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Distributed network computing
(synchronous, non failures)



Fault-tolerant  
spanning tree construction

Accept if and only if all processes accept



Checking cycle-freeness 
locally 

Accept if and only if all processes accept

1

44

3 2

2 1
0

2

2
2

1

1

1



Checking cycle-freeness 
locally 

Accept if and only if all processes accept
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A Generic Principle

• Example: Self-stabilisation (i.e., transient faults) 

• Proof-labeling scheme 

• E.g., spanning tree construction: 

Algorithm

Black box
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c(u) = (ID(r),dist(u,r))
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Distributed languages
• ‘Sequential’ languages (TM) 

∑={0,1} (or any finite alphabet) 

L ⊆ ∑* 

• ‘Distributed’ languages 

configuration: (G,λ) where λ:V(G) → ∑* 

A language L is a subset of configuration



Examples



Decision vs. Verification
Classical seq. computing:  

• decision class P:    x ∈ L ⇔ A(x) accepts 

• verification class NP: x ∈ L ⇔ ∃y, A(x,y) accepts 

Distributed netwok computing:  

• distributed decision:  (G,λ) ∈ L ⇔ the system accepts (G,λ) 

• distributed verification: 

(G,λ) ∈ L ⇔ ∃c : the system accepts (G,λ,c)



Decision and verification  
is emotionally well understood  

in the distributed network setting
Survey of Distributed Decision⇤

Laurent Feuilloley and Pierre Fraigniaud

Institut de Recherche en Informatique Fondamentale

CNRS and University Paris Diderot

Abstract
We survey the recent distributed computing literature on checking whether

a given distributed system configuration satisfies a given boolean predicate,
i.e., whether the configuration is legal or illegal w.r.t. that predicate. We
consider classical distributed computing environments, including mostly
synchronous fault-free network computing (LOCAL and CONGEST models),
but also asynchronous crash-prone shared-memory computing (WAIT-FREE
model), and mobile computing (FSYNC model).

1 Introduction
The objective of this note is to survey the recent achievements in the framework of
distributed decision: the computing entities of a distributed system aim at checking
whether the system is in a legal state with respect to some boolean predicate. For
instance, in a network, the computing entities may be aiming at checking whether
the network satisfies some given graph properties.

Recall that, in a construction task, processes have to collectively compute
a valid global state of a distributed system, as a collection of individual states,
like, e.g., providing each node of a network with a color so that to form a proper
coloring of that network. Instead, in a decision task, processes have to collectively
check whether a given global state of a distributed system is valid or not, like, e.g.,
checking whether a given coloring of the nodes of a network is proper [25]. In
general, a typical application of distributed decision is checking the validity of
outputs produced by the processes w.r.t. a construction task that they were supposed
to solved. This applies to various settings, including randomized algorithms as
well as algorithms subject to any kind of faults susceptible to corrupt the memory
of the processes.

⇤Both authors received additional support from Inria project-team GANG.
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Distributed asynchronous crash-prone 
computing



Computing power 
(asynchronous, crash-prone)

message-passing vs. shared memory 
They have the same computing power



Asynchronous Fault-tolerant 
Computing

Distributed Wait-Free Computing

crash



Wait-Free Algorithm

Repeat X times

  Write what was learned so far

  Snapshot the entire shared memory

Output f(all what was learned)

No crashes during execution 
A process may participate or not



Issues

1. Can we verify more system predicates than those 
we can decide?  

2. Can we construct the certificates together with the 
construction of the solutions? 



Distributed Languages 
Revisited

• ‘Sequential’ languages (TM) 

∑={0,1} (or any finite alphabet) 

L ⊆ ∑*

• ‘Distributed’ languages 

∑={0,1} (or any finite alphabet) 

L ⊆ Un≥1 (∑*)n



Setting

1 2 3 4
x(1) x(4)x(3)x(2)Inputs

Does x=(x(1),x(2),x(3),x(4)) satisfy P? 
Equivalently: does x ∈ L?

Certificates y(4)y(3)y(2)y(1)



Setting
Each process p has: 

• an identity id(p) 

• an input x(p) 

• a certificate y(p) 

Each process p produces an output out(p) 

x ∈ L ⇔ ∃y, {out(p), p=1,…,n} is accepted

the ‘opinion’ of p



Acceptance rules
Typical example:  

out(p) ∈ {true,false} 

{out(p), p=1,…,n} is accepted iff ⋀pout(p) = true 

Other examples: majority, unanimity, exclusive-or, etc.



An impossibility result



Bad news
Theorem. There are distributed languages that 
cannot be verified using a set of only 2 opinions, 
even restricted to 3 processes, and regardless to the 
size of the certificates. 

Binary consensus cannot be verified using a set of 
only 2 opinions, even restricted 3 processes, and 
regardless to the size of the certificates.

x Pierre Fraigniaud, Sergio Rajsbaum, and Corentin Travers
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The language leader corresponds to the case of k = 1, where a single
leader should exists, and this leader should be a known client.

A simplified version of leader is when it is always the case that that
the sample of process i, (p

i

, `
i

), always consists of p
i

= {id
i

}, for every
process i. Then we have the language leader election, for which it is re-
quired that one unique process be identified as the leader by all the other
processes. This requirement is captured by the language leader defined
over A = [n] as follows:

s =
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An instance is legal if and only if all the processes agree on the identity
` of one of them.

C Proof of Theorem 2.

We explicitly describe a distributed language L that cannot be verified
using only two opinions. This language is natural in the sense that it fits
with the specification of verifying the correctness of binary consensus.
(Recall that, in the consensus task, every process i is given an input
value s

i

, and must produce an output value t
i

such that all output values
are identical, and equal to one of the input values). Also, this language
is identity-oblivious, in the sense that if {(id1, x1), . . . , (idn, xn)} 2 L,
then {(id01, x1), . . . , (id0n, xn)} 2 L for every id01, . . . , id

0
n

. We thus omit
the identities, and define L as follows:
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Assume, for the purpose of contradiction that L can be verified with
an opinion-maker M producing only two values a and b, for an appropri-
ate setting of certificates. In particular, we can assume, w.l.o.g., that M
outputs b on the legal instance (0, 0) provided with its appropriate cer-
tificate, and a on the illegal instance (0, 1). That is, the interpretation µ
accepts {a}, but rejects {b}. We obtain a contradiction just by considering
instances of dimension at most 2 (i.e., with at most 3 pairs (s

i

, t
i

)). We
first show that the interpretation must accept {a, a} and reject the mul-
tisets {a, b}, {b, b}, {a, a, b} and {a, b, b}. We then obtain a contradiction
by exhibiting an execution of M on a legal instance with the appropriate



The Topological Structure of 
Asynchronous Computability

Drawing taken from Petr Kuznetsov’s web pages
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Sperner Lemma



Proof: Two opinons a and b i.e. op∈{a,b} 
Interpretation of sets {o1}, {o1o2},and {o1o2o3}
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{a} ➔ reject 
{b} ➔ accept 
{a,b} ➔ reject 
{a,a} ➔ accept 
{a,a,b} ➔ reject 
{b,b} ➔ reject 
{a,b,b} ➔ reject
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A verification algorithm



Good news
Theorem Every distributed language can be verified 
using a set of 3 opinions (with certificates of size 
O(log n) bits for n-process instances). 

Recall from Sergio and Corentin’s talks that decision 
may need up to n opinions! 

Recall from Borzoo’s talk that decision may need up 
to n logical values!



out(p) ∈ {true,undetermined,false} = {T,U,F} 

{out(p), p=1,…,n} is accepted iff ⋀pout(p) = true

3-valued “logic’’
Non-deterministic distributed decision xv

and on whether c contains a sub-words c0 such that f(c0) = true, process
i decides true, false, or undetermined, as specified in Algorithm 1.

The interpretation µ of the opinions decided by the processes uses
the following truth table, where T stands for true, F for false, and U for
undetermined:

^ T U F
T T T F
U T U F
F F F F

The interpreter µ accepts a multiset {o1, . . . , on} of options if and only if

n

^

i=1

o
i

= T.

In other words, µ accepts if and only if no processes decide false (F), and
at least one process decides true (T). That is, the yes-set consist in all
multi-sets containing at least one opinion true, and no opinions false.

By construction, this verifier uses three opinions, and certificates on
O(log↵(n)) bits for n-dimensional instances. It remains to prove its cor-
rectness. We need to consider only executions in which all processes in
ID(s) decide.

Let s 2 L be an (n � 1)-dimensional instance, and let c be its valid
certificate. At least one process has a view equal to (s, c). Since s 2 L
and f(c) = true, this process decides true. Moreover, by definition of the
distributed encoding of the integers, there are no sub-words c0 of c such
that f(c0) = true. Thus no processes decide false. As a consequence, the
interpretation of all the opinions is true, as desired.

Let s /2 L be an (n� 1)-dimensional instance, and let c be any certifi-
cate. If no processes decide true, then we are done since the interpretation
of all the opinions is then false, as desired. So assume that some process
decides true. The view of this process in composed of an instance s0 ⇢ s
accompanied by a certificate c0 � c, satisfying s0 2 L and f(c0) = true.
Since f(c0) = true, we get that f(c) = false by definition of the distributed
encoding of the integers. Therefore, Instruction 13 of the opinion maker
M in Algorithm 1 implies that any process with a view equal to (s, c)
decides false. As a consequence, the interpretation of all the opinions is
again false, as desired, which completes the proof.

We present here the code of the algorithms of Section 4, to prove
Theorem 3.



Opinion-maker 
(a.k.a. ’traffic light’ checker)

• certificate y(p) is the number of participating processes 

• Algorithm of process p:  

write (id(p),x(p),y(p))
snapshot memory
if #processes = y(p) then 

if x ∈ L then out(p):=true 
else out(p):=false

else
if #processes < y(p) then 
out(p):=undetermined
else out(p):=false

L must be decidable



Optimizing the certificate size



Optimisation issues

• Are Ω(log n)-bit certificates required to certify all 
distributed languages on n processes?  

• Is verification achievable with smaller certificates? 



Distributed encoding  
of the integers

Definition A distributed encoding of the integers is a 
collection of code-words providing every integer n 
with a code w = (wi)i=1,...,n in Σn, where Σ is a (possibly 
infinite) alphabet, such that: for any k ∈ [1, n), no 
subwords w′ ∈ Σk of w is encoding k.  

Example: Every n ≥ 1 can be encoded by the word  

w = (bin(n), . . . , bin(n)) ∈ Σn with Σ = {0, 1}∗ 

Looking for distributed encoding with ‘smaller letters’.



Basic idea
  8:     11111110 
  9:     111111011 
10:     1111101111 
11:     11110111111 
12:     111011111111 
13:     1101111111111 
14:     10111111111111 
15:     011111111111111 
16:     1111111111111112 
17:     11111111111111211 
18:     111111111111121111 
19:     1111111111112111111 
20:     11111111111211111111 
21:     111111111121111111111



Slightly more formally
A distributed encoding of the positive integers is a 
pair (Σ,f) where Σ is a (possibly infinite) alphabet, and 

 f : Σ∗ → {true, false}  

satisfying that, for every integer n ≥ 1, there exists a 
word w ∈ Σn such that 

1.   f(w) = true 
2.  for every subword w′ of w, f(w′) = false.  

The word w is called the distributed code of n.



‘Trafic light’ checker revisited

Proof. Let L be a distributed language. The verifier (M,µ) for L is based on the distributed
encoding (f,⌃) of the positive integers whose existence is established in Theorem 2.2. Given an
(n� 1)-dimensional instance

s =
�
(j1, xj

1

), . . . , (j
n

, x
j

n

)
�
2 L,

with j1 < j2 < · · · < j
n

, the certificate for s is the distributed code c = (c
j

1

, . . . , c
j

n

) 2 ⌃n of n.
Recall that, by definition of the distributed encoding, we have f(c) = true, while f(c0) = false for
every c0 � c. Algorithm 1 describes a verifier generating one out of three possible opinions (true,
false, or undetermined) at each process, using such certificates.

Algorithm 1 Universal verifier with 3-valued opinions: code of the opinion maker M for process i

Require: input pair value-certificate (x
i

, c
i

)
1: write (i, x

i

, c
i

)
2: view  snapshot()
3: let view = {(j1, xj

1

, c
j

1

), . . . , (j
k

, x
j

k

, c
j

k

)}
4: let s =

�
(j1, xj

1

), . . . , (j
k

, x
j

k

)
�

5: let c = (c
j

1

, . . . , c
j

k

) . assuming j1 < j2 < · · · < j
k

6: if s 2 L then

7: if f(c) then
8: decide true
9: else

10: decide undetermined
11: end if

12: else . s /2 L
13: if (not f(c)) and (9c0 � c : f(c0)) then
14: decide false
15: else

16: decide undetermined
17: end if

18: end if

In Algorithm 1, every participating process p
i

writes its identity i, its value x
i

, and its certificate
c
i

in memory, and then takes a snapshot. The latter provides process i with a view of the system
including all the data written by the k participating processes which wrote before it takes snapshot
(including itself). This view enables process i to compute an instance s and a word c, ordered by
the identities of the processes in its snapshot. Based on whether or not s 2 L, on whether f(c) =
true or false, and on whether c contains a sub-words c0 such that f(c0) = true, process i decides
true, false, or undetermined, as specified in Algorithm 1.

The interpretation µ of the opinions decided by the processes uses the following truth table,
where T stands for true, F for false, and U for undetermined:

^ T U F
T T T F
U T U F
F F F F
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A slowly growing function

1  i1 < i2 < · · · < i
k

 n.

Definition 2.1. A distributed encoding of the positive integers is a pair (⌃, f) where ⌃ is a
(possibly infinite) alphabet, and f : ⌃⇤ ! {true, false} satisfying that, for every integer n � 1, there
exists a word w 2 ⌃⇤ such that:

1. w 2 ⌃n,

2. f(w) = true, and

3. for every sub-word w0 of w, f(w0) = false.
The word w is called the distributed code of n.

A trivial distributed encoding of the integers consists in repeating n times the binary encoding
of n, for each positive integer n. That is, this encoding consists in defining the distributed code of
n as the word

w = (bin(n), bin(n), . . . , bin(n))

where the binary encoding bin(n) of n is repeated n times. In other words, this encoding satisfies
⌃ = {0, 1}⇤, and, for every integer n � 1 and every word w 2 ⌃n,

f(w) = true () 8i 2 {1, . . . , n}, w
i

= bin(n).

All conditions of Definition 2.1 are satisfied. However, this trivial encoding is quite redundant, and
consumes an alphabet of O(log n) bits to encode the first n positive integers. We show that we can
define a far more compact distributed encoding, using an alphabet extremely small for encoding
the first n positive integers.

In order to state our result, we need to define a variant of the Ackermann function. Given a
function f : N ! N, we denote by f (n) the nth iterate of f , with f (0) the identity function. Let
A

k

: N ! N, k � 1 be the family of functions defined recursively as follows:

A
k

(n) =

8
><

>:

2n+ 2 if k = 1

A
k�1(. . . Ak�1(0))| {z }

n+1

= A
(n+1)
k�1 (0) otherwise. (1)

Hence A
k

(0) = 2 for every k � 1, and, for n � 0, A2(n) = 2n+2 � 2, and A3(n) = 22
···

2

� 2, where
the a tower is of height n + 2. (Many versions of the Ackerman function exist, and a possible
definition [35] is Ack(n) = A

n

(1)). Let F : N ! N be the function:

F (k) = A1(A2(. . . (A
k�1(Ak

(0))))) + 1.

Finally, let ↵ : N ! N be the function:

↵(k) = min{i � 1 : F (i)(1) > k}. (2)

Hence, ↵ grows extremely slowly, and, for any reasonable value of n, we have ↵(n)  3. In
addition, note that F (n)(1) > n for every n � 1. Hence, a crude lower bound of F (n)(1) is
F (n)(1) � Ack(n� 1). This is because

F (n)(1) = A1(A2(. . . A
F

(n�1)(1)(0)))

> A1(A2(. . . A
F

(n�1)(1)�1(2)))

> A1(A2(. . . An�1(1)))

> A
n�1(1)

= Ack(n� 1).
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S(1) = 0 (1st bad sequence starts)

S(2) = 11 (1st bad sequence ends)

S(3) = 000 (2nd bad sequence starts)

S(4) = 0110

S(5) = 11010

S(6) = 101011

S(7) = 0101111

S(8) = 11111100

S(9) = 111110011

S(10) = 1111001111

S(11) = 11100111111

S(12) = 110011111111

S(13) = 1001111111111

S(14) = 00111111111111

S(15) = 111111111111110

S(16) = 1111111111111011

S(17) = 11111111111101111

S(18) = 111111111110111111
...

...
...

S(29) = 01111111111111111111111111111

S(30) = 111111111111111111111111111111 (2nd bad sequence ends)

S(31) = 0000000000000000000000000000000 (3rd bad sequence starts)

S(32) = 00000000000000000000000000000110

S(33) = 000000000000000000000000000011010

S(34) = 0000000000000000000000000001101010
...

...
...

Figure 3: The beginning of the infinite sequence S.
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(x(i)) , µi

M (1) = 0000 (0, 0, 0, 0), 0
M (2) = 00110 (0, 0, 2), 0 (projection operation)
M (3) = 011010 (0, 2, 1), 0 (maximum operation)
M (4) = 1101010 (2, 1, 1), 0
M (5) = 10101011 (1, 1, 1), 2
M (6) = 010101111 (0, 1, 1), 4
M (7) = 1111110010 (6, 0, 1), 0
M (8) = 11111001011 (5, 0, 1), 2
M (9) = 111100101111 (4, 0, 1), 4
M (10) = 1110010111111 (3, 0, 1), 6
M (11) = 11001011111111 (2, 0, 1), 8
M (12) = 100101111111111 (1, 0, 1), 10
M (13) = 0010111111111111 (0, 0, 1), 12
M (14) = 01111111111111100 (0, 14, 0), 0
M (15) = 110111111111111100 (2, 13, 0), 0
M (16) = 1011111111111110011 (1, 13, 0), 2
M (17) = 01111111111111001111 (0, 13, 0), 4
M (18) = 111111011111111111100 (6, 12, 0), 0
...

...
...

...
...

...
...

...
...

...
...

...
M (24) = 011111111111100111111111111 (0, 12, 0), 12
M (25) = 1111111111111101111111111100 (14, 11, 0), 0
...

...
...

...
(0, 0, 0), A3(2)� 2
(0, A3(2)), 0 (projection operation)

...
...

...
...

(0, 0), A2(A3(2))� 2
(A2(A3(2))), 0 (projection operation)

...
...

...
...

...
...

...
...

M (F (4)�5) = 01111111111 . . . . . . . . . 111111111111111111 (0), A1(A2(A3(2)))� 2
M (F (4)�4) = 11111111111 . . . . . . . . . 1111111111111111111 (), A1(A2(A3(2))) (projection operation)

Figure 4: The beginning of a longest bad (multi-diagonal) sequence starting at 0000. Note that

A4(0) = 2, and thus A1(A2(A3(2))) = F (4)� 1.
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Certification with very, very,…, 
very small certificates

Theorem There is a distributed encoding (Σ,f) of the 
positive integers which encodes the first n integers using 
words on an alphabet with symbols in O(log α(n)) bits. 

Corollary Every distributed language can be verified  
using 3 opinions, with certificates of size O(log α(n)) bits 
for n-process instances (cf. Algorithm 1).  

Remark (well-quasi-ordering) Let Σ be a finite alphabet, 
and suppose that (Σ,f) is a distributed encoding of the 
integers in [1, n]. Then n ≤ g(1) where g is a multiply-
recursive function.



Duality
Corollary Every language can be verified with 1-bit 
certificates (using O(α(n)) opinions for n-dimensional 
instances).

  8:     11111110 
  9:     111111011 
10:     1111101111 
11:     11110111111 
12:     111011111111 
13:     1101111111111 
14:     10111111111111 
15:     011111111111111 
16:     1111111111111110 
17:     11111111111111011 
18:     111111111111101111 

level k

level k+1



Algorithm
out(p)=(val(p),level(p)) 
{out(p), p=1,…,n} is accepted iff  
   (1) ∃p, val(p) = true and (2) ∀p’≠p, level(p’)≤level(p)

to this fact, we define the level of n as follows. If the n-th word S(n) of the sequence S belongs to
M(n

i

), for some i � 0, then we set
level(n) = i.

Algorithm 2 describes an opinion maker M using the words of S as certificates, in which the
processes produce opinions true or false, coupled with a “degree of confidence” corresponding to
the level of n for the observed (n� 1)-dimensional instance s.

Algorithm 2 Universal verifier with 1-bit certificate: code of the opinion maker M for process i

Require: input pair value-certificate (x
i

, c
i

)
1: write (i, x

i

, c
i

)
2: view  snapshot()
3: let view = {(j1, xj

1

, c
j

1

), . . . , (j
k

, x
j

k

, c
j

k

)}
4: let s =

�
(j1, xj

1

), . . . , (j
k

, x
j

k

)
�

5: let c = (c
j

1

, . . . , c
j

k

) . assuming j1 < j2 < · · · < j
k

6: if s 2 L then

7: if c = S(k)
then . k = |c|

8: decide (true, level(k))
9: else

10: decide (false, level(k))
11: end if

12: else . s /2 L
13: if 9(s0, c0) : s0 ⇢ s, s0 2 L, c0 � c, c0 = S(|c0|), and level(|c0|) = level(k)) then
14: decide (false, level(k) + 1)
15: else

16: decide (false, level(k))
17: end if

18: end if

Algorithm 2 follows the same structure as Algorithm 1. The only di↵erences are due to the fact
that, since the certificates are based on the word in S instead of being based on the distributed
encoding of the integers, it may happen that a certificate c0 for a sub-instance s0 of the actual
instance s fits with the dimension of that instance, that is, c0 = S(|s0|), even if the certificate c for
s also satisfies c = S(|s|). This prevents the participating processes to be completely sure of the
dimension of the full instance. Therefore, the true-false decision of each process is weighted by
the level of the observed instance, so that decisions taken based on a higher-dimensional instances
overcome decisions taken based on lower-dimensional instances.

Specifically, the interpreter accepts a multiset {o1, . . . , on} of options, with o
i

= (b
i

, `
i

), b
i

2
{true, false}, and `

i

� 0, if and only if there exists i such that b
i

= true and, for every j 6= i, `
j

 `
i

.
In other words, the interpreter accepts if and only if at least one process decides true with some
confidence level `, and no processes decide false with a confidence level higher than `.

This verifier usesO(↵(n)) opinions for n-dimensional instance, with 1-bit certificates per process.
It remains to prove its correctness. We need to consider only executions in which all n processes
decide.

Let s 2 L be an (n� 1)-dimensional instance, and let c = S(n) be its valid certificate. At least
one process has a view equal to (s, c). Since s 2 L and c = S(n), this process decides (true, level(n)).
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Conclusion



Conclusion
• What is the nature of a certificate in shared-memory 

crash-prone asynchronous systems? Can they be 
produced by the processes themselves (e.g., using 
failure detector)? 

• Decision problems in other asynchronous 
distributed computing models (e.g., t-resilient, 
message-passing, etc.). 

• Verification vs. decision in runtime verification? 


