Non-deterministic
Distributed Decision

Pierre Fraigniaud
Workshop on Distributed Runtime Verification
Bertinoro, May 17-20, 2016



Distributed network computing
(synchronous, non failures)



Fault-tolerant
spanning tree construction

(tay

Accept if and only if all processes accept



Checking cycle-freeness
locally

Accept it and only if all processes accept



Checking cycle-freeness

locally

K-+] K
K+ 1

K+2

Accept it and only if all processes accept



A Generic Principle

Algorithm

Q
N
Certificate O

Algorithm

Solution Solution

Black box

Black box

o Example: Self-stabilisation (i.e., transient faults)

° Proof—labeling scheme C(U) _ (/D(r),o’/st(u,r))
.

 E£.9., spanning tree construction:




Distributed languages

e ‘Sequential’ languages (TM)
>={0,1} (or any finite alphabet)
Lc>”
e Distributed’ languages
configuration: (G,A) where A:V(G) — >*

A language L is a subset of configuration



Examples




Decision vs. Verification

Classical seq. computing:

o decision class P: x e L & A(x) accepts
 verification class NP: x € L & 3y, A(x,y) accepts

Distributed netwok computing:

« distributed decision: (G,\) € L & the system accepts (G,\)

e distributed verification:

(G,\) € L & dc : the system accepts (G,A,C)



Decision and verification
IS emotionally well understood
INn the distributed network setting

SURVEY OF DISTRIBUTED DECISION”
Laurent Feuilloley and Pierre Fraigniaud

Institut de Recherche en Informatique Fondamentale

CNRS and University Paris Diderot

Abstract

We survey the recent distributed computing literature on checking whether
a given distributed system configuration satisfies a given boolean predicate,
i.e., whether the configuration is legal or illegal w.r.t. that predicate. We
consider classical distributed computing environments, including mostly
synchronous fault-free network computing (LOCAL and CONGEST models),
but also asynchronous crash-prone shared-memory computing (WAIT-FREE
model), and mobile computing (FSYNC model).

1 Introduction

The objective of this note is to survey the recent achievements in the framework of
distributed decision: the computing entities of a distributed system aim at checking
whether the system is in a legal state with respect to some boolean predicate. For



Distributed asynchronous crash-prone
computing



Computing power

(asynchronous, crash-prone)

Network
| Cache \ l Cache | | Cache | | Cache \

message-passing vs. shared memory
They have the same computing power



Asynchronous rFault-tolerant
Computing

crash

Distributed Wait-Free Computing



Walt-Free Algorithm

Repeat X times
Write what was learned so far
Snapshot the entire shared memory

Output f(all what was learned)

No crashes during execution
A process may participate or not



lssues

1. Can we verity more system predicates than those
we can decide?

2. Can we construct the certificates together with the
construction of the solutions?



Distributed Languages
Revisited

e ‘Sequential’ languages (TM)

>={0,1} (or any finite alphabet)

Lco*

e Distributed’ languages

>={0,1} (or any finite alphabet)

L € Un=t (27)7



Setting

Inputs
Certificates

l Cache | l Cache |

Does x=(x(1),x(2),x(3),x(4)) satisfy P?
Equivalently: does x € L7



Setting
Each process p has:
o = = =
B

« an identity id(p)

e an input x(p) the ‘opinion’ of p

e a certificate y(p) /

Each process p produces an output out(p)

x e L e 3y, {out(p), p=1,...,n} is accepted



Acceptance rules

Typical example:

out(p) e {true,false}

|
—k

lout(p), p=1,..., n} is accepted iff /\yout(p) = true

Other examples: majority, unanimity, exclusive-or, etc.




An impossibility result



Bad news

Theorem. There are distributed languages that
cannot be veritied using a set of only 2 opinions,
even restricted to 3 processes, and regardless to the
size of the certiticates.

Vi (si,t;) € {0,1}7
Jiitg = =1t,=s;

{(Sl,tl),...,(sn,tn)} c L <— {

Binary consensus cannot be verified using a set of
only 2 opinions, even restricted 3 processes, and
regardless to the size of the certificates.



The Topological Structure of
Asynchronous Computability

Mg

ga}"’ Q Y )¢Q$F

? Sees | Y$e8c7

Drawing taken from Petr Kuznetsov's web pages



Sperner Lemma

L=\




Proof: Two opinons a and b i.e. ope{a,b}

Interpretation of sets {01}, {0102},and {010203}
Vi: (s;,t;) € {0,1}?

{(Sl,tl),...,(sn,tn)}6£ — {32?51 :Z.

o =1p = S
(0,0), ¢f(0,0)} (1,1), ¢40,1),1,1))
b p) q) *
S
® Ob 5‘ C
\a/ \a
() a Q ()
S \a/ \a
e Q ‘- O {a} =2 reject
b gb b © o b} = accept
aVaVaVaw ~ O ! {a,b} = reject
o {a,a} = accept
~ N {a,a,b} = reject
e Y {b,b} = reject
(1,1), {01y, 0,1), cio Tt {a,b,b} = reject



Proof continued:

(0,1), €{(0,1),(0,1),(1,1)} © (0,1), €{(0,1),(0,1),(1,1)}
b
a (p @) a
o ©
Yel4
S
r
. %

(1,1), ¢£(0,1),(0,1),(1,1)}



A verification algorithm



Good news

Theorem Every distributed language can be verified
using a set of 3 opinions (with certificates of size
O(log n) bits for n-process instances).

Recall from Sergio and Corentin’s talks that decision
may need up to n opinions!

Recall from Borzoo’s talk that decision may need up
to n logical values!



3-valued “logic”

out(p) € {true,undetermined,false} = {T,U,F}
AT UF
T'TTF
UTUF
FIF F F
lout(p), p=1,...,n} is accepted iff Apout(p) = true




Opinion-maker
(a.k.a. 'traffic light’ checker)

e certificate y(p) is the number of participating processes

* Algorithm of process p:

write (1id(p),x(p),yY(P)) :
snapshot memory L must be decidable

if #processes = y(p) then
if x € L then out(p):=true

else out(p):=false
else

if #processes < y(p) then
out (p) :=undetermined

else out(p):=false

T — e



Optimizing the certificate size



Optimisation issues

* Are O)(log n)-bit certificates required to certify all
distributed languages on n processes?

e |s verification achievable with smaller certificates?



Distributed encoding
of the integers

Definition A distributed encoding of the integers is a
collection of code-words providing every integer n
with a code w = (wi)i=1..n IN 2", where 2 is a (possibly
infinite) alphabet, such that: forany k € [1, n), no
subwords w” € 2% of w is encoding K.

Example: Every n > 1 can be encoded by the word
w = (bin(n), . . ., bin(n)) € 2" with > = {0, 1}*

Looking for distributed encoding with ‘smaller letters’.



N N

Basic 1dea

- 11111110
- 111111011

A

A




Slightly more formally

A distributed encoding of the positive integers is a
pair (2,f) where 2 is a (possibly infinite) alphabet, and

f: 22— {true, false}

satistying that, for every integer n > 1, there exists a
word w € 2" such that

1. f(w) = true

2. for every subword w’ of w, f(w”") = false.

The word w is called the distributed code of n.



‘Trafic light’ checker revisited

Algorithm 1 Universal verifier with 3-valued opinions: code of the opinion maker M for process ¢

Require: input pair value-certificate (x;, ¢;)

e T U Sy
e 0 o O

write (i, x;, ¢;)
view <— snapshot()
let view = {(j1, Tj1,Cj1)s- -5 (ks Tjpr G ) }
let s = ((jl, le)a sy (]kv x]k»
let ¢ = (¢jy, - - -, Cj )
if s € £ then

if f(c) then

decide true
else

decide undetermined
end if

. else

if (not f(c)) and (3¢ < c¢: f(')) then
decide false
else

decide undetermined
end if
end if

> assuming j1 < jo < --- < jk

>s & L




A slowly growing function

A : N — N,k > 1 be the family of functions defined recursively as follows:

2n, + 2 if k=1
Ap(n) = A1 Ap1(0)) = A"V (0)  otherwise.
nIl
Ack(n) = A,(1)) Let F : N — N be the function:

F(k) = A1(As(. .. (Ap_1(Ax(0))))) + 1.
Finally, let o : N — N be the function:
a(k) = min{i > 1: FO(1) > k}.

FM(1) = Ai(As(... Ape-n()(0)))
> Ai(Aa(- - Apm-n1)-1(2)))
> Ai(Aa(.. . Apa(1)))
> A,—1(1)

I
AN
Q

iy
S

|

=



0 (1st bad sequence starts)
11 (1st bad sequence ends)
000 (2nd bad sequence starts)
0110

11010

101011

0101111

11111100

111110011

1111001111

11100111111
110011111111
1001111111111
00111111111111
111111111111110
1111111111111011
11111111111101111
111111111110111111

Ort111111111111111111111111111
111111111111111111111111111111 (2nd bad sequence ends)
0000000000000000000000000000000 (3rd bad sequence starts)
00000000000000000000000000000110
000000000000000000000000000011010
0000000000000000000000000001101010




1729
M (25)

V(F@)-5)
A F@-1)

0000

00110

011010

1101010

10101011

010101111

1111110010
11111001011
111100101111
1110010111111
11001011111111
100101111111111
0010111111111111
01111111111111100
110111111111111100
1011111111111110011
01111111111111001111
111111011111111111100

011111111111100111111111111
1111111111111101111111111100

01111111111
11111111111

111111111111111111
1111111111111111111

—
&
—~
.
=

NN AN AN AN N N N N N N N N N N N N N
DO P NODOFNWERE Lo O~ NbO O O
R e == O O 0 0000 FHFENOO

N W W W &~

~—

(=)

= = 00 DDk DNO RN OO

O =N O O NN O

— o = = e = = = = = =N O

— — — — —

15

~—
e}

(0,12,0), 12
(14,11,0),0

0,

(projection operation)
(maximum operation)

3
(

(
2

(0), A1 (As(A5(2)))
), A1(A2(Asz

)

(pro jection operation)




Certification with very, very,...,
very small certificates

Theorem There is a distributed encoding (2,f) of the
positive integers which encodes the first n integers using
words on an alphabet with symbols in O(log a(n)) bits.

Corollary Every distributed language can be verified
using 3 opinions, with certificates of size O(log a(n)) bits
for n-process instances (cf. Algorithm 1).

Remark (well-quasi-ordering) Let > be a finite alphabet,
and suppose that (2,f) is a distributed encoding of the
integers in [1, n]. Then n < g(1) where g is a multiply-
recursive function.



Duality

Corollary Every language can be verified with 1-bit
certificates (using O(a(n)) opinions for n-dimensional
iInstances).

3: 1110

O: 11011

10: 1101111

11: 11011111 level k
12: 11011111111

13: 011

14: 1011

15 ot
16:  1111111111111110
4;; d40?1]1 level k+1




out(p)=(val(p),level(p))

{out(p), p=1,...,n} is accepted iff /

(1) 3p, val(p) = true and (2) vp'=p, level(p’)<level(p)

Algorithm

resemble LTLk

Algorithm 2 Universal verifier with 1-bit certificate: code of the opinion maker M for process ¢

Require: input pair value-certificate (x;, ¢;)

S o S S S S S S et
s 0 N = O

write (i, z;, ¢;)
view <— snapshot()

let view = {(j1,Zj1,¢5), - - -, (Jk> Tiis» €y, ) }
let s = ((jl, J?jl), 000 (jk, xjk))
et @ = (@550, @, ) > assuming ji; < jo < - < Jg
if s € £ then
if ¢ = S then >k = |c|
decide (true,level(k))
else
decide (false, level(k))
end if
. else >sé¢ L

if I(s',d):s' Cs, s €L, d <c, ¢ =8N andlevel(||) = level(k)) then
decide (false,level(k) + 1)

else
decide (false, level(k))

end if

. end if




Conclusion



Conclusion

 What is the nature of a certificate in shared-memory
crash-prone asynchronous systems?” Can they be

produced by the processes themselves (e.g., using
failure detector)?

e Decision problems in other asynchronous
distributed computing models (e.qg., t-resilient,
message-passing, etc.).

- Verification vs. decision in runtime verification?



