Parameterized Verification of Systems with Broadcast Communication

Arnaud Sangnier

IRIF - Université Paris Diderot-Paris 7

joint work with Giorgio Delzanno & Gianluigi Zavattaro

DRV - Bertinoro - 19th May 2016
Verify network of processes of unbounded size

Why to consider such networks?

- Classical distributed algorithms (mutual exclusion, leader election, ...)
- Telecommunication protocols (routing, ...)
- Algorithms for ad-hoc networks
- Model for biological systems
- and many more applications ...
Hypothesis

All the processes have the same behavior

In [Esparza, STACS’14], such networks are called crowd

More precisely:

- Each process will follow the same protocol
- Process can communicate
- Communication way:
 - Message passing
 - Shared variable
 - Broadcast communication
 - Multi-diffusion (selective broadcast)

Question:
Is there a network with N processes which allows to reach a goal?
Outline

1. Systems with broadcast communication

2. Ad Hoc Networks

3. Conclusion
Outline

1 Systems with broadcast communication

2 Ad Hoc Networks

3 Conclusion
Parameterized Networks with Broadcast

[Esparza et al., LICS’99]

Main characteristics

- No creation/deletion of processes
- Each process executes the same finite state protocol
- Synchronization through broadcast of a message
- All the processes receive the message
A protocol $P = \langle Q, \Sigma, R, Q_0 \rangle$

Finite state system whose transitions are labeled with:

1. broadcast of messages - $!!m$
2. reception of messages - $??m$
3. internal actions - τ

where m belongs to the finite alphabet Σ

A protocol defines a Broadcast Network (BN)
Broadcast Networks: configurations

A configuration is a multiset $\gamma : Q \mapsto \mathbb{N}$

- Same as for Rendez-vous Networks

<table>
<thead>
<tr>
<th>Blue</th>
<th>Orange</th>
<th>Green</th>
</tr>
</thead>
</table>

- **Initial configurations**: $\gamma(q) > 0$ iff $q \in Q_0$

Remarks:
- The size of configurations is not bounded
- Infinite number of configurations

\Rightarrow BN are infinite state systems
Broadcast Networks: semantics

Transition system $BN(P) = \langle C, \rightarrow, C_0 \rangle$ associated to P

- C: set of configurations
- \rightarrow: $C \times C$: transition relation
- C_0: initial configurations

The relation \rightarrow respects the following rules during an execution:
- The number of processes in an execution does not change
- Processes can only change their state
- Two kind of transitions according to the given process
 1. **local actions** - one process performs an internal action τ
 2. **broadcast** - one process emits a message with $!!m$, all the processes that can receive it with $??m$ have to receive it
Broadcast Networks: an example

Systems with broadcast communication
Broadcast Networks: an example

Systems with broadcast communication
Broadcast Networks: an example
Broadcast Networks: an example
Broadcast Networks: an example

Systems with broadcast communication
Broadcast Networks: an example
Reachability question

Parameters: Number of processes

Control State Reachability (REACH)

Input: A protocol and a control state \(q \in Q \);

Output: Does there exist \(\gamma \in C_0 \) and \(\gamma' \in C \) s.t. \(\gamma \rightarrow^* \gamma' \) and \(\gamma(q) > 0 \)?

Remarks:

- This problem considers an infinite number of possible initial configurations
- Reachability of a configuration \(\gamma' \) is easier, **the number of processes is in fact fixed**
Well Quasi Ordering (wqo)

(X, \leq) is a well-quasi ordering if for all infinite sequences s_1, s_2, \ldots, there exists $i < j$ such that $s_i \leq s_j$.

Upward closed set

A set $Y \subseteq X$ is upward closed w.r.t (X, \leq) if $y \in Y$ and $y \leq y'$ implies $y' \in Y$.

- Upward closure of $Y \subseteq X$: $Y \uparrow = \{ x \in X \mid \exists y \in Y \land y \leq x \}$

Lemma

If (X, \leq) is a wqo and if $Y \subseteq X$ is upward closed w.r.t. (X, \leq), then there exists a finite set $B \subseteq X$ s.t. $Y = B \uparrow$.
Well structured transition systems everywhere

\[\gamma \preceq \gamma' \text{ iff } \forall q \in Q, \text{ we have } \gamma(q) \leq \gamma'(q) \]

Theorem

\((C, \preceq)\) is a well-quasi-ordering.
Well structured transition systems everywhere

\[\gamma \preceq \gamma' \text{ iff } \forall q \in Q, \text{ we have } \gamma(q) \leq \gamma'(q) \]

Theorem

\((C, \preceq)\) is a well-quasi-ordering.

Monotonicity lemma

For \(\gamma_1, \gamma'_1, \gamma_2 \in C\), if
- \(\gamma_1 \Rightarrow \gamma'_1\) and \(\gamma_1 \preceq \gamma_2\),
then there exists \(\gamma'_2 \in C\) s.t.
- \(\gamma_2 \Rightarrow \gamma'_2\) and \(\gamma'_1 \preceq \gamma'_2\)

- BN are **Well Structured Transition Systems**
 [Abdulla et al., LICS’96; Finkel & Schnoebelen, TCS’01]
Deciding \textsc{Reach} in Broadcast Networks

\textbf{Theorem} \cite{EsperzaEtAlLICS99}

\textsc{Reach} is decidable for Broadcast Networks

\textbf{Idea of the proof}

- For $S \subseteq \mathcal{C}$, $\text{pre}(S) = \\{ \gamma \in \mathcal{C} \mid \gamma \Rightarrow \gamma' \land \gamma' \in S \}$
Deciding \textsc{Reach} in Broadcast Networks

Theorem [Esperza et al., LICS’99]

\textsc{Reach} is decidable for Broadcast Networks

Idea of the proof

- For $S \subseteq \mathcal{C}$, $\text{pre}(S) = \{ \gamma \in \mathcal{C} \mid \gamma \Rightarrow \gamma' \land \gamma' \in S \}$
- if S is upward-closed, then $\text{pre}(S)$ is upward closed
Deciding **REACH** in Broadcast Networks

Theorem [Esperza et al., LICS’99]

REACH is decidable for Broadcast Networks

Idea of the proof

- For $S \subseteq C$, $pre(S) = \{ \gamma \in C \mid \gamma \Rightarrow \gamma' \land \gamma' \in S \}$
- if S is upward-closed, then $pre(S)$ is upward closed
- let $\Gamma : C \mapsto C$ s.t. $\Gamma(S) = S \cup pre(S)$
Deciding REACH in Broadcast Networks

Theorem [Esperza et al., LICS’99]

REACH is decidable for Broadcast Networks

Idea of the proof

- For $S \subseteq \mathcal{C}$, $\text{pre}(S) = \{ \gamma \in \mathcal{C} \mid \gamma \Rightarrow \gamma' \land \gamma' \in S \}$
- if S is upward-closed, then $\text{pre}(S)$ is upward closed
- let $\Gamma : \mathcal{C} \mapsto \mathcal{C}$ s.t. $\Gamma(S) = S \cup \text{pre}(S)$
- For S upward-closed, there exists $i \in \mathbb{N}$ s.t. $\Gamma^{i+1}(S) = \Gamma^i(S)$ and given a finite basis B of S, one can compute a finite basis B' of $\Gamma^i(S)$
Deciding \texttt{REACH} in Broadcast Networks

\textbf{Theorem} \cite{Esperza99}

\texttt{REACH} is decidable for Broadcast Networks

\textbf{Idea of the proof}

- For $S \subseteq \mathcal{C}$, $\text{pre}(S) = \{\gamma \in \mathcal{C} \mid \gamma \Rightarrow \gamma' \land \gamma' \in S\}$
- if S is upward-closed, then $\text{pre}(S)$ is upward closed
- let $\Gamma : \mathcal{C} \mapsto \mathcal{C}$ s.t. $\Gamma(S) = S \cup \text{pre}(S)$
- For S upward-closed, there exists $i \in \mathbb{N}$ s.t. $\Gamma^{i+1}(S) = \Gamma^i(S)$ and given a finite basis B of S, one can compute a finite basis B' of $\Gamma^i(S)$
- Take for S the configuration γ such that $\gamma(q) = 1$ and $\gamma(q') = 0$ for all $q' \neq q$
Deciding \textsc{Reach} in Broadcast Networks

Theorem [Esperza et al., LICS’99]
\textsc{Reach} is decidable for Broadcast Networks

Idea of the proof
- For $S \subseteq C$, $pre(S) = \{ \gamma \in C \mid \gamma \Rightarrow \gamma' \land \gamma' \in S \}$
- if S is upward-closed, then $pre(S)$ is upward closed
- let $\Gamma : C \mapsto C$ s.t. $\Gamma(S) = S \cup pre(S)$
- For S upward-closed, there exists $i \in \mathbb{N}$ s.t. $\Gamma^{i+1}(S) = \Gamma^i(S)$ and given a finite basis B of S, one can compute a finite basis B' of $\Gamma^i(S)$
- Take for S the configuration γ such that $\gamma(q) = 1$ and $\gamma(q') = 0$ for all $q' \neq q$

Theorem [Schmitz & Schnoebelen, CONCUR’13]
\textsc{Reach} for Broadcast Networks is Ackermann-complete.
Outline

1. Systems with broadcast communication
2. Ad Hoc Networks
3. Conclusion
Main characteristics of Ad Hoc Networks

- Nodes can be mobile
- Topology is not known a priori
- Messages are broadcasted to the neighbours
- Problems linked to communication (collision, loss of messages, etc.)
Defining a model for Ad Hoc Networks

<table>
<thead>
<tr>
<th>Main characteristics</th>
<th>[Delzanno et al., CONCUR’10]</th>
</tr>
</thead>
<tbody>
<tr>
<td>No creation/deletion of nodes</td>
<td></td>
</tr>
<tr>
<td>Each node executes the same finite state process</td>
<td></td>
</tr>
<tr>
<td>Model based on the ω-calculus</td>
<td></td>
</tr>
<tr>
<td>Broadcast of the messages to the neighbors</td>
<td></td>
</tr>
<tr>
<td>Static topology represented by a connectivity graph</td>
<td></td>
</tr>
</tbody>
</table>
Ad Hoc Networks: syntax

A protocol $P = \langle Q, \Sigma, R, Q_0 \rangle$

Finite state system whose transitions are labeled with:

1. broadcast of messages - $!!m$
2. reception of messages - $??m$
3. internal actions - τ

where m belongs to the finite alphabet Σ

A protocol defines an Ad Hoc Network (AHN)
A configuration is a graph $\gamma = \langle V, E, L \rangle$

- V: finite set of vertices
- E: $V \times V$: finite set of edges
- L: $V \rightarrow Q$: labeling function

Initial configurations: all vertices are labeled with initial states

Notation: $L(\gamma)$ all the labels present in γ

Remarks:
- The size of the considered graphs is not bounded
- Infinite number of configurations

\Rightarrow BN are infinite state systems
Ad Hoc Networks: semantics

Transition system $BN(P) = \langle C, \rightarrow, C_0 \rangle$ associated to P

- C : set of configurations
- \rightarrow: $C \times C$: transition relation
- C_0 : initial configurations

The relation \rightarrow respects the following rules during an execution:

- The topology remains static
 - The number of vertices does not change
 - The edges do not change
 - Only the labels of the vertices can evolve

- Two kind of transitions according to the given protocol
 1. local actions - one process performs an internal action τ
 2. broadcast - one process emits a message with $!!m$, all its neighbors that can receive it with $??m$ have to receive it
Ad Hoc Networks: an example

![Diagram of Ad Hoc Networks example]
Ad Hoc Networks: an example

Ad Hoc Networks
Ad Hoc Networks: an example

![Diagram of ad hoc networks example]
Ensuring the form of a topology

The Req/Ack/Ok-protocol

Properties
Ensuring the form of a topology

The Req/Ack/Ok-protocol

Properties

Ad Hoc Networks
Ensuring the form of a topology

The Req/Ack/Ok-protocol

Properties
Ensuring the form of a topology

The Req/Ack/Ok-protocol

Properties
Ensuring the form of a topology

The Req/Ack/Ok-protocol

Properties
Ensuring the form of a topology

The Req/Ack/Ok-protocol

Properties
Ensuring the form of a topology

The Req/Ack/Ok-protocol

Properties
Ensuring the form of a topology

The Req/Ack/Ok-protocol

Properties
Undecidability result

<table>
<thead>
<tr>
<th>Theorem</th>
<th>[Delzanno et al, CONCUR’10]</th>
</tr>
</thead>
<tbody>
<tr>
<td>REACH for Ad Hoc Networks is undecidable.</td>
<td></td>
</tr>
</tbody>
</table>
Undecidability result

Theorem [Delzanno et al, CONCUR’10]

REACH for Ad Hoc Networks is undecidable.

One way to regain decidability: restrict the considered graphs
Considered order on graphs

- Given \(\gamma \in \mathcal{C} \), \(G(\gamma) \) is the associated graph

Induced subgraph relation

Given \(\gamma_1, \gamma_2 \in \mathcal{C} \), \(\gamma_1 \preceq \gamma_2 \) if there exists a label preserving injection \(h \) from nodes of \(G(\gamma_1) \) to nodes of \(G(\gamma_2) \) s.t.:

- \((n, n')\) is an edge in \(G(\gamma_1) \) if and only if \((h(n), h(n'))\) is an edge in \(G(\gamma_2) \)

![Diagram](a-b-c-d.png)
Bounded path configurations

- \mathcal{P}^K: set of configurations $\gamma \in \mathcal{C}$ s.t. the length of the longest simple path in $G(\gamma)$ is smaller than K

Theorem [Ding, J. of Graph Theory’92]

For all $K \in \mathbb{N}$, (\mathcal{P}^K, \preceq) is a well-quasi-ordering
Well structured transition systems everywhere

Monotonicity lemma

For \(\gamma_1, \gamma_1', \gamma_2 \in \mathcal{P}^K \), if

- \(\gamma_1 \Rightarrow \gamma_1' \) and \(\gamma_1 \preceq \gamma_2 \)

then there exists \(\gamma_2' \in \mathcal{P}^K \) s.t.

- \(\gamma_2 \Rightarrow \gamma_2' \) and \(\gamma_1' \preceq \gamma_2' \)

- AHN restricted to \(K \)-bounded path configurations are **Well Structured Transition Systems**

Remark:

- This is true with induced subgraph but not with subgraph (Node c broadcast a message received by node a and b)
Monotonicity lemma

For $\gamma_1, \gamma_1', \gamma_2 \in P^K$, if
- $\gamma_1 \Rightarrow \gamma_1'$ and $\gamma_1 \preceq \gamma_2$

then there exists $\gamma_2' \in P^K$ s.t.
- $\gamma_2 \Rightarrow \gamma_2'$ and $\gamma_1' \preceq \gamma_2'$

- AHN restricted to K-bounded path configurations are **Well Structured Transition Systems**

Remark:
- This is true with induced subgraph but not with subgraph (Node c broadcast a message received by node a and b)
Decidability result

Theorem [Delzanno et al., CONCUR’10]

REACH is decidable for AHN restricted to K-bounded path configurations

Idea of the proof

- For $S \subseteq P^K$, $\text{pre}_K(S) = \{\gamma \in P^K \mid \gamma \Rightarrow \gamma' \land \gamma' \in S\}$
- if S is upward-closed, then $\text{pre}_K(S)$ is upward closed
- let $\Gamma : P^K \mapsto P^K$ s.t. $\Gamma(S) = S \cup \text{pre}_K(S)$
- For S upward-closed, there exists $i \in \mathbb{N}$ s.t. $\Gamma^{i+1}(S) = \Gamma^i(S)$ and given a finite basis B of S, one can compute a finite basis B' of $\Gamma^i(S)$
- Take for S the graph with a single node labelled with q
Outline

1. Systems with broadcast communication
2. Ad Hoc Networks
3. Conclusion
Conclusion

Complexity result for \textsc{Reach} in parameterized networks

<table>
<thead>
<tr>
<th>Communication</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broadcast</td>
<td>Ackermann-complete</td>
</tr>
<tr>
<td>Ad Hoc</td>
<td>Undecidable</td>
</tr>
<tr>
<td>Ad Hoc over K-bounded path configurations</td>
<td>Decidable</td>
</tr>
</tbody>
</table>