Communication et Routage

IF309
c travers
Trivia

Two parts

- Algorithmique pour les gros volumes de données. Olivier Beaumont olivier.beaumont@inria.fr

- Algorithmique pour la coordination dans les systèmes distribués. Corentin Travers ctravers@enseirb-matmeca.fr

webpage:

- http://ctravers.vvv.enseirb-matmeca.fr/IF306/
Student seminar

- ~15/20mins presentation by pair of students
- mini-course from a research paper, book chapter, etc.
- audience is the class
- December 14, everyone must be there
- Suggestion of topics will be available soon
- do not hesitate to contact Olivier or me while preparing your talk
Distributed Systems
Distributed Algorithms

- E. Dijkstra (mutual exclusion) 60’s
- L. Lamport: “a distributed system is one that stops your application because a machine you have never heard from crashed” ~70’s
- J. Gray (transactions) ~70’s
- N. Lynch (consensus) ~80’s
- Birman, Schneider, Toueg (group membership) ~90’s
- P2P networks ~00’s
- Satoshi Nakamoto ~10’s
Distributed System
Distributed System

Green box is GK110, red lines are global memory
Distributed System
Distributed System

Kuva 1. Internet of Things. Lähde: Huffington Post
Distributed Systems
Distributed Systems

Sensor network
Distributed Computing

Processes

Communication medium
Processus, thread
Processus, thread
Communication

Message passing
Communication

read/write shared memory
Communication

- TEST-AND-SET
- CAS
- LL/SC

shared object
Failures

“A distributed system is one that stops your application because a machine you have never heard from crashed”

Leslie Lamport
Failures

Process Crash: unexpectedly stop and subsequently do nothing

Communication failures: faulty channel/shared object

Byzantine failure: faulty processes execute arbitrary code
Time

Processes share a clock and run at the same speed

Synchronous
Time

Processes do not share a clock and run at their own speed

Asynchronous
Processes share an approximately synchronized clock and run at approximately the same speed.
Many Models

Communication

Time

Failures

tas cas
Multicore Processor

Asynchronous
Wait-free
Shared Memory
Internet

Asynchronous Message-Passing
Parallel Computing

Synchronous Message-Passing/Shared Memory
Consistency
Consistency

Bob

Coffee break?

Enter your message

Alice

Coffee break?

Enter your message

Coffee break?

©Matthieu Perrin
Consistency

Bob

Coffee break?

Enter your message

Alice

Coffee break?

Of course

Enter your message

Of course

© Matthieu Perrin
Consistency

Bob

Coffee break?
No answer...
Are you upset?

Alice

Coffee break?
Of course

No answer...
Are you upset?

© Matthieu Perrin
Consistency

Bob

Coffee break?
No answer...
Are you upset?
?

© Enter your message

Alice

Coffee break?
Of course
?

© Enter your message
Consistency

Bob

Coffee break?
No answer...
Are you upset?

Alice

Coffee break?
Of course
The message could not be sent...
No answer...
Are you upset?
Consistency
Consistency

Introduction – Motivation: Skype

Bob

Coffee break?

Of course

No answer...
Are you upset?

Alice

Coffee break?

Of course

No answer...
Are you upset?

© Matthieu Perrin
Coordinated Attack

- Alice and Bob must agree on when to attack
- Message-passing
- Messages may be lost (intercepted by the ennemy)
Coordinated Attack

- Alice and Bob must agree on when to attack
- Message-passing
- Messages may be lost (intercepted by the enemy)
Coordinated Attack

Theorem

There is no protocol that ensures that Alice and Bob Attack simultaneously
Proof (Operational)

Bob receives "attack at dawn"

Alice doesn't know if Bob has received "attack at dawn"

Bob sends an acknowledgment

Bob doesn't know if Alice got that message

Alice sends an acknowledgment

Goes on forever
Bob receives "attack at dawn"

Alice doesn’t know if Bob has received "attack at dawn"
Proof (Operational)

Bob receives "attack at dawn"

Alice doesn’t know if Bob has received "attack at dawn"

Bob sends an acknowledgment

Goes on forever
Proof (Operational)

Bob receives "attack at dawn"

Alice doesn’t know if Bob has received "attack at dawn"

Bob sends an acknowledgment

Bob doesn’t know if Alice got that message
Bob receives "attack at dawn"

Alice doesn’t know if Bob has received "attack at dawn"

Bob sends an acknowledgment

Bob doesn’t know if Alice got that message

Alice sends an acknowledgment

Goes on forever
Bob receives "attack at dawn"

Alice doesn’t know if Bob received "attack at dawn"

Bob sends an acknowledgment

Bob doesn’t know if Alice got that message

Alice sends an acknowledgment

Goes on forever
Client-Server
Client-Server
Client-Server

- Availability
- Fault-Tolerance
- Load-Balancing
Consistency?

Carol: give Alice 200$

Alice: give Bob 100$

Alice

50$

250$

150$

Alice

50$

-50$

150$
Server as a State Machine

- Responds to external stimuli
- Manages internal state
- Examples: many storage systems, services
 - Memcached
 - RAMCloud
 - HDFS name node
 - ...

Client request -> state transition, output
State Machine Replication

Consistency: Process client requests in the same order
Blockchain

Log of requests

- Total order
- Immutable
- Current state: replay every request in order
- Verifiable
Agreement

- Fundamental problem
- Agree on the order of client request
- Which algorithms?
This course

• **Algorithms** for **Distributed agreement** (aka consensus)

• Message passing

• From synchronous, simple failures …

• … to byzantine, open system
Consensus

Each process starts with an input value

Goal: agree on one of the initial value

- **Validity**: every decided value is an initial value
- **Agreement**: all decided values are the same
- **Termination**: every non-faulty process decides
State Machine Replication

©Guerraoui et al.
Consensus in Synchronous Systems
Synchronous Model with Crash Failures

Round $r - 1$ | Round r | Round $r + 1$
Exercise

Design a synchronous, crash tolerant consensus algorithm

- Start with 3 processes
- Initial values are integers
- Must tolerant at most t <n failures, (n is the number of processes)
Crash-tolerant Synchronous Protocol

Protocol for \(n \) processes \(p_1, p_2, \ldots, p_n \)

Tolerate up to \(t < n \) failures

Decide in \(t+1 \) rounds
Code for process pi

propose(v) :
 est <- v
 for r = 1,...,t+1 do
 if i = r then broadcast(est) endif
 if est' is received then est <- est' endif
 endfor
 return est
Broadcast by Faulty Process

\[p: \text{broadcast}(m) \]

\[m \text{ received by an arbitrary subset} \]

round \(r \)
Correctness

- **Termination**: $t+1$ rounds
- **Validity**: trivial

- **Agreement**: At most t failures \Rightarrow at least one round R coordinated by a correct process. At the end of round R, every non-crashed process has the same estimate.
Complexity (1)

- \(t+1 \) rounds
- \(n(t+1) \) messages, each message carries a value
Complexity (2)

- Protocol always costs $t+1$ rounds
 - even if there is no failures
 - can decision be reached faster?

Theorem: every synchronous crash-tolerant consensus protocol requires $\min(f+2, t+1)$ rounds
Byzantine Failures

- Processes may be corrupted: under the control of an adversary

- Corrupted processes execute arbitrary codes

- Corrupted processes may coordinate to defeat the protocol
Byzantine Agreement

- **Termination**: every correct process decides
- **Agreement**: no two correct processes decide differently
- **Validity**: if every correct process proposes the same value v, then v is decided
Berman-Garay Protocol

- requires $t < n/4$

- $t+1$ phases, rotating coordinator

- A phase: 2 rounds
 - round 1: estimate exchange
 - round 2: commit to the value most frequently raved in round 1 or adopt coordinator’s value
The second round of stage k (i.e., the round whose number is $r = 2^k$) is an estimate adoption. For each process p_i, as indicated previously, if the occurrence number of the estimate v_i it has seen the most often bypasses the threshold, p_i adopts it as new estimate. The other case is solved by the rotating coordinator paradigm as follows. During round $r = 2^k$, process p_k acts a coordinator role: it broadcasts its most frequent value to all processes p_i (that saves it in coord_i) in order they adopt it in case they cannot adopt their most frequent value.

Let us notice that, as at most t processes are faulty, $t + 1$ stages necessarily include a stage whose coordinator is correct. So, this coordinator will impose the same estimate value to the correct processes if, up to this stage, no estimate value was “present enough” to bypass the threshold.

operation propose(v_i)

1. $est_i \leftarrow v_i$
2. \textbf{when} $r = 1, 3, \ldots, 2t - 1, 2t + 1$ \textbf{do}
 \textbf{begin synchronous round}

 3. broadcast $\text{ESTI}(est_i)$;
 4. \textbf{let} $rec_i =$ multiset of values received during round r;
 5. $\text{most}_frequ_i \leftarrow$ most frequent value in rec_i;
 6. $\text{occ}_i \leftarrow$ occurrence number of most_frequ_i
 \textbf{end synchronous round};

3. \textbf{when} $r = 2, 4, \ldots, 2t, 2(t + 1)$ \textbf{do}
 \textbf{begin synchronous round}

 8. \textbf{if} ($i = r/2$) \textbf{then} broadcast $\text{EST2}(\text{most}_frequ_i)$ \textbf{end if};
 9. \textbf{if} (a value v is received from $p_{r/2}$) \textbf{then} $\text{coord}_i \leftarrow v$ \textbf{else} $\text{coord}_i \leftarrow v_i$ \textbf{end if};
 10. \textbf{if} ($\text{occ}_i > n/2 + t$) \textbf{then} $est_i \leftarrow \text{most}_frequ_i$ \textbf{else} $est_i \leftarrow \text{coord}_i$ \textbf{end if}
 11. \textbf{if} ($r = 2(t + 1)$) \textbf{then} return(est_i) \textbf{end if}
 \textbf{end synchronous round}.

Figure 8.7: Byzantine Consensus (code for p_i, $t < n/4$)

The threshold value is $n/2 + t$. As shown by Lemma 8.6, this threshold value is required to guarantee the agreement property of consensus despite up to t Byzantine processes. Let us notice that ($n > 4t$) \Leftrightarrow ($2n > n + 4t$) \Leftrightarrow ($n > n/2 + 2t$) \Leftrightarrow ($n > n/2 + t$).
Proof

Agreement persistence: if every correct has the same estimate \(v \) at the beginning of phase \(k \), they will never change their estimate thereafter.

Theorem: if \(t < n/4 \), the protocol solves byzantine agreement in \(t+1 \) rounds.
Improving Failures Resilience

- Berman-Garay is simple, elegant and has constant size message

- But tolerate up to $t < \frac{n}{4}$ byzantine processes

Can we do better?

Theorem: there is no synchronous byzantine agreement protocol that tolerates $t \geq \frac{n}{3}$ failures
Impossibility $n=3$, $t=1$

Theorem: there is no synchronous consensus protocol for 3 processes tolerating 1 byzantine process
Impossibility n=3, t=1

- **Execution E1**
 - p1 sends 1 to p2, 0 to p3.
 - p2 sends 1 to p3, 0 to p1.
 - p3 sends 0 to p1, 1 to p2.

- **Execution E2**
 - p1 sends 0 to p2, 1 to p3.
 - p2 sends 1 to p3, 0 to p1.
 - p3 sends 1 to p1, 0 to p2.

- **Execution E3**
 - p1 sends 0 to p2, 1 to p3.
 - p2 sends 1 to p3, 0 to p1.
 - p3 sends 1 to p1, 0 to p2.

- **Execution E4**
 - p1 sends 0 to p2, 1 to p3.
 - p2 sends 1 to p3, 0 to p1.
 - p3 sends 1 to p1, 0 to p2.
Impossibility $n \leq 3t$

Theorem: there is no synchronous consensus protocol for n processes tolerating $t \geq n/3$ byzantine processes

Proof

By contradiction and reduction

- Assume A solves consensus for n procs, $t \leq n/3$ byz. procs
- Uses A to solve consensus among 3 process, 1 byz. procs
Impossibility \(n \leq 3t \)
Consensus in Asynchronous Systems
Asynchronous Model with Crash Failures

- Processes may fail-stop
- **Reliable but asynchronous** communication:
 - Any message is eventually received
 - Unpredictable time between send and receive
Exercise

Design a crash-tolerant asynchronous consensus algorithm

• For 2 processes

• Initial values are 0 or 1

• Tolerate 1 failure
Bad News

Theorem [FLP] There is no asynchronous binary consensus protocol for 2 processes that tolerates one crash failure

Consequences Asynchronous consensus requires
• Additional power, e.g., failure detection
• Relax the problem specification, e.g., liveness
• Randomization
• Any combination of the items above
(Unreliable) Leader

- `leader_i` current leader according to proc. pi
- May change over time
- Different procs may have different leaders for a while

Eventual leadership after some time, every process has the same non-faulty leader
Leader Based Consensus

[MR01]

• Always safe, may not terminate while common leadership does not hold

• Requires $t \leq n/2$

• Asynchronous stages. In stage k:

 1. try to select a common value (each proc. picks its current leader’s value)

 2. try to commit to their current value v. If v is committed, no other value can be decided
Leader-based Consensus

upon propose(v):
 \[r \leftarrow 0 \text{ // current round} \]
 \[u \leftarrow v \text{ // current estimate} \]
 while not decided do
 \[r \leftarrow r + 1 \]
 send(PHASE1, r, u) to all \(// \) phase 1
 wait for (receive(PHASE1, r, v') from \(p_i \text{ s.t. } l=\text{leader}_i) \]
 \[u \leftarrow v' \]
 send(PHASE2, r, u) to all \(// \) phase 2
 wait for (receive(PHASE2, r, u') from majority of processes)
 \[U \leftarrow \text{set of values } u' \text{ received in vote messages} \]
 if \(U = \{u'\} \text{ for some } u' \neq \bot \) then \(\text{aux} \leftarrow u' \)
 else \(\text{aux} \leftarrow \bot \)
 send(PHASE3, r, aux) to all \(// \) phase 3
 wait for (receive(PHASE3, r, aux') from majority of processes)
 if (received (PHASE3, r, aux') with aux' = v' \neq \bot) then \(u \leftarrow v' \)
 if (all (PHASE3, r, aux') messages are such that aux' \neq \bot) then
 broadcast(DECIDE, u); decided \(\leftarrow \) true

upon deliver(DECIDE, v):
 decided \(\leftarrow \) true
 decide(v)
Ben Or Byzantine Consensus $n > 9t$

1. $x_i \in \{0, 1\}$ < input bit
2. $r = 1$ < round
3. decided = false
4. Broadcast $\text{propose}(x_i, r)$
5. repeat
6. Wait until $n - f$ propose messages of current round r arrived
7. if at least $n - 2f$ propose messages contain the same value x then
8. $x_i = x$, decided = true
9. else if at least $n - 4f$ propose messages contain the same value x then
10. $x_i = x$
11. else
12. choose x_i randomly, with $Pr[x_i = 0] = Pr[x_i = 1] = 1/2$
13. end if
14. $r = r + 1$
15. Broadcast $\text{propose}(x_i, r)$
16. until decided (see Line 8)
17. decision = x_i