
Organising LTL Monitors over Systems
with a Global Clock

Yliès Falcone
joint work with Andreas Bauer (NICTA Canberra, Australia)

and Christian Colombo (U of Malta, Malta)

Univ. Grenoble Alpes, Inria, Laboratoire d’Informatique de Grenoble, France

DRV Workshop, Bertinoro, Italy

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 1 / 48

Outline

1 Background

2 Motivations

3 Decentralised Monitoring of LTL formulae

4 Implementation and Evaluation

5 Conclusions

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 2 / 48

Outline – Background

1 Background
Monitoring
Linear-time Temporal Logic (for monitoring)

2 Motivations

3 Decentralised Monitoring of LTL formulae

4 Implementation and Evaluation

5 Conclusions

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 3 / 48

Outline – Background

1 Background
Monitoring
Linear-time Temporal Logic (for monitoring)

2 Motivations

3 Decentralised Monitoring of LTL formulae

4 Implementation and Evaluation

5 Conclusions

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 4 / 48

“Classical” runtime validation method: monitoring

Runtime Verification [Klaus Havelund, Grigore Rosu]

A lightweight verification technique “bridging the gap” between testing and
verification

Checking whether a run of the system under scrutiny satisfies a given
correctness specification

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 5 / 48

“Classical” runtime validation method: monitoring

Runtime Verification [Klaus Havelund, Grigore Rosu]

A lightweight verification technique “bridging the gap” between testing and
verification

Checking whether a run of the system under scrutiny satisfies a given
correctness specification

Get a program/system

Program

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 5 / 48

“Classical” runtime validation method: monitoring

Runtime Verification [Klaus Havelund, Grigore Rosu]

A lightweight verification technique “bridging the gap” between testing and
verification

Checking whether a run of the system under scrutiny satisfies a given
correctness specification

Get a program/system
Synthesize a monitor: a decision procedure for the specification

e2e1

e1*

*

*

*

*

*

MonitorProgram

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 5 / 48

“Classical” runtime validation method: monitoring

Runtime Verification [Klaus Havelund, Grigore Rosu]

A lightweight verification technique “bridging the gap” between testing and
verification

Checking whether a run of the system under scrutiny satisfies a given
correctness specification

Get a program/system
Synthesize a monitor: a decision procedure for the specification
Instrument the underlying program to observe relevant events: ei ∈ Σ

e2

e2

e1 e5

e3
e5 e4

�
�
�
�

e2e1

e1*

*

*

*

*

*

MonitorProgram

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 5 / 48

“Classical” runtime validation method: monitoring

Runtime Verification [Klaus Havelund, Grigore Rosu]

A lightweight verification technique “bridging the gap” between testing and
verification

Checking whether a run of the system under scrutiny satisfies a given
correctness specification

Get a program/system
Synthesize a monitor: a decision procedure for the specification
Instrument the underlying program to observe relevant events: ei ∈ Σ
A monitor acts at runtime as an oracle for the specification (validation/violation)

e2e4e2

e2

e2

e1 e5

e3
e5 e4 �

�
�
�

e2e1

e1*

*

*

*

*

*

MonitorProgram

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 5 / 48

“Classical” runtime validation method: monitoring

Determine a set of atomic propositions AP of the system
e.g., for a car AP = {speed low , seat belt 1 on, . . .}

verdicts
Monϕevents ∈ 2AP

w |= ϕ?

Several existing tools (e.g., Java-MOP [Rosu et al.], RuleR [Barringer et al.],. . .)

Applied to several domains: Java/C programs, Web services, Space flight
software, system biology. . .

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 6 / 48

Outline – Background

1 Background
Monitoring
Linear-time Temporal Logic (for monitoring)

2 Motivations

3 Decentralised Monitoring of LTL formulae

4 Implementation and Evaluation

5 Conclusions

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 7 / 48

Linear-time Temporal Logic
Pnueli 77

One of the most widely used specification formalism

Consider a set of atomic propositions AP

Syntax:
ϕ ::= p ∈ AP | (ϕ) | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ

where:

¬,∨ are operators from propositional logic

X is the “next” operator

U is the until operator

Additional operators:

F is the “eventually” operator: Fϕ = true U ϕ

G is the “globally” operator: Gϕ = ¬(F(¬ϕ))

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 8 / 48

Linear-time Temporal Logic
Semantics

p ∈ AP

p arbitrary arbitrary arbitrary arbitrary
. . .

Xp

arbitrary p arbitrary arbitrary arbitrary
. . .

ϕ1Uϕ2

ϕ1 ∧ ¬ϕ2 ϕ1 ∧ ¬ϕ2 ϕ2 arbitrary arbitrary
. . .

Fϕ

¬ϕ ¬ϕ ϕ arbitrary arbitrary
. . .

Gϕ

ϕ ϕ ϕ ϕ ϕ
. . .

Given w ∈ Σ∞ and i ≥ 0 the (inductive) semantics is:

w i |= p ⇔ p ∈ w(i), for any p ∈ AP
w i |= ¬ϕ ⇔ w i 6|= ϕ
w i |= ϕ1 ∨ ϕ2 ⇔ w i |= ϕ1 ∨ w i |= ϕ2

w i |= Xϕ ⇔ w i+1 |= ϕ
w i |= ϕ1Uϕ2 ⇔ ∃k ∈ [i ,∞[. wk |= ϕ2 ∧ ∀l ∈ [i , k[. w l |= ϕ1

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 9 / 48

LTL for monitoring: LTL3 - Bauer et al.

LTL has mostly been used in validation techniques such as model-checking

The semantics needs to be adapted for monitoring
2 issues with a semantics over infinite sequences:

liveness properties

we do not “know” the future

Definition (LTL3 semantics for a formula ϕ)

good(ϕ) = {u ∈ Σ∗ | u · Σω ⊆ L(ϕ)}
bad(ϕ) = {u ∈ Σ∗ | u · Σω ⊆ Σω \ L(ϕ)}
Given u ∈ Σ∗:

u |=3 ϕ

 > if u ∈ good(ϕ)
⊥ if u ∈ bad(ϕ)
? otherwise

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 10 / 48

LTL for monitoring: LTL3 - Bauer et al.

LTL has mostly been used in validation techniques such as model-checking
The semantics needs to be adapted for monitoring
2 issues with a semantics over infinite sequences:

liveness properties

we do not “know” the future

Definition (LTL3 semantics for a formula ϕ)

good(ϕ) = {u ∈ Σ∗ | u · Σω ⊆ L(ϕ)}
bad(ϕ) = {u ∈ Σ∗ | u · Σω ⊆ Σω \ L(ϕ)}
Given u ∈ Σ∗:

u |=3 ϕ

 > if u ∈ good(ϕ)
⊥ if u ∈ bad(ϕ)
? otherwise

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 10 / 48

LTL for monitoring: LTL3 - Bauer et al.

LTL has mostly been used in validation techniques such as model-checking
The semantics needs to be adapted for monitoring
2 issues with a semantics over infinite sequences:

liveness properties

we do not “know” the future

Fϕ
¬ϕ ¬ϕ ¬ϕ ¬ϕ

. . . unknown . . .false?

Gϕ
ϕ ϕ ϕ ϕ

. . . unknown . . .true?

Definition (LTL3 semantics for a formula ϕ)

good(ϕ) = {u ∈ Σ∗ | u · Σω ⊆ L(ϕ)}
bad(ϕ) = {u ∈ Σ∗ | u · Σω ⊆ Σω \ L(ϕ)}
Given u ∈ Σ∗:

u |=3 ϕ

 > if u ∈ good(ϕ)
⊥ if u ∈ bad(ϕ)
? otherwise

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 10 / 48

LTL for monitoring: LTL3 - Bauer et al.

LTL has mostly been used in validation techniques such as model-checking
The semantics needs to be adapted for monitoring
2 issues with a semantics over infinite sequences:

liveness properties

we do not “know” the future

Fϕ
¬ϕ ¬ϕ ¬ϕ ¬ϕ ϕ

true (>)

Gϕ
ϕ ϕ ϕ ϕ ¬ϕ

false (⊥)

Definition (LTL3 semantics for a formula ϕ)

good(ϕ) = {u ∈ Σ∗ | u · Σω ⊆ L(ϕ)}
bad(ϕ) = {u ∈ Σ∗ | u · Σω ⊆ Σω \ L(ϕ)}
Given u ∈ Σ∗:

u |=3 ϕ

 > if u ∈ good(ϕ)
⊥ if u ∈ bad(ϕ)
? otherwise

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 10 / 48

LTL for monitoring: LTL3 - Bauer et al.

LTL has mostly been used in validation techniques such as model-checking
The semantics needs to be adapted for monitoring
2 issues with a semantics over infinite sequences:

liveness properties

we do not “know” the future

Fϕ
¬ϕ ¬ϕ ¬ϕ ¬ϕ ϕ

true (>)

Gϕ
ϕ ϕ ϕ ϕ ¬ϕ

false (⊥)

Definition (LTL3 semantics for a formula ϕ)

good(ϕ) = {u ∈ Σ∗ | u · Σω ⊆ L(ϕ)}
bad(ϕ) = {u ∈ Σ∗ | u · Σω ⊆ Σω \ L(ϕ)}
Given u ∈ Σ∗:

u |=3 ϕ

 > if u ∈ good(ϕ)
⊥ if u ∈ bad(ϕ)
? otherwise

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 10 / 48

Outline – Motivations

1 Background

2 Motivations

3 Decentralised Monitoring of LTL formulae

4 Implementation and Evaluation

5 Conclusions

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 11 / 48

An introductory example

Most modern cars realise the following abstract requirement:

“Issue warning if one of the passengers is not wearing a seat belt
(when the car has reached a certain speed).”

Could be formalised using LTL:

ϕ := G
(
speed low ∨ ((pressure sensor 1 high⇒ seat belt 1 on)

∧ . . .
∧ (pressure sensor n high⇒ seat belt n on))

)
and then monitored as usual. . .

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 12 / 48

An introductory example

Most modern cars realise the following abstract requirement:

“Issue warning if one of the passengers is not wearing a seat belt
(when the car has reached a certain speed).”

Could be formalised using LTL:

ϕ := G
(
speed low ∨ ((pressure sensor 1 high⇒ seat belt 1 on)

∧ . . .
∧ (pressure sensor n high⇒ seat belt n on))

)
and then monitored as usual. . .

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 12 / 48

An introductory example

However, cars are nowadays highly distributed systems (≥ 130 CPUs):

Legend:

3. Occupant sensing system (only one shown)

7. Seat-belt buckle sensors

You can’t easily monitor ϕ without central observation point!

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 13 / 48

An introductory example

However, cars are nowadays highly distributed systems (≥ 130 CPUs):

Legend:

3. Occupant sensing system (only one shown)

7. Seat-belt buckle sensors

You can’t easily monitor ϕ without central observation point!

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 13 / 48

Outline – Decentralised Monitoring of LTL formulae

1 Background

2 Motivations

3 Decentralised Monitoring of LTL formulae
Our setting and the intuitive idea
Organising Decentralised LTL Monitors (overview)
Migration-based Monitoring

4 Implementation and Evaluation

5 Conclusions

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 14 / 48

Outline – Decentralised Monitoring of LTL formulae

1 Background

2 Motivations

3 Decentralised Monitoring of LTL formulae
Our setting and the intuitive idea
Organising Decentralised LTL Monitors (overview)
Migration-based Monitoring

4 Implementation and Evaluation

5 Conclusions

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 15 / 48

Decentralised monitoring – Our setting

Distributed system operating under a global clock:

A set of “components” C1, . . . ,Cn

Σ = Σ1 ∪ . . . ∪ Σn: all system events (where ∀i , j : i 6= j ⇒ Σi ∩ Σj = ∅)
No central observation point

but monitors M1, . . . ,Mn are attached to components

Synchronous bus: at time t a monitor may send/receive a message:

At t + 1 this message is received by the recipient.
That is, computation takes no time.

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 16 / 48

Decentralised monitoring – Our setting

Distributed system operating under a global clock:

A set of “components” C1, . . . ,Cn

Σ = Σ1 ∪ . . . ∪ Σn: all system events (where ∀i , j : i 6= j ⇒ Σi ∩ Σj = ∅)
No central observation point

but monitors M1, . . . ,Mn are attached to components

Synchronous bus: at time t a monitor may send/receive a message:

At t + 1 this message is received by the recipient.
That is, computation takes no time.

C1
. . . Ci

. . . Cn

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 16 / 48

Decentralised monitoring – Our setting

Distributed system operating under a global clock:

A set of “components” C1, . . . ,Cn

Σ = Σ1 ∪ . . . ∪ Σn: all system events (where ∀i , j : i 6= j ⇒ Σi ∩ Σj = ∅)

No central observation point

but monitors M1, . . . ,Mn are attached to components

Synchronous bus: at time t a monitor may send/receive a message:

At t + 1 this message is received by the recipient.
That is, computation takes no time.

C1
. . . Ci

. . . Cn

Σ1 Σi Σn

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 16 / 48

Decentralised monitoring – Our setting

Distributed system operating under a global clock:

A set of “components” C1, . . . ,Cn

Σ = Σ1 ∪ . . . ∪ Σn: all system events (where ∀i , j : i 6= j ⇒ Σi ∩ Σj = ∅)
No central observation point

but monitors M1, . . . ,Mn are attached to components

Synchronous bus: at time t a monitor may send/receive a message:

At t + 1 this message is received by the recipient.
That is, computation takes no time.

C1
. . . Ci

. . . Cn

M1
. . . Mi

. . . Mn

Σ1 Σi Σn

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 16 / 48

Decentralised monitoring – Our setting

Distributed system operating under a global clock:

A set of “components” C1, . . . ,Cn

Σ = Σ1 ∪ . . . ∪ Σn: all system events (where ∀i , j : i 6= j ⇒ Σi ∩ Σj = ∅)
No central observation point

but monitors M1, . . . ,Mn are attached to components

Synchronous bus: at time t a monitor may send/receive a message:

At t + 1 this message is received by the recipient.
That is, computation takes no time.

C1
. . . Ci

. . . Cn

M1
. . . Mi

. . . Mn

SYNCHRONOUS BUS

Σ1 Σi Σn

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 16 / 48

Decentralised monitoring – the idea

Monitoring ϕ(Σ)?

C1
. . . Ci

. . . Cn

M1
. . . Mi

. . . Mn

SYNCHRONOUS BUS

Σ1 Σi Σn

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 17 / 48

Decentralised monitoring – the idea

Distribute ϕ’s evaluation & exchange obligations

Proposed Solution:

C1
. . . Ci

. . . Cn

M1 ϕt
1

. . . Mi ϕt
i

. . . Mn ϕt
n

SYNCHRONOUS BUS

Σ1 Σi Σn

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 17 / 48

Decentralised monitoring – the idea

Distribute ϕ’s evaluation & exchange obligations

Proposed Solution:

C1
. . . Ci

. . . Cn

M1 ϕt
1

. . . Mi ϕt
i

. . . Mn ϕt
n

Σ1 Σi Σn

Three organizations of monitors: orchestration, migration, and choreography
(borrowing terminology from Francalanza et al.)

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 17 / 48

A note on the global clock and synchrony

–“Is a global clock realistic?”

–“Not always, but many safety critical systems use it.”

Automotive domain uses FlexRay data bus, which has (among others) a
synchronous transfer mode:

Examples: Steer-by-wire, brake-by-wire, engine management, etc.

Flight-control systems mostly synchronous (fly-by-wire):

Examples for implementation/verification systems used in this domain:
SIGNAL, Lustre, Astrée verifier, etc.

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 18 / 48

A note on the global clock and synchrony

–“Is a global clock realistic?”
–“Not always, but many safety critical systems use it.”

Automotive domain uses FlexRay data bus, which has (among others) a
synchronous transfer mode:

Examples: Steer-by-wire, brake-by-wire, engine management, etc.

Flight-control systems mostly synchronous (fly-by-wire):

Examples for implementation/verification systems used in this domain:
SIGNAL, Lustre, Astrée verifier, etc.

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 18 / 48

A note on the global clock and synchrony

–“Is a global clock realistic?”
–“Not always, but many safety critical systems use it.”

Automotive domain uses FlexRay data bus, which has (among others) a
synchronous transfer mode:

Examples: Steer-by-wire, brake-by-wire, engine management, etc.

Flight-control systems mostly synchronous (fly-by-wire):

Examples for implementation/verification systems used in this domain:
SIGNAL, Lustre, Astrée verifier, etc.

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 18 / 48

Outline – Decentralised Monitoring of LTL formulae

1 Background

2 Motivations

3 Decentralised Monitoring of LTL formulae
Our setting and the intuitive idea
Organising Decentralised LTL Monitors (overview)
Migration-based Monitoring

4 Implementation and Evaluation

5 Conclusions

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 19 / 48

Orchestration (simplified)

Comp. B Comp. CComp. A

M : b1, b2 M : c1M : a1

M : G (Xa1 ∧ c1 ∨ (b1 ∧ b2))

Central point monitoring the global formula.

Several communication “protocols” can be used to forward local observations.

At the central site, at each time step, when globally monitoring ϕ:

1 Wait for all observations to arrive from the remote components.

2 Merge all observations to form an event.

3 Progress ϕ with the event and simplify the progressed formula.

4 If a verdict is reached, stop monitoring and report result.

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 20 / 48

Orchestration (simplified)

Comp. B Comp. CComp. A

M : b1, b2 M : c1M : a1

M : G (Xa1 ∧ c1 ∨ (b1 ∧ b2))

Central point monitoring the global formula.

Several communication “protocols” can be used to forward local observations.

At the central site, at each time step, when globally monitoring ϕ:

1 Wait for all observations to arrive from the remote components.

2 Merge all observations to form an event.

3 Progress ϕ with the event and simplify the progressed formula.

4 If a verdict is reached, stop monitoring and report result.

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 20 / 48

Migration (simplified)

Comp. B Comp. CComp. A

M : G (Xa1 ∧ c1 ∨ (b1 ∧ b2)) M :M :

Migration takes place

Comp. B Comp. CComp. A

M : M : G (Xa1 ∧ c1 ∨ (b1 ∧ b2)) ∧ (a1 ∧ Pc1)M :

Monitor state encoded by a formula traversing the network.

Formula to be satisfied given the local observations of traversed components.

Formula may contain references to past time instants.

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 21 / 48

Migration (ctd)

Comp. B Comp. CComp. A

M : G (Xa1 ∧ c1 ∨ (b1 ∧ b2)) M :M :

Migration takes place

Comp. B Comp. CComp. A

M : M : G (Xa1 ∧ c1 ∨ (b1 ∧ b2)) ∧ (a1 ∧ Pc1)M :

At each component with a formula ϕ to process, at each time step:

1 Use the current local observations to resolve relevant propositions.

2 Use the local history to resolve any past references to local observations.

3 Progress ϕ using “obligations” to earlier observations when not locally
available.

4 If a verdict is reached, stop monitoring and report result.

5 Otherwise, select the component which can resolve the “oldest” obligation
and send the formula to this component.

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 22 / 48

Choreography (simplified)

Comp. C Comp. BComp. A

M : X ∧ c1 M : G (∨ (b1 ∧ b2))M : a1

Breaking down the formula across the network (following its syntax tree).

Tree structure where results from subformulae flow up to the parent formula.

At each time instant, on each component:
1 If a verdict from a child is received:

1 Substitute the verdict for the corresponding place holder in the local formula;
2 Apply simplification rules to the local formula.

2 Progress the local formula using the local observation.

3 If the local formula reaches a verdict, send the verdict to the parent (if any).

4 If the formula at the root of the tree reaches a verdict, stop monitoring and
report result.

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 23 / 48

Choreography (simplified)

Comp. C Comp. BComp. A

M : X ∧ c1 M : G (∨ (b1 ∧ b2))M : a1

Breaking down the formula across the network (following its syntax tree).

Tree structure where results from subformulae flow up to the parent formula.

At each time instant, on each component:
1 If a verdict from a child is received:

1 Substitute the verdict for the corresponding place holder in the local formula;
2 Apply simplification rules to the local formula.

2 Progress the local formula using the local observation.

3 If the local formula reaches a verdict, send the verdict to the parent (if any).

4 If the formula at the root of the tree reaches a verdict, stop monitoring and
report result.

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 23 / 48

Outline – Decentralised Monitoring of LTL formulae

1 Background

2 Motivations

3 Decentralised Monitoring of LTL formulae
Our setting and the intuitive idea
Organising Decentralised LTL Monitors (overview)
Migration-based Monitoring

4 Implementation and Evaluation

5 Conclusions

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 24 / 48

Monitoring by progression

Definition (Progression function P : LTL× Σ→ LTL)

Let ϕ,ϕ1, ϕ2 ∈ LTL, and σ ∈ Σ be an event.

P(p ∈ AP, σ) = >, if p ∈ σ,⊥ otherwise
P(ϕ1 ∨ ϕ2, σ) = P(ϕ1, σ) ∨ P(ϕ2, σ)
P(ϕ1Uϕ2, σ) = P(ϕ2, σ) ∨ P(ϕ1, σ) ∧ ϕ1Uϕ2

P(Gϕ, σ) = P(ϕ, σ) ∧ G(ϕ)
P(Fϕ, σ) = P(ϕ, σ) ∨ F(ϕ)

P(>, σ) = >
P(⊥, σ) = ⊥
P(¬ϕ, σ) = ¬P(ϕ, σ)
P(Xϕ, σ) = ϕ

Example (Progression)

Let ϕ = G(a ∧ b ∨ c)

At time t = 0, let u = {a}

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 25 / 48

Monitoring by progression

Definition (Progression function P : LTL× Σ→ LTL)

Let ϕ,ϕ1, ϕ2 ∈ LTL, and σ ∈ Σ be an event.

P(p ∈ AP, σ) = >, if p ∈ σ,⊥ otherwise
P(ϕ1 ∨ ϕ2, σ) = P(ϕ1, σ) ∨ P(ϕ2, σ)
P(ϕ1Uϕ2, σ) = P(ϕ2, σ) ∨ P(ϕ1, σ) ∧ ϕ1Uϕ2

P(Gϕ, σ) = P(ϕ, σ) ∧ G(ϕ)
P(Fϕ, σ) = P(ϕ, σ) ∨ F(ϕ)

P(>, σ) = >
P(⊥, σ) = ⊥
P(¬ϕ, σ) = ¬P(ϕ, σ)
P(Xϕ, σ) = ϕ

Example (Progression)

Let ϕ = G(a ∧ b ∨ c)

At time t = 0, let u = {a}

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 25 / 48

Monitoring by progression

Definition (Progression function P : LTL× Σ→ LTL)

Let ϕ,ϕ1, ϕ2 ∈ LTL, and σ ∈ Σ be an event.

P(p ∈ AP, σ) = >, if p ∈ σ,⊥ otherwise
P(ϕ1 ∨ ϕ2, σ) = P(ϕ1, σ) ∨ P(ϕ2, σ)
P(ϕ1Uϕ2, σ) = P(ϕ2, σ) ∨ P(ϕ1, σ) ∧ ϕ1Uϕ2

P(Gϕ, σ) = P(ϕ, σ) ∧ G(ϕ)
P(Fϕ, σ) = P(ϕ, σ) ∨ F(ϕ)

P(>, σ) = >
P(⊥, σ) = ⊥
P(¬ϕ, σ) = ¬P(ϕ, σ)
P(Xϕ, σ) = ϕ

Example (Progression)

Let ϕ = G(a ∧ b ∨ c)

At time t = 0, let u = {a}
P(ϕ, u) = P(a ∧ b ∨ c , u) ∧ G(a ∧ b ∨ c)

=
(
P(a, u) ∧ P(b, u) ∨ P(c , u)

)
∧ G(a ∧ b ∨ c)

= ⊥ ∧ G(a ∧ b ∨ c)
= ⊥

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 25 / 48

Monitoring by progression

Definition (Progression function P : LTL× Σ→ LTL)

Let ϕ,ϕ1, ϕ2 ∈ LTL, and σ ∈ Σ be an event.

P(p ∈ AP, σ) = >, if p ∈ σ,⊥ otherwise
P(ϕ1 ∨ ϕ2, σ) = P(ϕ1, σ) ∨ P(ϕ2, σ)
P(ϕ1Uϕ2, σ) = P(ϕ2, σ) ∨ P(ϕ1, σ) ∧ ϕ1Uϕ2

P(Gϕ, σ) = P(ϕ, σ) ∧ G(ϕ)
P(Fϕ, σ) = P(ϕ, σ) ∨ F(ϕ)

P(>, σ) = >
P(⊥, σ) = ⊥
P(¬ϕ, σ) = ¬P(ϕ, σ)
P(Xϕ, σ) = ϕ

Example (Progression)

Let ϕ = G(a ∧ b ∨ c)

At time t = 0, let u = {a, c}
P(ϕ, u) = P(a ∧ b ∨ c , u) ∧ G(a ∧ b ∨ c)

=
(
P(a, u) ∧ P(b, u) ∨ P(c , u)

)
∧ G(a ∧ b ∨ c)

= > ∧ G(a ∧ b ∨ c)
= G(a ∧ b ∨ c)

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 25 / 48

Monitoring by progression

Progression provides a monitoring algorithm

P(P(. . .P(ϕ, u(0)) . . . , u(n − 1)), u(n)) = > =⇒ u ∈ good(ϕ)
P(P(. . .P(ϕ, u(0)) . . . , u(n − 1)), u(n)) = ⊥ =⇒ u ∈ bad(ϕ)

Observe:

Efficiency does not depend on length of trace, but

Potential “formula explosion” problem
↪→ continuous syntactic simplification

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 26 / 48

Monitoring by progression

Progression provides a monitoring algorithm

P(P(. . .P(ϕ, u(0)) . . . , u(n − 1)), u(n)) = > =⇒ u ∈ good(ϕ)
P(P(. . .P(ϕ, u(0)) . . . , u(n − 1)), u(n)) = ⊥ =⇒ u ∈ bad(ϕ)

Observe:

Efficiency does not depend on length of trace, but

Potential “formula explosion” problem
↪→ continuous syntactic simplification

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 26 / 48

Is (classical) progression adequate for migration?

Example (Non-adequacy of (classical) progression)

Architecture with components A,B,C , resp. observing propositions a, b, c

At time t = 0, u = {a, c} and ϕ = G(a ∧ b ∨ c)

We apply progression on each component in separation (with their local
observation)

Let’s take a look at what happens on MA:

“PA(ϕ, u)” = PA(ϕ, {a})
= PA(a ∧ b ∨ c , {a}) ∧ G(a ∧ b ∨ c)
= (> ∧⊥ ∨⊥) ∧ G(a ∧ b ∨ c)
= ⊥

However, u is not a bad prefix!

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 27 / 48

Is (classical) progression adequate for migration?

Example (Non-adequacy of (classical) progression)

Architecture with components A,B,C , resp. observing propositions a, b, c

At time t = 0, u = {a, c} and ϕ = G(a ∧ b ∨ c)

We apply progression on each component in separation (with their local
observation)

Let’s take a look at what happens on MA:

“PA(ϕ, u)” = PA(ϕ, {a})
= PA(a ∧ b ∨ c , {a}) ∧ G(a ∧ b ∨ c)
= (> ∧⊥ ∨⊥) ∧ G(a ∧ b ∨ c)
= ⊥

However, u is not a bad prefix!

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 27 / 48

Is (classical) progression adequate for migration?

Example (Non-adequacy of (classical) progression)

Architecture with components A,B,C , resp. observing propositions a, b, c

At time t = 0, u = {a, c} and ϕ = G(a ∧ b ∨ c)

We apply progression on each component in separation (with their local
observation)

Let’s take a look at what happens on MA:

“PA(ϕ, u)” = PA(ϕ, {a})
= PA(a ∧ b ∨ c , {a}) ∧ G(a ∧ b ∨ c)
= (> ∧⊥ ∨⊥) ∧ G(a ∧ b ∨ c)
= ⊥

However, u is not a bad prefix!

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 27 / 48

Is (classical) progression adequate for migration?

Example (Non-adequacy of (classical) progression)

Architecture with components A,B,C , resp. observing propositions a, b, c

At time t = 0, u = {a, c} and ϕ = G(a ∧ b ∨ c)

We apply progression on each component in separation (with their local
observation)

Let’s take a look at what happens on MA:

“PA(ϕ, u)” = PA(ϕ, {a})
= PA(a ∧ b ∨ c , {a}) ∧ G(a ∧ b ∨ c)
= (> ∧⊥ ∨⊥) ∧ G(a ∧ b ∨ c)
= ⊥

However, u is not a bad prefix!

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 27 / 48

Decentralising progression on some component Ci

Not much changes except for atomic propositions. . .

Definition (Decentralised progression for atomic propositions)

On some component Ci with atomic propositions APi

P(p, σ,APi) =


> if p ∈ σ
⊥ if p /∈ σ ∧ p ∈ APi

Xp otherwise

Definition (Decentralised progression for past goals)

On some component Ci with atomic propositions APi

P(X
m
p, σ,APi) =


> if p ∈ APi ∩ Πi (σ(−m))
⊥ if p ∈ APi \ Πi (σ(−m))

X
m+1

p otherwise

where Πi (σ(−m)) is the event observed m times ago on Ci

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 28 / 48

Decentralising progression on some component Ci

Not much changes except for atomic propositions. . .

Definition (Decentralised progression for atomic propositions)

On some component Ci with atomic propositions APi

P(p, σ,APi) =


> if p ∈ σ
⊥ if p /∈ σ ∧ p ∈ APi

Xp otherwise

Definition (Decentralised progression for past goals)

On some component Ci with atomic propositions APi

P(X
m
p, σ,APi) =


> if p ∈ APi ∩ Πi (σ(−m))
⊥ if p ∈ APi \ Πi (σ(−m))

X
m+1

p otherwise

where Πi (σ(−m)) is the event observed m times ago on Ci

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 28 / 48

Back to the example

Example (Adequacy of decentralised progression)

Architecture with components A,B,C , resp. observing propositions a, b, c

At time t = 0, u = {a, c} and ϕ = G(a ∧ b ∨ c)

We apply decentralised progression on each component in separation (with
their local observation)

Let’s take a look at what happens on MA:

“PA(ϕ, u)” = PA(ϕ, {a})
= PA(a ∧ b ∨ c , {a}, {a}) ∧ G(a ∧ b ∨ c)
= PA(a ∧ b ∨ c , {a}, {a}) ∧ PA(a ∧ b ∨ c , {b}, {a})

∧PA(a ∧ b ∨ c , {c}, {a}) ∧ G(a ∧ b ∨ c)
= (> ∧ Xb ∨ Xc) ∧ G(a ∧ b ∨ c)
= (Xb ∨ Xc) ∧ G(a ∧ b ∨ c)

Monitoring can continue :-)

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 29 / 48

Back to the example

Example (Adequacy of decentralised progression)

Architecture with components A,B,C , resp. observing propositions a, b, c

At time t = 0, u = {a, c} and ϕ = G(a ∧ b ∨ c)

We apply decentralised progression on each component in separation (with
their local observation)

Let’s take a look at what happens on MA:

“PA(ϕ, u)” = PA(ϕ, {a})
= PA(a ∧ b ∨ c , {a}, {a}) ∧ G(a ∧ b ∨ c)
= PA(a ∧ b ∨ c , {a}, {a}) ∧ PA(a ∧ b ∨ c , {b}, {a})

∧PA(a ∧ b ∨ c , {c}, {a}) ∧ G(a ∧ b ∨ c)
= (> ∧ Xb ∨ Xc) ∧ G(a ∧ b ∨ c)
= (Xb ∨ Xc) ∧ G(a ∧ b ∨ c)

Monitoring can continue :-)

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 29 / 48

Back to the example

Example (Adequacy of decentralised progression)

Architecture with components A,B,C , resp. observing propositions a, b, c

At time t = 0, u = {a, c} and ϕ = G(a ∧ b ∨ c)

We apply decentralised progression on each component in separation (with
their local observation)

Let’s take a look at what happens on MA:

“PA(ϕ, u)” = PA(ϕ, {a})
= PA(a ∧ b ∨ c , {a}, {a}) ∧ G(a ∧ b ∨ c)
= PA(a ∧ b ∨ c , {a}, {a}) ∧ PA(a ∧ b ∨ c , {b}, {a})

∧PA(a ∧ b ∨ c , {c}, {a}) ∧ G(a ∧ b ∨ c)
= (> ∧ Xb ∨ Xc) ∧ G(a ∧ b ∨ c)
= (Xb ∨ Xc) ∧ G(a ∧ b ∨ c)

Monitoring can continue :-)

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 29 / 48

Outline – Decentralised Monitoring of LTL formulae

1 Background

2 Motivations

3 Decentralised Monitoring of LTL formulae
Our setting and the intuitive idea
Organising Decentralised LTL Monitors (overview)
Migration-based Monitoring

Decentralised Monitoring

4 Implementation and Evaluation

5 Conclusions

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 30 / 48

Decentralised Monitoring: local algorithm at time t

C1
. . . Ci

. . . Cn

M1
. . . Mi

. . . Mn

SYNCHRONOUS BUS

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 31 / 48

Decentralised Monitoring: local algorithm at time t

C1
. . . Ci

. . . Cn

M1 ϕt
1

. . . Mi ϕt
i

. . . Mn ϕt
n

SYNCHRONOUS BUS

L1. [Next goal.] Let ϕt
i be the monitor’s current local obligation (ϕ0

i := ϕ)

L2. [Receive messages.] ({ϕj}j∈[1,m],j 6=i : received obligations)
Set ϕt

i := ϕt
i ∧
∧

j∈[1,m],j 6=i ϕj

L3. [Receive event.] Read next σ

L4. [Progress.] Let the rewriting engine determine ϕt+1
i := P(ϕt

i , σ,APi)

L5. [Evaluate and return.] If ϕt+1
i = > return >, if ϕt+1

i = ⊥ return ⊥
L6. [Communicate.] If ϕt+1

i is urgent send it to the most “relevant” monitor

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 31 / 48

Decentralised Monitoring: local algorithm at time t

C1
. . . Ci

. . . Cn

M1 ϕt
1

{ϕj}j∈[1,m],j 6=1

. . . Mi ϕt
i

{ϕj}j∈[1,m],j 6=i

. . . Mn ϕt
n

{ϕj}j∈[1,m],j 6=n

SYNCHRONOUS BUS

conjunct conjunct conjunct

L1. [Next goal.] Let ϕt
i be the monitor’s current local obligation (ϕ0

i := ϕ)

L2. [Receive messages.] ({ϕj}j∈[1,m],j 6=i : received obligations)
Set ϕt

i := ϕt
i ∧
∧

j∈[1,m],j 6=i ϕj

L3. [Receive event.] Read next σ

L4. [Progress.] Let the rewriting engine determine ϕt+1
i := P(ϕt

i , σ,APi)

L5. [Evaluate and return.] If ϕt+1
i = > return >, if ϕt+1

i = ⊥ return ⊥
L6. [Communicate.] If ϕt+1

i is urgent send it to the most “relevant” monitor

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 31 / 48

Decentralised Monitoring: local algorithm at time t

C1
. . . Ci

. . . Cn

M1 ϕt
1

. . . Mi ϕt
i

. . . Mn ϕt
n

SYNCHRONOUS BUS

Σ1 Σi Σn

L1. [Next goal.] Let ϕt
i be the monitor’s current local obligation (ϕ0

i := ϕ)

L2. [Receive messages.] ({ϕj}j∈[1,m],j 6=i : received obligations)
Set ϕt

i := ϕt
i ∧
∧

j∈[1,m],j 6=i ϕj

L3. [Receive event.] Read next σ

L4. [Progress.] Let the rewriting engine determine ϕt+1
i := P(ϕt

i , σ,APi)

L5. [Evaluate and return.] If ϕt+1
i = > return >, if ϕt+1

i = ⊥ return ⊥
L6. [Communicate.] If ϕt+1

i is urgent send it to the most “relevant” monitor

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 31 / 48

Decentralised Monitoring: local algorithm at time t

C1
. . . Ci

. . . Cn

Progr. ϕt+1
1

. . . Progr. ϕt+1
i

. . . Progr. ϕt+1
n

SYNCHRONOUS BUS

L1. [Next goal.] Let ϕt
i be the monitor’s current local obligation (ϕ0

i := ϕ)

L2. [Receive messages.] ({ϕj}j∈[1,m],j 6=i : received obligations)
Set ϕt

i := ϕt
i ∧
∧

j∈[1,m],j 6=i ϕj

L3. [Receive event.] Read next σ

L4. [Progress.] Let the rewriting engine determine ϕt+1
i := P(ϕt

i , σ,APi)

L5. [Evaluate and return.] If ϕt+1
i = > return >, if ϕt+1

i = ⊥ return ⊥
L6. [Communicate.] If ϕt+1

i is urgent send it to the most “relevant” monitor

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 31 / 48

Decentralised Monitoring: local algorithm at time t

C1
. . . Ci

. . . Cn

Progr. ϕt+1
1

. . . Progr. ϕt+1
i

. . . Progr. ϕt+1
n

SYNCHRONOUS BUS

L1. [Next goal.] Let ϕt
i be the monitor’s current local obligation (ϕ0

i := ϕ)

L2. [Receive messages.] ({ϕj}j∈[1,m],j 6=i : received obligations)
Set ϕt

i := ϕt
i ∧
∧

j∈[1,m],j 6=i ϕj

L3. [Receive event.] Read next σ

L4. [Progress.] Let the rewriting engine determine ϕt+1
i := P(ϕt

i , σ,APi)

L5. [Evaluate and return.] If ϕt+1
i = > return >, if ϕt+1

i = ⊥ return ⊥

L6. [Communicate.] If ϕt+1
i is urgent send it to the most “relevant” monitor

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 31 / 48

Decentralised Monitoring: local algorithm at time t

C1
. . . Ci

. . . Cn

Progr. ϕt+1
1

. . . Progr. ϕt+1
i

. . . Progr. ϕt+1
n

SYNCHRONOUS BUS

L1. [Next goal.] Let ϕt
i be the monitor’s current local obligation (ϕ0

i := ϕ)

L2. [Receive messages.] ({ϕj}j∈[1,m],j 6=i : received obligations)
Set ϕt

i := ϕt
i ∧
∧

j∈[1,m],j 6=i ϕj

L3. [Receive event.] Read next σ

L4. [Progress.] Let the rewriting engine determine ϕt+1
i := P(ϕt

i , σ,APi)

L5. [Evaluate and return.] If ϕt+1
i = > return >, if ϕt+1

i = ⊥ return ⊥
L6. [Communicate.] If ϕt+1

i is urgent send it to the most “relevant” monitor

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 31 / 48

Decent. progress. of ϕ = F(a ∧ b ∧ c), 3 components

Monitoring ϕ = F(a ∧ b ∧ c)

over {a, b} · {a, b, c} · ∅ · ∅
with
APA = {a},APB = {b},APC = {c}

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 32 / 48

Decent. progress. of ϕ = F(a ∧ b ∧ c), 3 components

Monitoring ϕ = F(a ∧ b ∧ c)

over {a, b} · {a, b, c} · ∅ · ∅
with
APA = {a},APB = {b},APC = {c}

A B C

MA MB MC

ΣA ΣB ΣB

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 32 / 48

Decent. progress. of ϕ = F(a ∧ b ∧ c), 3 components

Monitoring ϕ = F(a ∧ b ∧ c)

over {a, b} · {a, b, c} · ∅ · ∅
with
APA = {a},APB = {b},APC = {c}

t = 0

A B C

MA ϕ MB ϕ MC ϕ

[L1.] [Next goal.] Let ϕt
i be the monitor’s current local obligation (ϕ0

i := ϕ)

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 32 / 48

Decent. progress. of ϕ = F(a ∧ b ∧ c), 3 components

Monitoring ϕ = F(a ∧ b ∧ c)

over {a, b} · {a, b, c} · ∅ · ∅
with
APA = {a},APB = {b},APC = {c}

t = 0

A B C

MA ϕ MB ϕ MC ϕ

[L2.] [Receive messages.] ({ϕj}j∈[1,m],j 6=i : received obligations)
Set ϕt

i := ϕt
i ∧
∧

j∈[1,m],j 6=i ϕj

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 32 / 48

Decent. progress. of ϕ = F(a ∧ b ∧ c), 3 components

Monitoring ϕ = F(a ∧ b ∧ c)

over {a, b} · {a, b, c} · ∅ · ∅
with
APA = {a},APB = {b},APC = {c}

t = 0

A B C

MA ϕ MB ϕ MC ϕ

{a} {b} ∅

[L3.] [Receive event.] Read next σ

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 32 / 48

Decent. progress. of ϕ = F(a ∧ b ∧ c), 3 components

Monitoring ϕ = F(a ∧ b ∧ c)

over {a, b} · {a, b, c} · ∅ · ∅
with
APA = {a},APB = {b},APC = {c}

t = 0

A B C

MA Xb ∧Xc ∨ ϕ MB Xa ∧Xc ∨ ϕ MC ϕ

[L4.] [Progress.] Let the rewriting engine determine ϕt+1
i := P(ϕt

i , σ,APi)

ϕ1
A := P(ϕ, {a},APA) = P(a ∧ b ∧ c , {a},APA) ∨ ϕ = Xb ∧ Xc ∨ ϕ

ϕ1
B := P(ϕ, {b},APB) = P(a ∧ b ∧ c , {b},APB) ∨ ϕ = Xa ∧ Xc ∨ ϕ

ϕ1
C := P(ϕ, ∅,APC) = P(a ∧ b ∧ c , ∅,APC) ∨ ϕ = ϕ

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 32 / 48

Decent. progress. of ϕ = F(a ∧ b ∧ c), 3 components

Monitoring ϕ = F(a ∧ b ∧ c)

over {a, b} · {a, b, c} · ∅ · ∅
with
APA = {a},APB = {b},APC = {c}

t = 0

A B C

MA Xb ∧Xc ∨ ϕ MB Xa ∧Xc ∨ ϕ MC ϕ

[L4.] [Progress.] Let the rewriting engine determine ϕt+1
i := P(ϕt

i , σ,APi)

ϕ1
A := P(ϕ, {a},APA) = P(a ∧ b ∧ c , {a},APA) ∨ ϕ = Xb ∧ Xc ∨ ϕ

ϕ1
B := P(ϕ, {b},APB) = P(a ∧ b ∧ c , {b},APB) ∨ ϕ = Xa ∧ Xc ∨ ϕ

ϕ1
C := P(ϕ, ∅,APC) = P(a ∧ b ∧ c , ∅,APC) ∨ ϕ = ϕ

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 32 / 48

Decent. progress. of ϕ = F(a ∧ b ∧ c), 3 components

Monitoring ϕ = F(a ∧ b ∧ c)

over {a, b} · {a, b, c} · ∅ · ∅
with
APA = {a},APB = {b},APC = {c}

t = 0

A B C

MA Xb ∧Xc ∨ ϕ MB Xa ∧Xc ∨ ϕ MC ϕ

[L4.] [Progress.] Let the rewriting engine determine ϕt+1
i := P(ϕt

i , σ,APi)

ϕ1
A := P(ϕ, {a},APA) = P(a ∧ b ∧ c , {a},APA) ∨ ϕ = Xb ∧ Xc ∨ ϕ

ϕ1
B := P(ϕ, {b},APB) = P(a ∧ b ∧ c , {b},APB) ∨ ϕ = Xa ∧ Xc ∨ ϕ

ϕ1
C := P(ϕ, ∅,APC) = P(a ∧ b ∧ c , ∅,APC) ∨ ϕ = ϕ

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 32 / 48

Decent. progress. of ϕ = F(a ∧ b ∧ c), 3 components

Monitoring ϕ = F(a ∧ b ∧ c)

over {a, b} · {a, b, c} · ∅ · ∅
with
APA = {a},APB = {b},APC = {c}

t = 0

A B C

MA Xb ∧Xc ∨ ϕ MB Xa ∧Xc ∨ ϕ MC ϕ

[L5.] [Evaluate and return.] If ϕt+1
i = > return >, if ϕt+1

i = ⊥ return ⊥

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 32 / 48

Decent. progress. of ϕ = F(a ∧ b ∧ c), 3 components

Monitoring ϕ = F(a ∧ b ∧ c)

over {a, b} · {a, b, c} · ∅ · ∅
with
APA = {a},APB = {b},APC = {c}

t = 0

A B C

MA Xb ∧Xc ∨ ϕ MB Xa ∧Xc ∨ ϕ MC ϕ

[L6.] [Communicate.] If ϕt+1
i is urgent send it to the most “relevant” monitor

urgency(ϕ1
A) = urgency(Xb ∧ Xc ∨ ϕ) = 1 MB

urgency(ϕ1
B) = urgency(Xa ∧ Xc ∨ ϕ) = 1 MA

urgency(ϕ1
C) = urgency(ϕ) = 0

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 32 / 48

Decent. progress. of ϕ = F(a ∧ b ∧ c), 3 components

Monitoring ϕ = F(a ∧ b ∧ c)

over {a, b} · {a, b, c} · ∅ · ∅
with
APA = {a},APB = {b},APC = {c}

t = 1

A B C

MA # MB # MC ϕ

[L1.] [Next goal.] Let ϕt
i be the monitor’s current local obligation (ϕ0

i := ϕ)

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 32 / 48

Decent. progress. of ϕ = F(a ∧ b ∧ c), 3 components

Monitoring ϕ = F(a ∧ b ∧ c)

over {a, b} · {a, b, c} · ∅ · ∅
with
APA = {a},APB = {b},APC = {c}

t = 1

A B C

MA Xa ∧Xc ∨ ϕ MB Xb ∧Xc ∨ ϕ MC ϕ

[L2.] [Receive messages.] ({ϕj}j∈[1,m],j 6=i : received obligations)
Set ϕt

i := ϕt
i ∧
∧

j∈[1,m],j 6=i ϕj

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 32 / 48

Decent. progress. of ϕ = F(a ∧ b ∧ c), 3 components

Monitoring ϕ = F(a ∧ b ∧ c)

over {a, b} · {a, b, c} · ∅ · ∅
with
APA = {a},APB = {b},APC = {c}

t = 1

A B C

MA Xa ∧Xc ∨ ϕ MB Xb ∧Xc ∨ ϕ MC ϕ

{a} {b} {c}

[L3.] [Receive event.] Read next σ

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 32 / 48

Decent. progress. of ϕ = F(a ∧ b ∧ c), 3 components

Monitoring ϕ = F(a ∧ b ∧ c)

over {a, b} · {a, b, c} · ∅ · ∅
with
APA = {a},APB = {b},APC = {c}

t = 1

A B C

MA X
2
c ∨ (Xb ∧Xc ∨ ϕ) MB X

2
c ∨ (Xb ∧Xc ∨ ϕ) MC Xa ∧Xb ∨ ϕ

[L4.] [Progress.] Let the rewriting engine determine ϕt+1
i := P(ϕt

i , σ,APi)

ϕ2
A := P

(
Xa ∧ Xc ∨ ϕ ∧#, {a},APA

)
= X

2
c ∨ (Xb ∧ Xc ∨ ϕ)

ϕ2
B := P(Xb ∧ Xc ∨ ϕ ∧#, {b},APB) = X

2
c ∨ (Xa ∧ Xc ∨ ϕ)

ϕ2
C := P(ϕ, {c},APC) = Xa ∧ Xb ∨ ϕ

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 32 / 48

Decent. progress. of ϕ = F(a ∧ b ∧ c), 3 components

Monitoring ϕ = F(a ∧ b ∧ c)

over {a, b} · {a, b, c} · ∅ · ∅
with
APA = {a},APB = {b},APC = {c}

t = 1

A B C

MA X
2
c ∨ (Xb ∧Xc ∨ ϕ) MB X

2
c ∨ (Xb ∧Xc ∨ ϕ) MC Xa ∧Xb ∨ ϕ

[L4.] [Progress.] Let the rewriting engine determine ϕt+1
i := P(ϕt

i , σ,APi)

ϕ2
A := P

(
Xa ∧ Xc ∨ ϕ ∧#, {a},APA

)
= X

2
c ∨ (Xb ∧ Xc ∨ ϕ)

ϕ2
B := P(Xb ∧ Xc ∨ ϕ ∧#, {b},APB) = X

2
c ∨ (Xa ∧ Xc ∨ ϕ)

ϕ2
C := P(ϕ, {c},APC) = Xa ∧ Xb ∨ ϕ

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 32 / 48

Decent. progress. of ϕ = F(a ∧ b ∧ c), 3 components

Monitoring ϕ = F(a ∧ b ∧ c)

over {a, b} · {a, b, c} · ∅ · ∅
with
APA = {a},APB = {b},APC = {c}

t = 1

A B C

MA X
2
c ∨ (Xb ∧Xc ∨ ϕ) MB X

2
c ∨ (Xb ∧Xc ∨ ϕ) MC Xa ∧Xb ∨ ϕ

[L4.] [Progress.] Let the rewriting engine determine ϕt+1
i := P(ϕt

i , σ,APi)

ϕ2
A := P

(
Xa ∧ Xc ∨ ϕ ∧#, {a},APA

)
= X

2
c ∨ (Xb ∧ Xc ∨ ϕ)

ϕ2
B := P(Xb ∧ Xc ∨ ϕ ∧#, {b},APB) = X

2
c ∨ (Xa ∧ Xc ∨ ϕ)

ϕ2
C := P(ϕ, {c},APC) = Xa ∧ Xb ∨ ϕ

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 32 / 48

Decent. progress. of ϕ = F(a ∧ b ∧ c), 3 components

Monitoring ϕ = F(a ∧ b ∧ c)

over {a, b} · {a, b, c} · ∅ · ∅
with
APA = {a},APB = {b},APC = {c}

t = 1

A B C

MA X
2
c ∨ (Xb ∧Xc ∨ ϕ) MB X

2
c ∨ (Xb ∧Xc ∨ ϕ) MC Xa ∧Xb ∨ ϕ

[L5.] [Evaluate and return.] If ϕt+1
i = > return >, if ϕt+1

i = ⊥ return ⊥

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 32 / 48

Decent. progress. of ϕ = F(a ∧ b ∧ c), 3 components

Monitoring ϕ = F(a ∧ b ∧ c)

over {a, b} · {a, b, c} · ∅ · ∅
with
APA = {a},APB = {b},APC = {c}

t = 1

A B C

MA X
2
c ∨ (Xb ∧Xc ∨ ϕ) MB X

2
c ∨ (Xb ∧Xc ∨ ϕ) MC Xa ∧Xb ∨ ϕ

[L6.] [Communicate.] If ϕt+1
i is urgent send it to the most “relevant” monitor

urgency(X
2
c ∨ (Xa ∧ Xc ∨ ϕ)) = 2 MC

urgency(X
2
c ∨ (Xa ∧ Xc ∨ ϕ)) = 2 MC

urgency(Xa ∧ Xb ∨ ϕ) = 1 MA
Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 32 / 48

Decent. progress. of ϕ = F(a ∧ b ∧ c), 3 components

Monitoring ϕ = F(a ∧ b ∧ c) over {a, b} · {a, b, c} · ∅ · ∅
with ΣA = {a},ΣB = {b},ΣC = {c}

t: 0 1

σ: {a, b} {a, b, c}

MA:
ϕ1
A := P(ϕ, {a},APA) = P(a ∧ b ∧ c , {a},APA) ∨ ϕ

= Xb ∧ Xc ∨ ϕ
ϕ2
A := P(ϕ1

B ∧#, {a},APA)

= X
2
c ∨ (Xb ∧ Xc ∨ ϕ)

MB :
ϕ1
B := P(ϕ, {b},APB) = P(a ∧ b ∧ c , {b},APB) ∨ ϕ

= Xa ∧ Xc ∨ ϕ
ϕ2
B := P(ϕ1

A ∧#, {b},APB)

= X
2
c ∨ (Xa ∧ Xc ∨ ϕ)

MC :
ϕ1
C := P(ϕ, {c},APC) = P(a ∧ b ∧ c , ∅,APC) ∨ ϕ

= ϕ

ϕ2
C := P(ϕ, {c},APC)

= Xa ∧ Xb ∨ ϕ

t: 2 3
σ: ∅ ∅

MA:
ϕ3
A := P(ϕ2

C ∧#, ∅,APA)

= X
2
b ∨ (Xb ∧ Xc ∨ ϕ)

ϕ4
A := P(ϕ3

C ∧#, ∅,APA)

= X
3
b ∨ (Xb ∧ Xc ∨ ϕ)

MB :
ϕ3
B := P(#, ∅,APB)

= #
ϕ4
B := P(ϕ3

A ∧#, ∅,APB)
= >

MC :
ϕ3
C := P(ϕ2

A ∧ ϕ2
B ∧#, ∅,APC)

= X
2
a ∧ X

2
b ∨ ϕ

ϕ4
C := P(#, ∅,APC)

= #

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 33 / 48

Decent. progress. of ϕ = F(a ∧ b ∧ c), 3 components

Monitoring ϕ = F(a ∧ b ∧ c) over {a, b} · {a, b, c} · ∅ · ∅
with ΣA = {a},ΣB = {b},ΣC = {c}

t: 0 1

σ: {a, b} {a, b, c}

MA:
ϕ1
A := P(ϕ, {a},APA) = P(a ∧ b ∧ c , {a},APA) ∨ ϕ

= Xb ∧ Xc ∨ ϕ
ϕ2
A := P(ϕ1

B ∧#, {a},APA)

= X
2
c ∨ (Xb ∧ Xc ∨ ϕ)

MB :
ϕ1
B := P(ϕ, {b},APB) = P(a ∧ b ∧ c , {b},APB) ∨ ϕ

= Xa ∧ Xc ∨ ϕ
ϕ2
B := P(ϕ1

A ∧#, {b},APB)

= X
2
c ∨ (Xa ∧ Xc ∨ ϕ)

MC :
ϕ1
C := P(ϕ, {c},APC) = P(a ∧ b ∧ c , ∅,APC) ∨ ϕ

= ϕ

ϕ2
C := P(ϕ, {c},APC)

= Xa ∧ Xb ∨ ϕ

t: 2 3
σ: ∅ ∅

MA:
ϕ3
A := P(ϕ2

C ∧#, ∅,APA)

= X
2
b ∨ (Xb ∧ Xc ∨ ϕ)

ϕ4
A := P(ϕ3

C ∧#, ∅,APA)

= X
3
b ∨ (Xb ∧ Xc ∨ ϕ)

MB :
ϕ3
B := P(#, ∅,APB)

= #
ϕ4
B := P(ϕ3

A ∧#, ∅,APB)
= >

MC :
ϕ3
C := P(ϕ2

A ∧ ϕ2
B ∧#, ∅,APC)

= X
2
a ∧ X

2
b ∨ ϕ

ϕ4
C := P(#, ∅,APC)

= #

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 33 / 48

Some properties of the algorithm

Let ϕ ∈ LTL and u ∈ Σ∗

What is the link between:

|=3: centralised LTL3 semantics

|=D : decentralised LTL3 semantics

Theorem (Soundness)

u |=D ϕ = >/⊥ ⇒ u |=3 ϕ = >/⊥
u |=3 ϕ = ? ⇒ u |=D ϕ = ?

Theorem (Completeness)

u |=3 ϕ = >/⊥ ⇒ ∃u′ ∈ Σ∗. |u′| ≤ |M| ∧ u · u′ |=D ϕ = >/⊥

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 34 / 48

Some properties of the algorithm

Let ϕ ∈ LTL and u ∈ Σ∗

What is the link between:

|=3: centralised LTL3 semantics

|=D : decentralised LTL3 semantics

Theorem (Soundness)

u |=D ϕ = >/⊥ ⇒ u |=3 ϕ = >/⊥
u |=3 ϕ = ? ⇒ u |=D ϕ = ?

Theorem (Completeness)

u |=3 ϕ = >/⊥ ⇒ ∃u′ ∈ Σ∗. |u′| ≤ |M| ∧ u · u′ |=D ϕ = >/⊥

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 34 / 48

Some properties of the algorithm

Let ϕ ∈ LTL and u ∈ Σ∗

What is the link between:

|=3: centralised LTL3 semantics

|=D : decentralised LTL3 semantics

Theorem (Soundness)

u |=D ϕ = >/⊥ ⇒ u |=3 ϕ = >/⊥
u |=3 ϕ = ? ⇒ u |=D ϕ = ?

Theorem (Completeness)

u |=3 ϕ = >/⊥ ⇒ ∃u′ ∈ Σ∗. |u′| ≤ |M| ∧ u · u′ |=D ϕ = >/⊥

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 34 / 48

How much a monitor has to remember?

Theorem (Maximum delay)

Let X
m
p ∈ LTL be a local obligation on some monitor Mi ∈M

In the worst case, m ≤ min(|M|, t + 1) at any time t ∈ N≥0

This, at the same time, reflects the communication delay by which a decentralised
monitor may come to a verdict!

However

Unless, there could be a (possibly infinite) delay not due to communication:

XXtrue and G(trueU(Gb ∨ F¬b))

Corollary

Given a “clean input”: communication delay = memory requirements = verdict
delay. (Otherwise, we can’t say much at all.)

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 35 / 48

How much a monitor has to remember?

Theorem (Maximum delay)

Let X
m
p ∈ LTL be a local obligation on some monitor Mi ∈M

In the worst case, m ≤ min(|M|, t + 1) at any time t ∈ N≥0

This, at the same time, reflects the communication delay by which a decentralised
monitor may come to a verdict!

However

Unless, there could be a (possibly infinite) delay not due to communication:

XXtrue and G(trueU(Gb ∨ F¬b))

Corollary

Given a “clean input”: communication delay = memory requirements = verdict
delay. (Otherwise, we can’t say much at all.)

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 35 / 48

How much a monitor has to remember?

Theorem (Maximum delay)

Let X
m
p ∈ LTL be a local obligation on some monitor Mi ∈M

In the worst case, m ≤ min(|M|, t + 1) at any time t ∈ N≥0

This, at the same time, reflects the communication delay by which a decentralised
monitor may come to a verdict!

However

Unless, there could be a (possibly infinite) delay not due to communication:

XXtrue and G(trueU(Gb ∨ F¬b))

Corollary

Given a “clean input”: communication delay = memory requirements = verdict
delay. (Otherwise, we can’t say much at all.)

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 35 / 48

How much a monitor has to remember?

Theorem (Maximum delay)

Let X
m
p ∈ LTL be a local obligation on some monitor Mi ∈M

In the worst case, m ≤ min(|M|, t + 1) at any time t ∈ N≥0

This, at the same time, reflects the communication delay by which a decentralised
monitor may come to a verdict!

However

Unless, there could be a (possibly infinite) delay not due to communication:

XXtrue and G(trueU(Gb ∨ F¬b))

Corollary

Given a “clean input”: communication delay = memory requirements = verdict
delay. (Otherwise, we can’t say much at all.)

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 35 / 48

Outline – Decentralised Monitoring of LTL formulae

1 Background

2 Motivations

3 Decentralised Monitoring of LTL formulae

4 Implementation and Evaluation

5 Conclusions

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 36 / 48

DecentMon: an OCaml benchmark

DecentMon: an OCaml benchmark simulating the decentralised algorithm

http://decentmon.forge.imag.fr/

DecentMon

Architecture

Trace(s)

Verdict

Monitoring statistics

LTL formula
or

LTL specification pattern

Occurrences of atomic propositions can be parameterised according to several
probability distributions

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 37 / 48

What we wanted to compare

Two monitoring modes:

decentralised mode (i.e., each trace is read by a separate monitor)

centralised mode by merging the traces and using a “central monitor”

C1

M1

C2

M2

C3

M3

C4

M4

VS.

C1 C2 C3 C4 M

Four metrics:

length of the trace needed to reach a verdict

number and size of messages exchanged between monitors

number of progressions performed by local monitors

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 38 / 48

Experimental Results - trace length

random formula generation biased formula generation

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5

10

15

20

1 2 3 4 5

●

●

●

orchestration

migration

choreography

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5

10

15

20

1 2 3 4 5

●

●

●

orchestration

migration

choreography

10

20

30

1 2 3 4 5

orchestration

migration

choreography

10

20

1 2 3 4 5

orchestration

migration

choreography

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 39 / 48

Experimental Results - number of messages

random formula generation biased formula generation

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

0

20

40

60

1 2 3 4 5

●

●

●

orchestration

migration

choreography

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

0

20

40

1 2 3 4 5

●

●

●

orchestration

migration

choreography

0

50

100

150

1 2 3 4 5

orchestration

migration

choreography

0

20

40

60

1 2 3 4 5

orchestration

migration

choreography

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 40 / 48

Experimental Results - size of messages

random formula generation biased formula generation

● ●
●

●

●

● ●

●

●

●

●

●

●

●

●

0

5

10

15

20

1 2 3 4 5

●

●

●

orchestration

migration

choreography

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

0

2

4

6

1 2 3 4 5

●

●

●

orchestration

migration

choreography

0

10

20

30

40

50

1 2 3 4 5

orchestration

migration

choreography

0

5

10

1 2 3 4 5

orchestration

migration

choreography

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 41 / 48

Experimental Results - number of progressions

random formula generation biased formula generation

● ● ● ●
●

●

●

●

●

●

●

●

●

●

●

0

500

1000

1500

2000

1 2 3 4 5

●

●

●

orchestration

migration

choreography

● ● ●
●

●
●

●

●

●

●

●

●

●

●

●

0

200

400

600

800

1 2 3 4 5

●

●

●

orchestration

migration

choreography

0

1000

2000

3000

4000

1 2 3 4 5

orchestration

migration

choreography

0

500

1000

1500

1 2 3 4 5

orchestration

migration

choreography

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 42 / 48

Outline – Conclusions

1 Background

2 Motivations

3 Decentralised Monitoring of LTL formulae

4 Implementation and Evaluation

5 Conclusions

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 43 / 48

Conclusions

Summary [FM12, RV14, FMSD16a, FMSD16b]

Monitoring of (off the shelf) LTL specifications in a decentralised fashion

No central observation point

Keeping the communication at a minimum with negligible delay

Validated by experimental results

Future Work

Operational description of specifications (e.g. automata).

Heuristics based on syntactic criteria to determine the organisation of
monitor.

Rigorous analysis of the cost of decentralised monitoring.

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 44 / 48

Please consider submitting to RV 2016 :-)!

The 16th International Conference on Runtime Verification,
September 23-30 2016, Madrid, Spain

http://rv2016.imag.fr

Abstract deadline: May 20, 2016

Paper and tutorial deadline: May 27, 2016

COST ARVI Summer school on Runtime Verification: September 23-25, 2016

Workshops and tutorials: September 26-27, 2016

Conference: September 28-30, 2016

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 45 / 48

http://rv2016.imag.fr

References I

Andreas Klaus Bauer and Yliès Falcone.
Decentralised LTL monitoring.
In FM 2012: Formal Methods - 18th International Symposium, Paris, France,
August 27-31, 2012. Proceedings, pages 85–100, 2012.

Andreas Bauer and Yliès Falcone.
Decentralised LTL monitoring.
Formal Methods in System Design, 2016.
To appear. Online version at Springer.

Christian Colombo and Yliès Falcone.
Organising LTL monitors over distributed systems with a global clock.
Formal Methods in System Design, 2016.
To appear. Online version at Springer.

Christian Colombo and Yliès Falcone.
Organising LTL monitors over distributed systems with a global clock.
In Runtime Verification - 5th International Conference, RV 2014, Toronto,
ON, Canada, September 22-25, 2014. Proceedings, pages 140–155, 2014.

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 46 / 48

Related Work

Diagnosis of DES

detect the occurrence of a fault after a finite number of discrete steps

diagnosability: a system model is diagnosable if it is always the case that the
occurrence of a fault can be detected after a finite number of discrete steps

Uses the model of a system (usually contains faulty + nominal behaviours)

Decentralised observability

Various degrees of observability depending on available memory of local
observers

Combine the local observers’ states after reading some trace to a truthful
verdict w.r.t. the monitored property

Comparison with our approach:

No central-observation point
Observability is taken for granted
Minimisation of communication overhead

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 47 / 48

Related Work (ctd)

Monitoring

MtTL monitoring properties of asynchronous systems [Sen et al.]

systems operating concurrently
partially ordered traces
LTL + modalities about the distributed nature of the system
Comparison with our approach:

synchronous systems
not restricted to safety properties
no collection of global behavior

Monitoring distributed controllers [Genon et al.]

partially ordered traces (asynchronous systems)
exploration of execution interleavings
restricted to bad prefixes

Y. Falcone (Univ. Grenoble Alpes, Inria, LIG) DRV, Bertinoro, Italy 48 / 48

	Background
	Monitoring
	Linear-time Temporal Logic (for monitoring)

	Motivations
	Decentralised Monitoring of LTL formulae
	Our setting and the intuitive idea
	Organising Decentralised LTL Monitors (overview)
	Migration-based Monitoring

	Implementation and Evaluation
	Conclusions

