Verification of parametrised shared-memory
asynchronous systems

lsor Walukiewicz

CNRS, Bordeaux University
IAS, TU Munich

Joint work with: M. Fortin, S. LaTorre, A. Muscholl

Model: asynchronous, shared memory

Esparza, Ganty, Majumdar, 2013

TS, 20 Durand-Gasselin, Esparza, Ganty, Majumdar,2015

leader

j

EF 3

contributors

Model: asynchronous, shared memory
Esparza, Ganty, Majumdar, 2013

TS, 20 Durand-Gasselin, Esparza, Ganty, Majumdar,2015
leader
es
S/ WIe :
\ock-re€ read
kel

P\eg\s// I

Reg

contributors

r'\’&eS
\oCH”
\ ’tef

— / \

* |_eader and contributors are pushdown processes.
* |If there is only one contributor: leader+contributor can simulate a Turing machine.

* For unknown number of contributors the model becomes surprisingly manageable.

Semantics

C:<S,5§SX20XS,Sm,’t> D:<T,AQT><ZD><T,tin,'t>.

(. a finite set of register values

A configuration is (M, t,g), where M e N°, t € T, g € G.

w(h)

(M,t,g) —=(M,t' h) ift —= ¢t in A,
(M,t,g) M(M,t’,h) if ¢ 2y inAandh =g,
(M, t,9) 28 (0 ¢, h) it M 2" A in s
(M, t,9) 2 (M, ¢, B) it M 2 M insandh = g.
where
M3 Ming ifsSsindand M =M — [s] + [s'], forsome s,s" € S.

(M, t,) 22 (¢) if ¢ 20 ¢ in A

(M, ¢, 9) Z (01, ¢, B) it " v inAandh =g,

(M, ¢,) 224 ¢, b) it 0 2" A ins

(M, b, g) 22 (M, ¢, B) it M2 M insandh=g.
where

M3 Ming ifsSsindand M =M — [s]+ [s'], forsome s, s’ € S.

t t/ t/ t/
g g g" g"
51 51 b $1 s

c /

Set semantics

(B.t.9) 5B, ¢ h) it ¢ 2" ¢ in A BCS
(B,t,9) ﬂ(B,t’,h) if ¢ 2,y in Aand h =g,

(B.t.g) 2% (B ¢, h) it B 2" Brings.

(B,t,9) " (B’ 1, h) it B ") B'insand h = g.

B34 B'ing ifs3sindand B'=BU{s'}, forsome s, s € S.

w(h)

(M,t,g) —=(M,t', h) ift —t'in A,

(M,t,g) ﬂ(M,t’,h) Tty Ol inAand h =g,
(M, ¢, g) 22 (0, 1, 1) if M 25 07 in 6

(04, t, g) 25 (0t ¢, 1) it M " M insandh=g.

M3 Minsg ifsSsindand M =M — [s] + [§], for some s, s’ € S.

Multiset t

S1

Set

t t
/! 1244
g g
b /
S1 S1
C
Si s’
Sn Sn
t/ t/ t/
/ !/ 1274
g g g
/ /
51 51 $1
S Si s’
b
/ /
S1 S1

C,D may be infinite state

C:<S,5§SX20XS,S,'””> D:<T,AQT><EDXT,tim't>.

w(h)

(M,t,g) —=(M,t' h) ift —=t'in A,

(M,t,q) ﬂ(M,t’,h) if ¢ 2 inAandh =g,
(M, t,9) 28001 ¢, 1) it M 28 v in g

(M, t,9) 2% (M, ¢, B) it M 2" M insand b= g.

Transition systems C and D need not to be finite.
In our case they are given by pushdown systems:

AC — <P7 EC) FC? 57 Pinit; Agit> AD — <Q7 ZD) FD? Aa dinit Aﬁit> .

SoS={gqa:qe PacT}}

!

.

Example properties:
(for every n, for every run)

Example of a system:

* Every contributor proposes a value * |eader eventually decides on a value
* Leader chooses one of these values * If the leader decides on the value,
* The rest of the protocol uses the contributors use only this value.
chosen value * On runs where only one value is used i.o.

the protocol is correct

!

P

Example of a system:

* Contributors proposes values.
* |_eader chooses one of these values.
* The rest of the protocol uses the

chosen value.

Example properties:
(for every n, for every run)
* Leader eventually decides on a value

— * |f the leader decides on the value,
contributors use only this value.

* On runs where only one value is used i.o.

the protocol is correct

reachability —

There is a run where the leader has decided on some value and afterwards a

contributor is using a different value.

Example of a system:

* Contributors proposes values.
* |_eader chooses one of these values.
* The rest of the protocol uses the

chosen value.

Example properties:
(for every n, for every run)
— * |_eader eventually decides on a value

— * |f the leader decides on the value,

contributors use only this value.

* On runs where only one value is used i.o.

the protocol is correct

safety

reachability —

There is a maximal run where the leader does not decide on a value.

Example properties:
(for every n, for every run)
* Contributors proposes values. —> * Leader eventually decides on a value

Example of a system:

+ Leader chooses one of these values. | [~ * If the leader decides on the value,

* The rest of the protocol uses the contributors use only this value.
chosen value. _:k On runs where only one value is used i.o.
the protocol is correct
safe run

reachability —

more general liveness property ——

1 Reachability |

g ' Repeated reachability |
(C,D)-syst@
- Safety

. [Verification of properties

1 Reachability |

g ' Repeated reachability |
(C,D)-syst@
f
\ Safety
\ Verification of properties |

PSPACE-complete for pushdowns

/—[Reachability § Almost always decidable

Hierarchical (C,D)-systems

g ' Repeated reachability |-
(C,D)-syst@
- Safety

. [Verification of properties

!

e

Reachability in (C,D)-systems

Given a leader D from some class of systems D and a contributor C' from
some class C, is there some value n such that D||C||...||C (n-times) have
a run writing some particular value into the register?

Fact

When ¢ and @ are the class of pushdown systems and n is fixed then the problem is
undecidable.

!

oS

Reachability in (C,D)-systems

Given a leader D from some class of systems D and a contributor C' from
some class C, is there some value n such that D||C||...||C (n-times) have
a run writing some particular value into the register?

Thm [Hague, Esparza et al.]

When ¢ and © are the class of pushdown systems then the reachability problem is
decidable, and PSPACE-complete.

oS

Thm

Let ¢ and ®@ be both effectively closed under synchronised product with finite
automata.
If ('has decidable reachability problem and D has effective downward closure, then

reachability for (C,D)-systems is decidable.

Thm

Let ¢ and ® be both effectively closed under synchronised product with finite

automata.
If ('has decidable reachability problem and D has effective downward closure, then

reachability for (C,D)-systems is decidable.

(' is effectively closed under synchronized product with finite automata:
given M from (' and a finite automaton A, the synchronized product of M and A
belongs to (' and can be effectively constructed.

D has effective downward closure:
given M from @, the finite automaton accepting all (scattered) subwords
of traces of M can be constructed effectively.

Effective downward closure:

+ pushdown automata [Courcelle 1991]

« Petri nets [Habermehl et al. 2010]

+ stacked counter automata [Zetzsche 2015]

+ higher-order pushdown with collapse automata

[Clemente, Parys, Salvati, W. 20106]

Theorem applies to

leader: pushdown automata, Petri nets, decidable subclasses of multi-stack,
stacked counter automata.

contributors: any of the above, lossy channel systems,
hierarchical composition of (C,D)-systems.

Hierarchical composition of
(C,D)-systems

leader Fy and each subtree (C,D)-system is contributor

PSPACE-complete for pushdowns
/—[Reachability § Almost always decidable

Hierarchical (C,D)-systems

. | Repeated reachability |. PSPACE-complete for pushdowns
(C,D)-syst@
r
- Safety

. [Verification of properties

!

N

Repeated reachability in (C,D)-systems
Given a leader D from some class of systems @ and contributors C1,...,Chp, ...
from some class (, is there some value nsuchthat D | C, || ---C, write some
particular value into the register infinitely often?

Thm [Durand-Gasselin, Esparza, Ganty, Majumdar 2015]

When ¢ and @ are the class of pushdown systems then the liveness problem is
decidable is PSPACE-hard and in NEXPTIME.

oS

Liveness in (C,D)-systems
Given a leader D from some class of systems @ and contributors C1,...,Chp, ...
from some class (, is there some value nsuchthat D | C, || ---C, write some
particular value into the register infinitely often?

Thm

When ¢ and @ are the class of pushdown systems then the liveness problem is
decidable is PSPACE-complete.

PSPACE-complete for pushdowns
/—[Reachability § Almost always decidable

Hierarchical (C,D)-systems

. | Repeated reachability |. PSPACE-complete for pushdowns

NEXPTIME-complete for pushdowns
- Safety

PSPACE-complete if only about infinite runs

. [Verification of properties

oS

Safety in (C,D)-systems

Given a leader D from some class of systems @ and contributors Ci,...,Cn, ...

from some class (, is there some value nsuchthat D || Cy || ---C, hasa
maximal run that does not write some particular value into the register?

Thm

When ¢ and @ are the class of pushdown systems then the safety problem is
NEXPTIME-complete.

Thm

When ¢ and © are the class of pushdown systems then the safety problem is
NEXPTIME-complete.

Thm

Let ¢ and ® be the class of pushdown systems.

Knowing if there is some infinite safe run in PSPACE-complete.
Knowing if there is some maximal finite safe run in NEXPTIME-complete.

Thm

IfC is a class of finite systems and ® be the class of pushdown systems then the
problems are coNP-complete.

Prop

When ¢ and © are the class of pushdown systems then the existence of a maximal
finite safe run is NEXPTIME-hard.

Reduction of a tiling problem:
Find a tiling with letters from 2 of a 2"x2" square.
The tiling should respect neighbourhood relations H,VC2x2.

Leader writes: A11,A411,A12,A12,...,A100, A1 20, ..., Agn on Agnon ($$)% o .

and checks the horizontal dependencies.

Prop

When ¢ and © are the class of pushdown systems then the existence of a maximal
finite safe run is NEXPTIME-hard.

Reduction of a tiling problem:
Find a tiling with letters from 2 of a 2"x2" square.
The tiling should respect neighbourhood relations H,VC2x2.

| v
Leader writes: A11,A411,A12,A12,...,A100, A1 20, ..., Agn on Agnon ($$)% o .

and checks the horizontal dependencies.

Contributors check vertical dependencies.

We can ensure that contributors
= read all the symbols, and

= every vertical dependency is checked by some contributor.

PSPACE-complete for pushdowns
/—[Reachability Almost always decidable

Hierarchical (C,D)-systems

g | Repeated reachability |. PSPACE-complete for pushdowns
(C,D)-system>
NEXPTIME-complete for pushdowns
\ Safety
PSPACE-complete if only about infinite runs
C-stutter-expanding properties
N Verification of properties

NEXPTIME-complete

!

oS

A trace is a sequence of register operations during a run.
A maximal trace comes from a maximal run (finite or infinite).

A property of traces is PC(ZpuZ)™
A property is C-stutter-expanding if it is closed under duplicating actions of contributors.

If zw(g)ye P then xw(g)w(g)ye P

Verification of properties of (C,D)-systems

Given a C-stutter-expanding property P. Given a leader D from some class of
systems @D and contributors C,...,C,,,... from some class (,

is there some value nsuchthat D || Cy || - - - C},, has a maximal trace in P

Verification of properties of (C,D)-systems

Given a C-stutter-expanding property P. Given a leader D from some class of
systems @ and contributors C'y,...,C,,... from some class (,

is there some value nsuchthat D || C || --- (), has a maximal trace in P

All previously considered properties are special instances:

=reachabillity: P is the set of traces containing the special action.
~repeated reachability: P is the set of traces containing the special action infinitely often.
=safety: P is the set of traces without the special action.

Verification of properties of (C,D)-systems

For a Buchi automaton for C-stutter-expanding property P. Given a leader D from
some class of systems @ and contributors C1,...,C,,,... from some class (,
is there some value nsuchthat D || C1 || --- C, has a maximal trace in P

Verification for arbitrary regular properties is undecidable, as with a property we can
require that there is only one copy of a contributor.

A property of traces is PC(ZouZ)™
A property is C-stutter-expanding if it is closed under duplicating actions of contributors.

If zw(g)ye P then xw(g)w(g)yeP

Thm

When ¢ and © are the class of pushdown systems then verification of properties of
(C,D)-systems is decidable and NEXPTIME-complete.

!

& T

Changing from one two arbitrary many contributors turns the problem from
undecidable to manageable.

(C,D)-systems of pushdown process have very good algorithmic properties

» Verification of C-stutter-expanding properties is decidable in NEXPTIME
» For some relevant subclasses it is PSPACE.

The NEXPTIME-hardness argument shows that they can exhibit quite a nontrivial
behaviour.

