!

» Formal stuff:

> Rotem’s talk
> Martin’s RV-LTL
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Presentation outline

RV-LTL
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Framework

Definitions
Let AP be a set of atomic propositions and ¥ = 27 be the alphabet.
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Framework

Definitions
Let AP be a set of atomic propositions and ¥ = 27 be the alphabet.

A word is a sequence w = aas - - -, Where each a; (i > 0) is a letter in X.

The set of all finite (respectively, infinite) words are X * (respectively, ¥*).
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Framework

Definitions
Let AP be a set of atomic propositions and ¥ = 247 be the alphabet.

A word is a sequence w = aas - - -, Where each a; (i > 0) is a letter in X.

The set of all finite (respectively, infinite) words are X * (respectively, ¥*).

Example
A proposition is a declaration:

» There is a request.
» My neighbor is the leaders
» Process p's decision is 0
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Framework

Definitions
Let AP be a set of atomic propositions and ¥ = 247 be the alphabet.

A word is a sequence w = aas - - -, Where each a; (i > 0) is a letter in X.

The set of all finite (respectively, infinite) words are X * (respectively, ¥*).

Example

A proposition is a declaration:
» There is a request.
» My neighbor is the leaders
» Process p's decision is 0

(SroiooN
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Linear Temporal Logic (LTL [Pnueli - 77])

LTL Syntax
LTL formulas are defined using the following grammar:

pu=tue | p| o | eV | Xp | pUgp

where p € AP, and, X (next) and U (until) are temporal operators.
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Linear Temporal Logic (LTL [Pnueli - 77])

LTL Syntax
LTL formulas are defined using the following grammar:

pu=true | p| - | Ve | Xp | pUgp
where p € AP, and, X (next) and U (until) are temporal operators.

LTL Semantics

Let w = &aj - - - be an infinite word in X, i > 0, and |= denote the
satisfaction relation. The semantics of LTL is defined as follows:

w,i = true

w,iEp iff pE a

w,iE - iff w, it~ e
W,I"Igm\/tpz iff W,I":gm or W,i':(p2
w,iE X iff w,i+1Ee

w,iE= p1Ugy iff Fk>i:w,kl=pe and Vj: i <j< k:w,jE ¢1.
Also, w = ¢ holds iff w,0 |= ¢ holds.
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Linear Temporal Logic (LTL [Pnueli - 77])

Example
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Linear Temporal Logic (LTL [Pnueli - 77])

Example

s ~O—@

O
;
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Linear Temporal Logic (LTL [Pnueli - 77])

Example

e
e (@)

®
® O
7
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Linear Temporal Logic (LTL [Pnueli - 77])

Example

» ~Q
1 ~(®)
Fp=trueUp _,O

GRONO
ONONO.
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Linear Temporal Logic (LTL [Pnueli - 77])

Example

Xp _,O
pUq _>@
Fp=trueUp _,O
Gp=-F-p _,@

® 0 66
ONONONG®
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Linear Temporal Logic (LTL [Pnueli - 77])

Example
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Linear Temporal Logic (LTL [Pnueli - 77])

Example

» No two processes can enter critical section at the same time:

G—|(CS,' N CS/')
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Linear Temporal Logic (LTL [Pnueli - 77])

Example

» No two processes can enter critical section at the same time:
G—|(CS,' N CS/')
» Every process eventually acquires the token:

Ftki A Ftko N Ftks - --
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Linear Temporal Logic (LTL [Pnueli - 77])

Example

» No two processes can enter critical section at the same time:
G—(CS; A CS))
» Every process eventually acquires the token:
Ftki A Ftko N Fitkg - - -
» Non-starvation to enter critical section:

G(r — Fa)
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Linear Temporal Logic (LTL [Pnueli - 77])

Example

» No two processes can enter critical section at the same time:
G—(CS; A CS))
» Every process eventually acquires the token:
Ftki A Ftko N Fitkg - - -
» Non-starvation to enter critical section:
G(r — Fa)
» Every process acquires the token infinitely often:

GFtki A GFtko A GFiks - - -
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Finite LTL (FLTL [Manna, Pnueli - 95)

The semantics of LTL is defined over infinite words.
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Finite LTL (FLTL [Manna, Pnueli - 95)

The semantics of LTL is defined over infinite words.

Finite LTL

Finite LTL (FLTL) allows us to reason about finite words for verifying
properties at run time.
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Finite LTL (FLTL [Manna, Pnueli - 95)

The semantics of LTL is defined over infinite words.

Finite LTL

Finite LTL (FLTL) allows us to reason about finite words for verifying
properties at run time.

FLTL Syntax

The syntax of FLTL is identical to that of LTL and the semantics is based on
the truth values B, = { L, T}.
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Finite LTL (FLTL [Manna, Pnueli - 95)

The semantics of LTL is defined over infinite words.

Finite LTL

Finite LTL (FLTL) allows us to reason about finite words for verifying
properties at run time.

FLTL Syntax

The syntax of FLTL is identical to that of LTL and the semantics is based on
the truth values B, = { L, T}.

FLTL Semantics

The semantics of FLTL for atomic propositions and Boolean operators are
identical to those of LTL.
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FLTL Semantics
Let o, 1, and ¢, be LTL formulas, and u = upuy - - - U, be a finite word.

U Erg] i U e
[u=e Xl = {L otherwise

T if 3ke[0,n]:[UfErp] =T A
[uEr 1 U] = VIe[0,k):[uErpi]=T
L otherwise
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FLTL

Example

[ubr Xp] =T _>© @ O Q

Borzoo Bonakdarpour Bertinoro Workshop on Distributed Runtime Verification 17/50



McMaster

University ?ﬁ?‘
FLTL

Example

[ubrXp] =T _,Q
[uErpUq]l =1 —>@

O
®

®
® O
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Example

[ubrXp] =T _,Q
[uEFpPUQl =1L —>@

erFl=L  —(p

O
®
©

ONONO
ONON®
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Example
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[ubrXp] =T _,Q
[uEFpPUQl =1L —>@

erFl=L  —(p

®® 660
® ® 6 0

[UEFGP=T —>@
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FLTL

Example

[ubrXp =T _,Q
[uf=r pUql = L _,@

[uErFFpl =1 —(—p

[uFrGpl =T _>@

FLTL Put into Perspective

®® 660
® ® 6 0
® ® e 0

FLTL evaluates a property for a finite word regardless of future executions.

Borzoo Bonakdarpour Bertinoro Workshop on Distributed Runtime Verification 17/50



McMaster
University S&&

[
3-Valued LTL (LTL3) [Bauer, Leucker, Schallhart 11]

3-valued LTL evaluates LTL formulas for finite words with an eye on possible
future extensions.
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3-Valued LTL (LTL3) [Bauer, Leucker, Schallhart 11]

3-valued LTL evaluates LTL formulas for finite words with an eye on possible
future extensions.

Three Truth Values
The set of truth values is Bs = {T, L, 7}, where
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3-Valued LTL (LTL3) [Bauer, Leucker, Schallhart 11]

3-valued LTL evaluates LTL formulas for finite words with an eye on possible
future extensions.

Three Truth Values
The set of truth values is Bs = {T, L, 7}, where

» T: the formula is permanently satisfied no matter how the current
execution extends,
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3-Valued LTL (LTL3) [Bauer, Leucker, Schallhart 11]

3-valued LTL evaluates LTL formulas for finite words with an eye on possible
future extensions.

Three Truth Values
The set of truth values is B = {T, L, ?}, where

» T: the formula is permanently satisfied no matter how the current
execution extends,

» |: the formula is permanently violated no matter how the current
execution extends
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3-Valued LTL (LTL3) [Bauer, Leucker, Schallhart 11]

3-valued LTL evaluates LTL formulas for finite words with an eye on possible
future extensions.

Three Truth Values
The set of truth values is B = {T, L, ?}, where
» T: the formula is permanently satisfied no matter how the current
execution extends,

» |: the formula is permanently violated no matter how the current
execution extends

» ?: denotes an unknown verdict; i.e., there exist extensions that can
falsify or make true the formula.
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3-Valued LTL

LTL3z Semantics

Let v € X~ be a finite word. The truth value of an LTL3 formula ¢ with respect
to u, denoted by [u =3 ¢], is defined as follows:

T if YweX:uwkEep
[UEsel=< 1 if VweX¥:uwltop
? otherwise.
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LTL3

Example

[ub=s Xp] = T _>Q @ O Q
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LTL3

Example

[ubs Xpl =T _>©
[Uf=s pUq] =7 —>@

O—0O
(p)

OO

® ©

Borzoo Bonakdarpour Bertinoro Workshop on Distributed Runtime Verification 20/50



McMaster

University =&

—

LTL3

Example

[ufs Xp] =T _>©
[uFspUq] =7 —>@
[ubr Fpl = T _>©

O
®
O

O ®E
® ® O
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Example
[UFsXpl =T
[uFs pUq] =7
[uFFFol =T
[uFGp] = L
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3-Valued LTL

LTL3 Monitor

Let ¢ be an LTL formula. The LTLs monitor of ¢ is the unique deterministic
finite state machine M$ = (X, Q, qu, d, A), where Q is a set of states, qo is
the initial state, § € Q x X x Q is the transition relation, and A : Q — B3, is a
function such that:

A(6(qo, u)) = [u [=3 ]

for every finite word u € X*. O
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3-Valued LTL

LTL3 Monitor

Let ¢ be an LTL formula. The LTLs monitor of ¢ is the unique deterministic
finite state machine M$ = (X, Q, qu, d, A), where Q is a set of states, qo is
the initial state, § € Q x X x Q is the transition relation, and A : Q — B3, is a
function such that:

A(6(qo, u)) = [u [=3 ]

for every finite word u € X*. O

Example
LTLs monitor for aU b
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Rv-LTL [Bauer, Leucker, Schallhart 10]

Truth Values

Rv-LTL is designed for runtime verification by refining the truth value ‘?’ into
1lpand Tp;i.e.,

By ={T,Tp, Lp, L}
where T and _L have the same meaning as in LTLs, but T, is possibly true
and L, is possibly false.
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Rv-LTL [Bauer, Leucker, Schallhart 10]

Truth Values

Rv-LTL is designed for runtime verification by refining the truth value ‘?’ into
1lpand Tp;i.e.,

By = {T, Tp, Lp, J—}
where T and L have the same meaning as in LTLs, but T, is possibly true
and L, is possibly false.

Rv-LTL Semantics
The semantics of RV-LTL is defined based on the semantics LTL3; and FLTL:

T i [uksel=T
Lot ulsgl=1
Tp i [Uksel =7 A lubrel =T
Lp it [ukawl=? A [ulrel=1

[U =Ry o] =

Borzoo Bonakdarpour Bertinoro Workshop on Distributed Runtime Verification 22/50



Rv-LTL

Rv-LTL Monitor

Let ¢ be an LTL formula. The Rv-LTL monitor of ¢ is the unique deterministic
finite state machine M3, = (X, Q, v, 9, A), where Q is a set of states, qo is
the initial state, § C Q x X x Q is the transition relation, and \ : Q — Bs, is a
function such that:

A(6(qo, ) = [u Frv ¢

for every finite word u € **. O
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Rv-LTL Monitor

Let ¢ be an LTL formula. The Rv-LTL monitor of ¢ is the unique deterministic
finite state machine M3, = (X, Q, v, 9, A), where Q is a set of states, qo is
the initial state, § C Q x X x Q is the transition relation, and \ : Q — Bs, is a
function such that:

A(6(qo, u)) = [u =rv ¥]
for every finite word u € **. O

Example
Rv-LTL monitor for G(a — Fb)

a

0

-a —b
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Presentation outline

Wait-free Distributed Monitoring
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Distributed Monitors

Distributed Monitors

Let M = {M;, M>, ..., M,} be a set of distributed monitors monitoring an
underlying system.
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Distributed Monitors

Distributed Monitors
Let M = {M;, M>, ..., M,} be a set of distributed monitors monitoring an
underlying system.

Each monitor M; € M takes a sample only once from the underlying system
to obtain the values of propositions in AP as input.

Borzoo Bonakdarpour Bertinoro Workshop on Distributed Runtime Verification 25/50



McMaster
University g==
I

Distributed Monitors (Not a nuclear power plant!)

Monitore ﬂ
communicate with each other

Distributed system being monitored
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Distributed Monitors

Local Snapshot

Each monitor M; maintains an n registers, each of size |AP| (i.e., |AP| x n
local snapshot array LS', where
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Distributed Monitors

Local Snapshot

Each monitor M; maintains an n registers, each of size |AP| (i.e., |AP| x n
local snapshot array LS', where

» Register (i.e., column) i contains the partial view of monitor M; (the
sample taken by M;);
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Distributed Monitors

Local Snapshot

Each monitor M; maintains an n registers, each of size |AP| (i.e., |AP| x n
local snapshot array LS', where
» Register (i.e., column) i contains the partial view of monitor M; (the
sample taken by M;);
» each column j # i (1 < j < n) contains M;’s local copy of monitor M;’s
partial view (obtained through communication), and
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Distributed Monitors

Local Snapshot

Each monitor M; maintains an n registers, each of size |AP| (i.e., |AP| x n
local snapshot array LS', where

» Register (i.e., column) i contains the partial view of monitor M; (the
sample taken by M;);

» each column j # i (1 < j < n) contains M;’s local copy of monitor M;’s
partial view (obtained through communication), and

» The value of each element in each local snapshot array ranges over
{true, false, i}, where § denotes an unknown value due to

> partial of a monitor,
> a monitor crash; or
> communication delays.

All elements of all local snapshot arrays are initialized to .
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Distributed Monitors
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Distributed Monitors

Shared Memory
Monitors communicate through a shared memory array SM of size |AP| x n.
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Distributed Monitors

Shared Memory

Monitors communicate through a shared memory array SM of size |AP| x n.

Monitor Communication
Each monitor M; can perform one of the following actions:

» A write action by monitor M; writes the content of LS] into SM.
» A snapshot action by monitor M; writes the entire content of SM into LS'.
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Distributed Monitors
Shared Memory

Monitors communicate through a shared memory array SM of size |AP| x n.

Monitor Communication
Each monitor M; can perform one of the following actions:

» A write action by monitor M; writes the content of LS] into SM.
» A snapshot action by monitor M; writes the entire content of SM into LS'.

Monitor Behavior

Monitor () {
take_sample () ;

repeat
write();
snapshot () ;
until(...)

emit[ﬂslkzw];//ﬂsl is the sequence local snapshots in M.
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Distributed Monitors

Example
Consider the following request/acknowledgment property:

» if a request is emitted (i.e., r = true), then it should eventually be
acknowledged (i.e., a = true)

» an acknowledgment happens only in response to a request.
¢ra; = G(—a—r) v [(-aUr) A Fa

r —anr

Rv-LTL Monitor
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Distributed Monitors

Example

Pra, = {G(—\a1—\l’1) V [(ma1Un) A Fa1]} A
{G(—\ag—'f'z) \Y [(—\aQUI'g) A Fag]}

Mo My
M T M Mo [ M
n T h n h T
a b i | a b T
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Distributed Monitors

Example

Pra, = {G(—\a1—\l’1) V [(ma1Un) A Fa1]} A
{G(—\ag—'f'g) \Y [(—\aQUfg) A Fag]}
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Distributed Monitors

Example

Pra, = {G(—\a1—\l’1) V [(ma1Un) A Fa1]} A
{G(—\ag—'f'g) \Y [(—\aQUfg) A Fag]}

Mo My
My T M My T M
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Distributed Monitors

Example

Pra, = {G(—\a1—\l’1) V [(ma1Un) A Fa1]} A
{G(—\ag—'f'g) \Y [(—\aQUfg) A Fag]}

Mo My
Mo, M, Mo M;
r T h r T T
a b b ai h T
rn F h rn F h
/ a |_F i | a [ F b
Mo M Mo My
Mo M, Mo M Mo, My M, M, My M;
n T ﬂ n h T n T T n T T
a b h a i T Mo | My aj b T | a b T
r2 IC h r2 b h r2 F b r2 F b
@ a a F a F
h b h My My ) -~ b 2 - b
o i
N o | M Mo | M
r T T r h T
a h T a h T
r2 F b r b b
ap F b a b i
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Distributed Monitors

Assumption
Monitors do not read inconsistent samples.
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Distributed Monitors
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Distributed Monitors

Assumption
Monitors do not read inconsistent samples.

Local Formula Evaluation

For each atomic proposition ap € AP, all monitors are provided with an n-ary
function
Fap : {true, false, h}" — {true, false}

where n is the number of monitors.
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Distributed Monitors

Assumption

Monitors do not read inconsistent samples.

Local Formula Evaluation

For each atomic proposition ap € AP, all monitors are provided with an n-ary
function
Fap : {true, false, h}" — {true, false}

where n is the number of monitors.

Example

For all atomic propositions ay, r1, ao, r2, given two values v; and v», we have

true if (vy = frue) v (v2 = true)
false otherwise

]:*(Vh VZ) = {
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Distributed Monitors

Example
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In the underlying system: [u =gy ] = Tp
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Distributed Monitors

Global Consistency
Let u and v’ be two finite words where

[ulr o] =1
and

W Erel=T
We say that a set M of monitors respect global consistency iff the set of
verdicts emitted by monitors in M for u in any communication interleaving is

different from the set of verdicts emitted by monitors in M for v in any
communication interleaving.
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General Lower bound Results

Lemma

Not all LTL formulas can be consistently monitored by a 1-round distributed
monitor with traces in Rv-LTL, even if monitors satisfy state coverage, and
even if no monitors crash during the execution of the monitor.

theorem

Not all LTL formulas can be consistently monitored by a distributed monitor
with traces in RV-LTL, even if monitors satisfy state coverage, even if no
monitors crash during the execution of the monitor, and even if the monitors
perform an arbitrarily large number of rounds.
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Presentation outline

LTLok 44
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Alternation Number

Idea

In a word, we count the number of times that the valuation of a formula may
change from.
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Alternation Number

Idea

In a word, we count the number of times that the valuation of a formula may
change from.

Alternation number
The alternation number of an LTL formula ¢ is the following:

AN() = max {A(w) | w € ¥*}

where
Awy = JAW) 1T W e ol 2 W e o)
0 if  length(w) =1
where w’ denotes the longest proper prefix of w. O
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Obtaining Alternation Number

Theorem

The alternation number of LTL formula ¢ is the length of the longest walk of
the Rv-LTL monitor of ¢.
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Obtaining Alternation Number

Theorem

The alternation number of LTL formula ¢ is the length of the longest walk of
the RV-LTL monitor of .

Example

a
m@
—a —-b

AN(G(a — Fb)) = oo
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Obtaining Alternation Number

Theorem

The alternation number of LTL formula ¢ is the length of the longest walk of
the RV-LTL monitor of .

Example
OO
—a —b

true true
AN(G(—-a—-r) Vv [(-aUr) A Fa]) =2

Borzoo Bonakdarpour Bertinoro Workshop on Distributed Runtime Verification 38/50
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Global Consistency

Theorem

In order to monitor an LTL formula ¢ by a wait-free distributed monitor, we
need at least AN(p) + 1 truth values to ensure global consistency.
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LTLokt4

Truth Values
LTLoks4 has 2K + 4 truth values: Bk = { Lo, To, L1, T1, -+ Lx, Tk, L, T}
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LTLok14

Truth Values

LTLok+4 has 2K + 4 truth values: By = {Lo, To, L1, T, -+ Lg, Tk, L, T}

Semantics

[U Fakia ] =

Borzoo Bonakdarpour

1
T
Lo
To

T, withie[0,k] if

1 withi€[0,k) if

Lk

[uUEs ] =1
U3 @]l =T
u=1AuE3¢p]=? A [ulEFel=1
=1 AuEs3pl=?A[ulErFel=T

lul22 A [uls el =7 A [ulEFe]l=TA
[V Fokia ] € {T), Li}
(Juz22 A use]l =? A [ulEre]=1)A
([v Fokya 0]l = Li V [V Fakia 0] = Ti1)
(lu22 A [uls el =7 A [ulErpl=1)A
([v" Eakta ol = Lx V [U' Fokga ¢l = TV
[V Fokia ©] = Tk—1)
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LTL2k 14 Monitor Construction

LTL2k+4 Monitor

Let ¢ be an LTL formula. The LTLa.4 monitor of ¢ is the unique deterministic
finite state machine M7 = (%, Q, qo, d, \), where Q is a set of states, qo is
the initial state, § C Q x X x Q is the transition relation, and X is a function
that maps each state in Q to a value in By, such that:

[u =k el = A(6(o, 1)),

for every finite word u € .

Borzoo Bonakdarpour Bertinoro Workshop on Distributed Runtime Verification 41/50



LTL2k 14 Monitor Construction Algorithm

N o=

Borzoo Bonakdarpour

Input: Alphabet 3, LTL formula ¢, K € Z>¢
Output: LTLy, 4 monitor
M? =(%,Q,q,5,7)

(Q, qo, 8, A) < ConstructMonitor(X, ¢, 0);
for k < 1to K do
(Q, Qo, 8, ) « ConstructMonitor(XZ, ¢,
Q+ QU@+ SUJ A+ AUX;
forallthe g € Q, G € Qdo
if (A(Q) = k1 A A(@) =
1k A k=1 < K)then
forallthe ¢’ € Q,a € ¥ do
ifA(q) =
L1 ANS(g,8)=q
then

| 5

return MY = (%, Q, qo, 6, A);

/

/

s — {(q7 319 )
sU{(q,2,9)}

_};

[}

© © N o0 & w

10

12
13

14

1

[

Function ConstructMonitor (alphabet
%, LTL formula ¢, int k)
Let M7 = (%,Q, qo, 8, \) and
ME =(Z,Q@,q5,6,N);
Q+QxQ;
Go < (9, %)s
foralithe g € Q,q' € Q' do
5((g.9'),a) = (5(q,a),6"(q', @);
if (\(q) #7) then
(g, 9) < Ma);
else
if (A\(9) =7 A X (q") = T) then
| M@, 9) « Tk
else
if (\(q) =7 A N(q') = 1)
then
| X(@.9) + Li

return (Q, Go, 5, \);

Bertinoro Workshop on Distributed Runtime Verification
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LTL2k 14 Monitor Construction

r —a-r

Monitor for

O(-a-r) Vv [(—aUr) A Oa]

in LTL 6.
—a-r

true true
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LTLok 14 Verdict Inference

Effect of Interleavings

When a local monitor takes a snapshot, it advances its monitor state based
on the highest possible level of interleavings that may lead to this snapshot.

Example

In our request/acknowledgment property, global state s = {r1, a1, >, a} can
be reached by either word

» wi = {n}{n,ai}{n,a, rHn, a,r, a}

> wo = {n}{n,nH{n,a,r{n,a,r a}.
Evaluating s

» through wy results in T

» through ws results in Ty.
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General Results

Theorem

An LTL formula ¢ can consistently be monitored by a wait-free distributed
monitor in LTLok.4, if 2k +2 > AN(p).

Theorem

For each k > 0, there is an LTL formula ¢ that cannot be consistently
monitored by a wait-free distributed monitor in LTLok. 4, if 2k +2 < AN(¢p).

Borzoo Bonakdarpour Bertinoro Workshop on Distributed Runtime Verification 46/50



McMaster

University S&&
R ]

Presentation outline

Conclusion
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Conclusion

Summary

This talk

» argued that existing RV logics are too abstract to monitor distributed
systems in the presence of crash faults.

» introduced LTLox 4 logic to overcome the problem
» proposed a monitor construction as well as an RV algorithm for LTLoy.4.
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3]
Conclusion

Future Work
» Distributed monitoring when input propositions keep changing.

v

Computing the bounds on alternation number in polynomial time.

v

Lower/upper bounds for synchronous distributed monitors.
Distributed monitoring of HyperLTL.

v

v

Distributed monitoring in message passing system in the presence of
Byzantine faults.

» Runtime enforcement of LTL properties in a distributed setting
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Thank Youl!
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