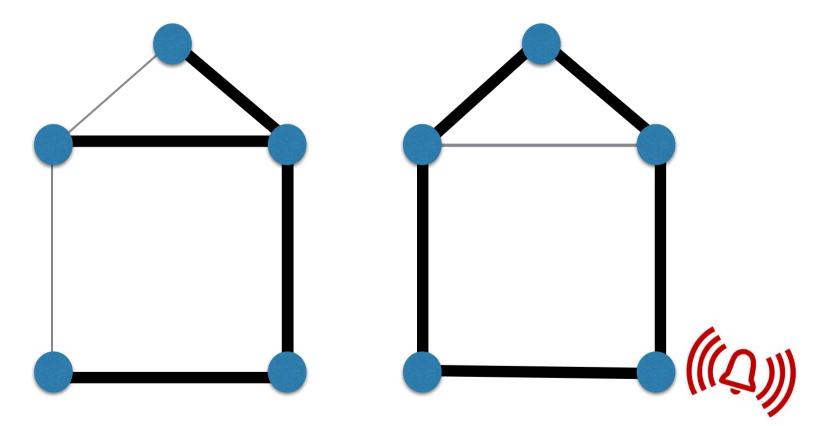
Non-deterministic Distributed Decision

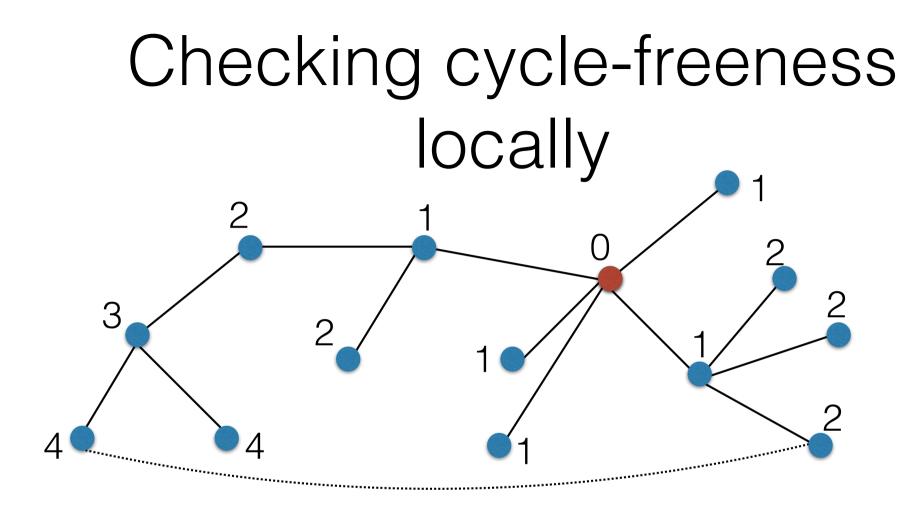
Pierre Fraigniaud

Workshop on Distributed Runtime Verification Bertinoro, May 17-20, 2016 Distributed network computing (synchronous, non failures)

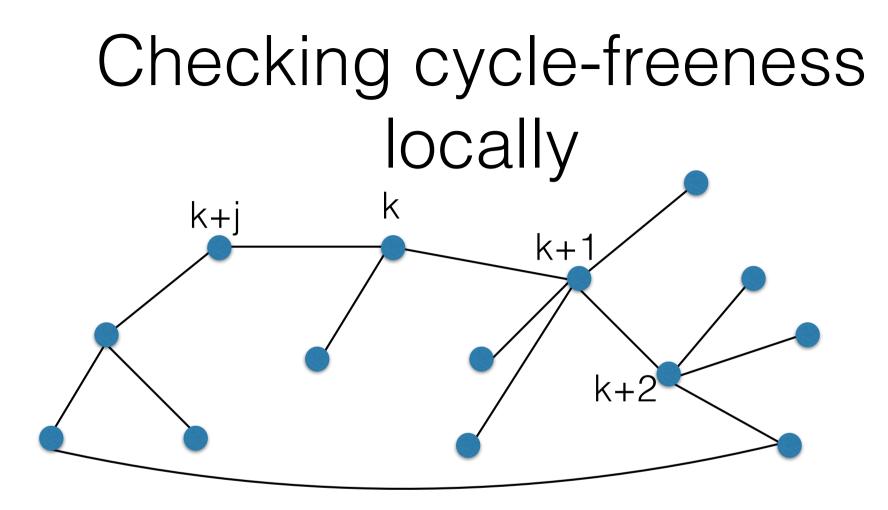
Fault-tolerant spanning tree construction



Accept if and only if **all** processes accept

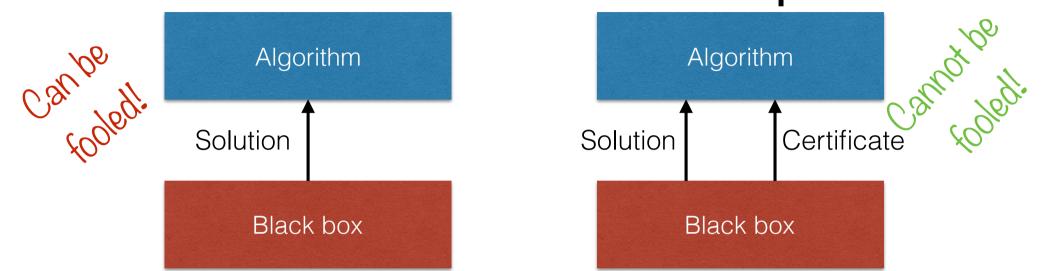


Accept if and only if **all** processes accept



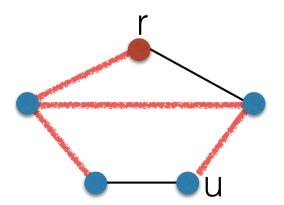
Accept if and only if **all** processes accept

A Generic Principle



- Example: Self-stabilisation (i.e., transient faults)
- Proof-labeling scheme

- $C(\mathbf{u}) = (ID(\mathbf{r}), dist(\mathbf{u}, \mathbf{r}))$
- E.g., spanning tree construction:



Distributed languages

• 'Sequential' languages (TM)

 $\Sigma = \{0, 1\}$ (or any finite alphabet)

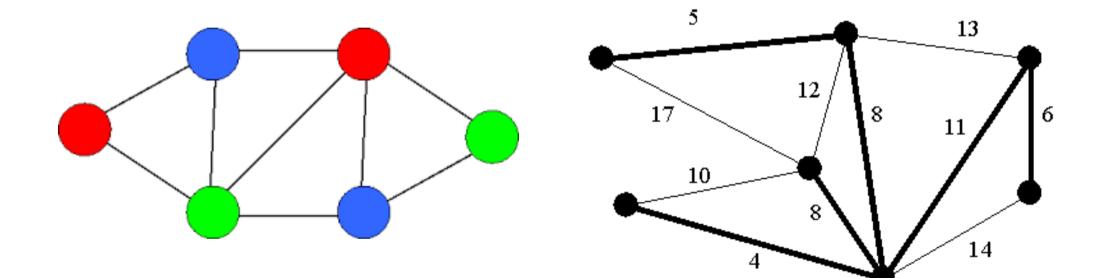
 $\mathsf{L}\subseteq \mathsf{\Sigma}^*$

• 'Distributed' languages

configuration: (G, λ) where $\lambda: V(G) \rightarrow \Sigma^*$

A language L is a subset of configuration

Examples



Decision vs. Verification

Classical seq. computing:

- decision class **P**: $x \in L \Leftrightarrow A(x)$ accepts
- verification class NP: $x \in L \Leftrightarrow \exists y, A(x,y)$ accepts

Distributed netwok computing:

- distributed **decision**: $(G,\lambda) \in L \Leftrightarrow$ the system accepts (G,λ)
- distributed **verification**:

 $(G,\lambda) \in L \Leftrightarrow \exists c : the system accepts <math>(G,\lambda,c)$

Decision and verification is emotionally well understood in the distributed network setting

SURVEY OF DISTRIBUTED DECISION*

Laurent Feuilloley and Pierre Fraigniaud

Institut de Recherche en Informatique Fondamentale CNRS and University Paris Diderot

Abstract

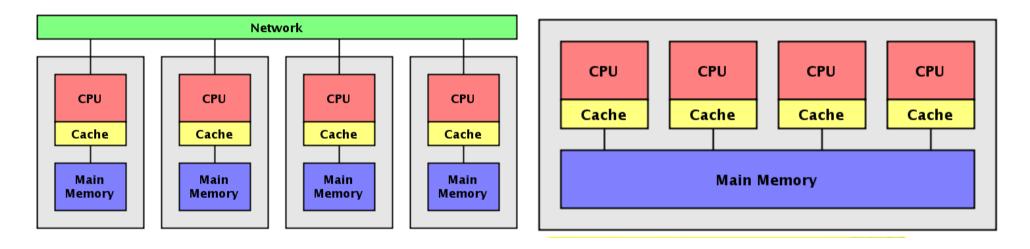
We survey the recent distributed computing literature on checking whether a given distributed system configuration satisfies a given boolean predicate, i.e., whether the configuration is legal or illegal w.r.t. that predicate. We consider classical distributed computing environments, including mostly synchronous fault-free network computing (LOCAL and CONGEST models), but also asynchronous crash-prone shared-memory computing (WAIT-FREE model), and mobile computing (FSYNC model).

1 Introduction

The objective of this note is to survey the recent achievements in the framework of *distributed decision*: the computing entities of a distributed system aim at checking whether the system is in a legal state with respect to some boolean predicate. For

Distributed asynchronous crash-prone computing

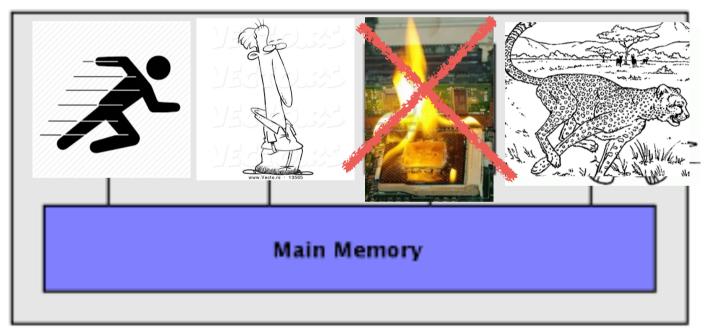
Computing power (asynchronous, crash-prone)



message-passing vs. shared memory **They have the same computing power**

Asynchronous Fault-tolerant Computing

crash



Distributed Wait-Free Computing

Wait-Free Algorithm

Repeat X times
Write what was learned so far
Snapshot the entire shared memory
Output f(all what was learned)

No crashes during execution A process may participate or not

Issues

- 1. Can we verify more system predicates than those we can decide?
- 2. Can we construct the certificates together with the construction of the solutions?

Distributed Languages Revisited

• 'Sequential' languages (TM)

 $\Sigma = \{0, 1\}$ (or any finite alphabet)

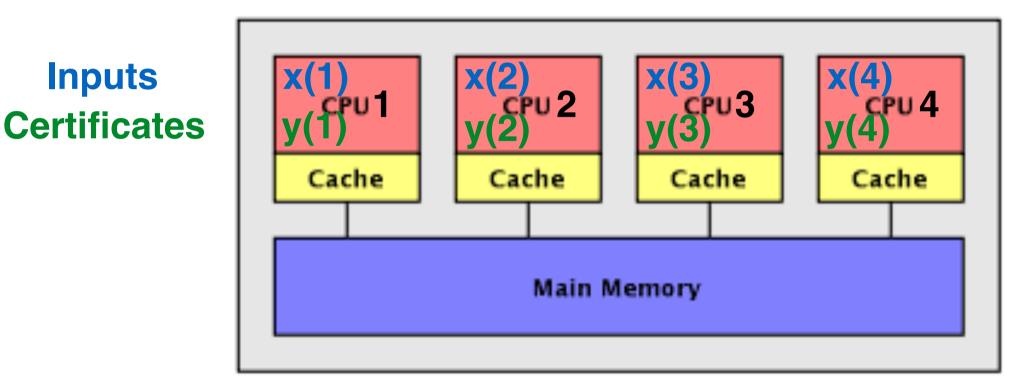
L ⊆ Σ*

• 'Distributed' languages

 $\Sigma = \{0, 1\}$ (or any finite alphabet)

$L \subseteq U_{n \ge 1} \ (\Sigma^*)^n$

Setting

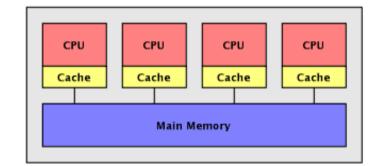


Does x=(x(1),x(2),x(3),x(4)) satisfy P? Equivalently: does $x \in L$?

Setting

Each process p has:

an identity id(p)



the 'opinion' of p

- an input x(p)
- a certificate y(p)

Each process p produces an output out(p)

 $x \in L \Leftrightarrow \exists y, \{out(p), p=1,...,n\}$ is accepted

Acceptance rules

Typical example:

 $out(p) \in {true, false}$

{out(p), p=1,...,n} is accepted iff Λ_p out(p) = true

Other examples: majority, unanimity, exclusive-or, etc.

An impossibility result

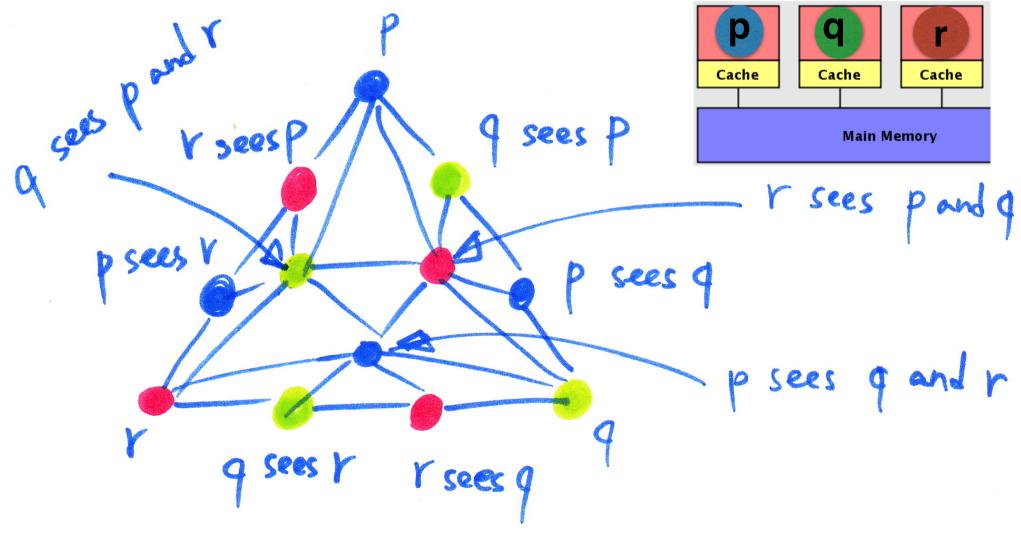
Bad news

Theorem. There are distributed languages that cannot be verified using a set of only 2 opinions, even restricted to 3 processes, and regardless to the size of the certificates.

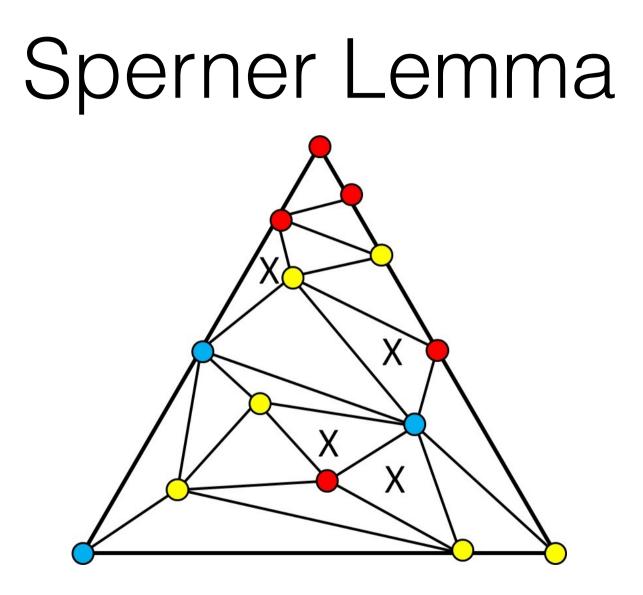
$$\{(s_1, t_1), \dots, (s_n, t_n)\} \in \mathcal{L} \iff \begin{cases} \forall i : (s_i, t_i) \in \{0, 1\}^2\\ \exists i : t_1 = \dots = t_n = s_i \end{cases}$$

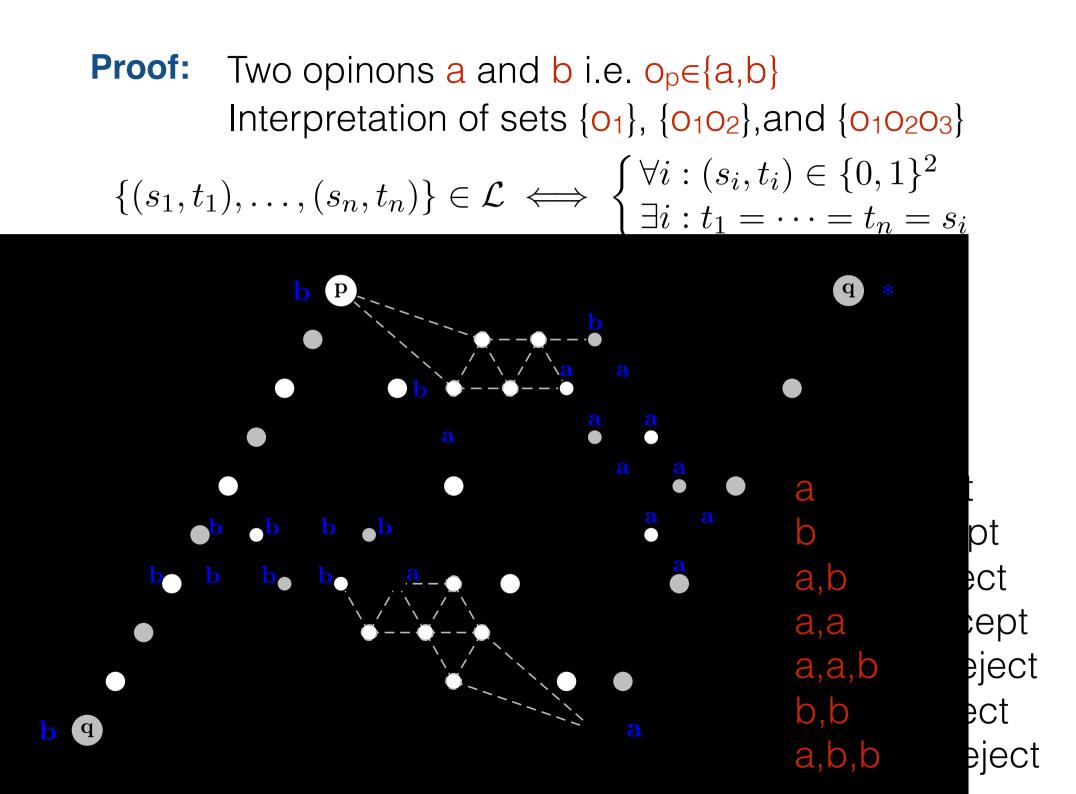
Binary consensus cannot be verified using a set of only 2 opinions, even restricted 3 processes, and regardless to the size of the certificates.

The Topological Structure of Asynchronous Computability

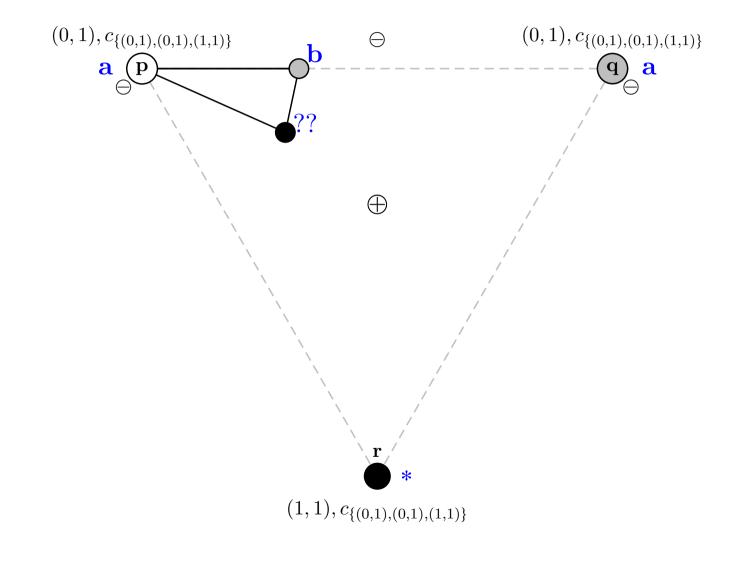


Drawing taken from Petr Kuznetsov's web pages





Proof continued:



A verification algorithm

Good news

Theorem Every distributed language can be **verified** using a set of 3 opinions (with certificates of size O(log n) bits for n-process instances).

Recall from Sergio and Corentin's talks that **decision** may need up to n opinions!

Recall from Borzoo's talk that **decision** may need up to n logical values!

3-valued "logic"

 $out(p) \in \{true, undetermined, false\} = \{T, U, F\}$

 $\begin{array}{c|c} \wedge & T & U & F \\ \hline T & T & T & F \\ U & T & U & F \\ F & F & F & F \end{array}$

{out(p), p=1,...,n} is accepted iff Λ_p out(p) = true

Opinion-maker (a.k.a. 'traffic light' checker)

- certificate y(p) is the number of participating processes
- Algorithm of process p:

```
write (id(p),x(p),y(p))
snapshot memory
if #processes = y(p) then
    if x \in L then out(p):=true
    else out(p):=false
else
    if #processes < y(p) then
    out(p):=undetermined
    else out(p):=false</pre>
```

Optimizing the certificate size

Optimisation issues

- Are Ω(log n)-bit certificates required to certify all distributed languages on n processes?
- Is verification achievable with smaller certificates?

Distributed encoding of the integers

Definition A distributed encoding of the integers is a collection of code-words providing every integer n with a code $w = (W_i)_{i=1,...,n}$ in Σ^n , where Σ is a (possibly infinite) alphabet, such that: for any $k \in [1, n)$, no subwords $w' \in \Sigma^k$ of w is encoding k.

Example: Every $n \ge 1$ can be encoded by the word

w = (bin(n), . . . , bin(n)) $\in \Sigma^n$ with $\Sigma = \{0, 1\}^*$

Looking for distributed encoding with 'smaller letters'.

Basic idea

11111110 8: 9: 111111011 1111101111 10: 11: 11110111111 12: 111011111111 13: 11011111111111 14: 1011111111111111 15: 01111111111111111 16: 11111111111111112 17: 1111111111111111211 18: 111111111111121111 19: 111111111111211111 20: 11111111111211111111 21: 11111111112111111111111

Slightly more formally

A distributed encoding of the positive integers is a pair (Σ ,f) where Σ is a (possibly infinite) alphabet, and

 $f: \Sigma^* \rightarrow \{true, false\}$

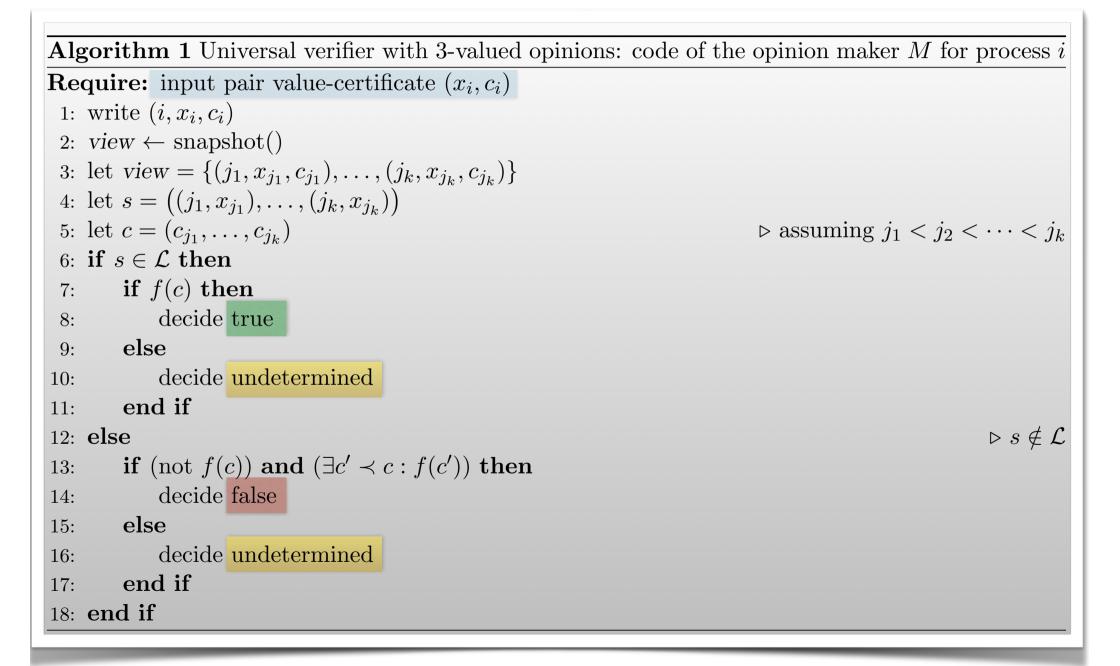
satisfying that, for every integer $n \ge 1$, there exists a word $w \in \Sigma^n$ such that

1. f(w) = true

2. for every subword w' of w, f(w') = false.

The word w is called the distributed code of n.

'Trafic light' checker revisited



A slowly growing function

 $A_k: \mathbb{N} \to \mathbb{N}, k \ge 1$ be the family of functions defined recursively as follows:

$$A_{k}(n) = \begin{cases} 2n+2 & \text{if } k = 1\\ \underline{A_{k-1}(\dots A_{k-1}(0))}_{n+1} = A_{k-1}^{(n+1)}(0) & \text{otherwise.} \end{cases}$$

$$Ack(n) = A_{n}(1))$$

$$\text{Let } F : \mathbb{N} \to \mathbb{N} \text{ be the function:}$$

$$F(k) = A_{1}(A_{2}(\dots (A_{k-1}(A_{k}(0))))) + 1.$$

Finally, let $\alpha : \mathbb{N} \to \mathbb{N}$ be the function:

$$\alpha(k) = \min\{i \ge 1 : F^{(i)}(1) > k\}.$$

$$F^{(n)}(1) = A_1(A_2(\dots A_{F^{(n-1)}(1)}(0)))$$

> $A_1(A_2(\dots A_{F^{(n-1)}(1)-1}(2)))$
> $A_1(A_2(\dots A_{n-1}(1)))$
> $A_{n-1}(1)$
= $Ack(n-1).$

$\mathcal{S}^{(1)}$		0 (1st bad sequence starts)
$\mathcal{S}^{(2)}$		11 (1st bad sequence ends)
${\cal S}^{(3)}$	=	000 (2nd bad sequence starts)
${\cal S}^{(4)}$	=	0110
${\cal S}^{(5)}$	=	11010
${\cal S}^{(6)}$	=	101011
${\cal S}^{(7)}$	=	0101111
${\cal S}^{(8)}$	=	11111100
${\cal S}^{(9)}$	=	111110011
${\cal S}^{(10)}$	=	1111001111
$\mathcal{S}^{(11)}$	=	11100111111
$\mathcal{S}^{(12)}$	=	110011111111
${\cal S}^{(13)}$	=	100111111111
$\mathcal{S}^{(14)}$	=	0011111111111
${\cal S}^{(15)}$	=	11111111111110
${\cal S}^{(16)}$	=	11111111111111111
$\mathcal{S}^{(17)}$	=	1111111111101111
$\mathcal{S}^{(18)}$	=	11111111110111111
•	•	
${\cal S}^{(29)}$	=	01111111111111111111111111
${\cal S}^{(30)}$	=	11111111111111111111111111111111111111
$\mathcal{S}^{(31)}$	=	00000000000000000000000000000000000000
$\mathcal{S}^{(32)}$	=	000000000000000000000000000000000000000
${\cal S}^{(33)}$	=	000000000000000000000000000000000000000
$\mathcal{S}^{(34)}$	=	000000000000000000000000000000000000000
:	:	
•	•	

			$(x^{(i)})$, μ_i
$M^{(1)}$	_	0000	(0, 0, 0, 0), 0
$M^{(2)}$	=	00110	(0, 0, 2), 0 (projection operation)
$M^{(3)}$	=	011010	(0,2,1),0 (maximum operation)
$M^{(4)}$	=	1101010	(2,1,1),0
$M^{(5)}$	=	10101011	(1, 1, 1), 2
$M^{(6)}$	=	010101111	(0, 1, 1), 4
$M^{(7)}$	=	1111110010	(6, 0, 1), 0
$M^{(8)}$	=	11111001011	(5, 0, 1), 2
$M^{(9)}$	=	1111001011111	(4, 0, 1), 4
$M^{(10)}$	=	1110010111111	(3,0,1), 6
$M^{(11)}$	=	11001011111111	(2, 0, 1), 8
$M^{(12)}$	=	10010111111111	(1,0,1),10
$M^{(13)}$	=	001011111111111	(0, 0, 1), 12
$M^{(14)}$	=	0111111111111100	(0, 14, 0), 0
$M^{(15)}$	=	11011111111111100	(2, 13, 0), 0
$M^{(16)}$	=	101111111111110011	(1, 13, 0), 2
$M^{(17)}$	=	0111111111111001111	(0, 13, 0), 4
$M^{(18)}$	=	11111101111111111100	(6, 12, 0), 0
:	÷	÷	: :
•	÷	:	: :
•	:	:	:
$M^{(24)}$	-	01111111111100111111111111	(0, 12, 0), 12
$M^{(25)}$	=	1111111111111101111111111100	(14, 11, 0), 0
:	:	:	:
•	•	•	$(0,0,0), A_3(2) - 2$
			$(0, A_3(2)), 0$ (projection operation)
•	•	·	· · · · · · · · · · · · · · · · · · ·
:	:	:	$\begin{array}{c} \vdots \\ (0,0) A (A (2)) \\ \end{array}$
			$(0,0), A_2(A_3(2)) - 2$ $(A_2(A_3(2))), 0$ (projection operation)
:	:	:	:
:	÷		: :
$M^{(F(4)-5)}$	=	0111111111111111111111111111111111	$(0), A_1(A_2(A_3(2))) - 2$
$M^{(F(4)-4)}$	=	111111111111111111111111111111111111111	$(), A_1(A_2(A_3(2)))$ (projection operation)

Certification with very, very, ..., very small certificates

Theorem There is a distributed encoding (Σ, f) of the positive integers which encodes the first n integers using words on an alphabet with symbols in O(log $\alpha(n)$) bits.

Corollary Every distributed language can be verified using 3 opinions, with certificates of size $O(\log \alpha(n))$ bits for n-process instances (cf. Algorithm 1).

Remark (well-quasi-ordering) Let Σ be a finite alphabet, and suppose that (Σ ,f) is a distributed encoding of the integers in [1, n]. Then $n \leq g(1)$ where g is a multiplyrecursive function.

Duality

Corollary Every language can be verified with 1-bit certificates (using $O(\alpha(n))$ opinions for n-dimensional instances).

8:	1111110	
9:	111111 <mark>0</mark> 11	
10:	11111 <mark>0</mark> 1111	
11:	1111 <mark>0</mark> 111111	level k
12:	111 <mark>0</mark> 11111111	
13:	11 <mark>0</mark> 1111111111	
14:	1 0 111111111111	
15:	011111111111111	
16:	11111111111111110	te de la munda de la managenta de la decontra de
17:	11111111111111011	level k+1
18:	111111111111101111	

Algorithmout(p)=(val(p),level(p)){out(p), p=1,...,n} is accepted iff(1) ∃p, val(p) = true and (2) ∀p'≠p, level(p')≤level(p)

Algorithm 2 Universal verifier with 1-bit certificate: code of the opinion maker M for process i**Require:** input pair value-certificate (x_i, c_i) 1: write (i, x_i, c_i) 2: view \leftarrow snapshot() 3: let view = { $(j_1, x_{j_1}, c_{j_1}), \dots, (j_k, x_{j_k}, c_{j_k})$ } 4: let $s = ((j_1, x_{j_1}), \dots, (j_k, x_{j_k}))$ 5: let $c = (c_{i_1}, \ldots, c_{i_k})$ \triangleright assuming $j_1 < j_2 < \cdots < j_k$ 6: if $s \in \mathcal{L}$ then if $c = \mathcal{S}^{(k)}$ then $\triangleright k = |c|$ 7: decide (true, level(k))8: else 9: decide (false, level(k)) 10: end if 11: 12: **else** $\triangleright s \notin \mathcal{L}$ if $\exists (s',c'): s' \subset s, s' \in \mathcal{L}, c' \prec c, c' = \mathcal{S}^{(|c'|)}$, and $\operatorname{level}(|c'|) = \operatorname{level}(k)$ then 13:decide (false, level(k) + 1) 14:else 15:decide (false, level(k)) 16:end if 17:18: end if

Conclusion

Conclusion

- What is the nature of a certificate in shared-memory crash-prone asynchronous systems? Can they be produced by the processes themselves (e.g., using failure detector)?
- Decision problems in other asynchronous distributed computing models (e.g., t-resilient, message-passing, etc.).
- Verification vs. decision in runtime verification?