
Synchronous t-Resilient Consensus
in Arbitrary Graphs ?

Armando Castañeda1, Pierre Fraigniaud2, Ami Paz2, Sergio Rajsbaum1,
Matthieu Roy1,3, and Corentin Travers4

1 UNAM, Mexico — {armando.castaneda,rajsbaum}@im.unam.mx
2 CNRS and Université de Paris, France — {pierref,amipaz}@irif.fr

3 LAAS, CNRS, Toulouse, France — roy@laas.fr
4 CNRS and University of Bordeaux, France — travers@labri.fr

Abstract. We study the number of rounds needed to solve consensus
in a synchronous network G where at most t nodes may fail by crash-
ing. This problem has been thoroughly studied when G is a complete
graph, but very little is known when G is arbitrary. We define a notion
of radius that considers all ways in which t nodes may crash, and present
an algorithm that solves consensus in radius rounds. Then we derive a
lower bound showing that our algorithm is optimal for vertex-transitive
graphs, among oblivious algorithms.

Keywords: Crash failures · Consensus · Combinatorial topology · Dis-
tributed graph algorithms

1 Introduction

The problem. We consider a synchronous message-passing distributed system,
where at most t out of n nodes may fail by crashing. The nodes communicate
by sending messages to each other over the edges of an undirected graph G. In
the consensus problem each node is given an input, and after some number of
rounds produces an output, such that all outputs are the same and must be
equal to one of the inputs.

One of the earliest and most well-know facts in distributed computing is
that the number of rounds needed to solve consensus when G is the complete
graph, Kn, is t+ 1. Namely, consensus can be solved in t+ 1 rounds, for t < n,
and any algorithm requires this number of rounds in the worst case. The round
complexity to solve consensus in Kn has been thoroughly studied, but not for
graphs other than the complete graph.

1.1 Results

This paper studies the number of rounds needed to solve consensus, as a function
of G and t. It presents two main contributions.

? Supported by ANR Project DESCARTES, INRIA Project GANG, UNAM-PAPIIT
IA102417 and IN109917, and Fondation des Sciences Mathématiques de Paris

2 A. Castañeda, P. Fraigniaud, A. Paz, S. Rajsbaum, M. Roy, and C. Travers

First, it shows that for any given (t + 1)-vertex-connected graph G, it is
possible to solve consensus tolerating t failures, in radius(G, t) rounds. Roughly,
the eccentricity of v against t failures, ecc(v, t), is the smallest number of rounds
needed for a node v to broadcast its input value, independently of the failure
pattern (when and how nodes crash). Then, radius(G, t) is equal to the smallest
ecc(v, t), over all nodes v. For example, radius(Kn, t) = t + 1 for the complete
graph and radius(Cn, 1) = n−1 for the cycle. For the wheel, radius(Wn, 2) = n−1
and radius(Wn, 1) = 1 + b(n− 1)/2c.

Second, we present a corresponding lower bound, showing that our algorithm
is optimal among oblivious algorithms, in any graph that is vertex-transitive. In
an oblivious algorithm, the decision value of a node is based on the set of input
values it has seen so far, and not on the particular failure pattern. Roughly
speaking, a graph is vertex-transitive if it is highly symmetric. This is a large
and well studied class of graphs (see, e.g., [18]).

The question of achieving consensus in a network prone to failures was inten-
sively studied when the communication pattern is the complete graph. However,
it seems difficult to obtain direct generalizations of these classical upper and
lower bound techniques from a complete graph to a general graph. Instead, both
our upper and lower bounds use novel ideas, that we discuss next.

Our upper bound techniques. In a classic algorithm to solve consensus on
a complete graph, e.g. [29], nodes repeatedly send all the inputs they know, and
at the end of round t+ 1, each node that has not crashed, decides the smallest
input value among the values it has seen. The usual agreement argument is that
among the t+ 1 rounds there must be at least one in which no node crashes. All
nodes that are alive at the end of such a round have seen the same set of inputs,
i.e., there is common knowledge [14] on a set of inputs. This argument holds only
under the assumption that the graph is complete. We use a similar algorithm
on an arbitrary graph, but apply a more fine-grained argument, of information
flow, to prove its correctness and running time.

Given a node v and its ecc(v, t), we show that at the end of round ecc(v, t),
either all alive nodes have received v’s input, or none has. For the complete
graph, ecc(v, t) = t + 1 for all nodes v, and indeed, for any node v, either all
nodes have received the input of v by round t+1, or no node will ever receive it.
This implies the correctness of the algorithm for the complete graph described
above. Notice that the eccentricity is not less than t+ 1, because the adversary
may create a hidden path, v1, . . . , vt such that v1 = v and each vi, 1 ≤ i ≤ t− 1,
fails in round i and sends a message to only vi+1 before failing.

We use this information flow perspective to derive simple consensus algo-
rithms for arbitrary graphs. Each node repeatedly forwards all the pairs (v, inv)
it knows about, where inv is the input value of node v. Then, an algorithm is
specified by two functions: R(G, t) which returns the the number of rounds to
execute, and D(G, t) which tells a node which value to decide, among the input
values it has seen. After R(G, t) rounds, the active nodes have the same view of
the inputs of a carefully chosen subset of t+ 1 nodes, thus, after R(G, t) rounds,

Synchronous t-Resilient Consensus in Arbitrary Graphs 3

D(G, t) can pick deterministically the input of one of these nodes. Remarkably,
our lower bound shows that this is not necessarily the case after less rounds.

Our lower bound techniques. There are several lower bound proofs for the
number of rounds to solve consensus under crash failures for the case when G is
a complete graph. The classic t+ 1 lower bound proof style proceeds by a rather
complex backward induction (a detailed description appears in [25]). Later on,
simpler forward induction proofs were discovered [1, 26], following the classical
bivalency arguments that were originally developed for proving the impossibility
of solving consensus in asynchronous systems [17].

The aforementioned proofs hold for general graphs as well, namely, t + 1
rounds is a lower bound for solving consensus on any graph G. However, in
general graphs this bound is very weak, as it does not take into consideration
the graph’s structure. An obvious example is a cycle with t = 1: our lower bound
is n− 1, while the standard approaches give a lower bound of 2 rounds.

Our lower bound technique is different from both the backward and the
forward arguments. It is inspired by the topological techniques for distributed
computing [20], though we do not use topology explicitly in the current paper.
Our lower bound technique is similar to the connectivity analysis of the protocol
complex, the structure of states at the end of executions of an algorithm after a
certain number of rounds. However, instead of working with the protocol com-
plex, we consider an information flow directed graph version based on failure
patterns, without including input values. We prove that consensus is solvable by
an oblivious algorithm if and only if all connected components of the information
flow graph have a dominating vertex, namely, a vertex with an edge from it to
any other vertex in its connected component. In [6], we study these information
flow techniques and their relation to set agreement and approximate agreement.

The seminal paper [14] shows that, as soon as there is common knowledge of
a clean round (where a node that crashes does not send any messages), it is also
common knowledge that nodes have identical views of the initial configuration.
As a consequence, any action that depends on the system’s initial configuration
can be carried out simultaneously in a consistent way by the set of active nodes
at any round k ≥ t+ 1, if it can be carried out at all. Our lower bound is larger
than t + 1 on general graphs, and hence shows how the round in which nodes
have common knowledge of a subset of the input configuration is affected also
by the structure of the graph.

1.2 Related work

Consensus in the failure-prone synchronous model has been thoroughly studied
since the beginning of the distributed computing field in the late 1970’s [34].
A variety of aspects have been considered, including the number of rounds (in
great detail, including worst case, early deciding, simultaneous, unbeatability,
etc.), number and size of messages, variants of consensus, in static and dynamic
networks, and under various failure models. We only mention some of the most

4 A. Castañeda, P. Fraigniaud, A. Paz, S. Rajsbaum, M. Roy, and C. Travers

relevant papers, among a vast literature, which even surveys e.g. [8, 29] and
textbooks on the field cover only partially, e.g., [4, 25,30].

For general graphs, since early on there has been an interest in characterizing
the graphs where consensus is solvable, initially for Byzantine failures [11,12,16].
It was observed early on [24] that t+1 connectivity is necessary and an exponen-
tial algorithm was described. The algorithms for Byzantine settings also work in
our model. However, they have not been optimized for the number of rounds, and
furthermore, our setting requires only t + 1 vertex-connectivity, while an algo-
rithm tolerating Byzantine failures requires n ≥ 3t+ 1, and vertex-connectivity
at least 2t+ 1 [12]. Very recently, consensus algorithms for general graphs were
designed, for local broadcast Byzantine failures [22]. One algorithm works in the
local broadcast model on a graph under the weakest requirements—minimum
degree 2t, and (b3t/2+1c) vertex-connected; however, it has an exponential time
complexity. A different consensus algorithm terminates in 3n rounds, but only
assuming the graph is 2t-connected. There has also been work in characterizing
the directed graphs for which fault tolerant synchronous consensus is solvable,
both under crash and under Byzantine failures [32,33].

We are not aware of any previous lower bounds techniques for arbitrary
graphs. The t + 1 lower bound on the number of rounds to solve consensus in
Kn was originally proved in [15] for Byzantine failures, and was later extended
to the case were digital signatures can be used [11], and finally to crash failures
(see, e.g., [19]).

Our lower bound technique is mainly inspired by the topological techniques
for distributed computing [20], and more specifically by the topological struc-
ture of the executions of a synchronous algorithm after a certain number of
rounds [21]. Indeed, the technique used for deriving our second algorithm is
reminiscent of topological existential upper bounds proofs used in the past [3].
Hidden paths have played an important role in the design of early-deciding con-
sensus algorithms in the complete graph [7].

Research on dynamic networks also characterizes families of networks for
which consensus (or a variant of it) is solvable [9, 10, 27, 31, 35]. Interestingly,
dynamic networks research and works on synchronous fault-tolerant consen-
sus [32, 33] share the idea of picking a node as a source, and having all nodes
deciding on the input of this source. In Theorem 3 we present an information
flow characterization for consensus, in terms of such a source. Our notion of a
core set (see Section 3.2) can be seen as a refinement of such notions, defined in
order to optimize the number of rounds. Interestingly, [27] presents a topological
solvability characterization of consensus using the point set topology techniques
introduced in [2].

The line of work on almost everywhere agreement initiated in [5, 13], was
motivated by the impossibility of tolerating t crashes when the network is not
t + 1 connected (these works also consider Byzantine failures). They present
algorithms for networks where consensus is actually unsolvable due to weak
connectivity.

Synchronous t-Resilient Consensus in Arbitrary Graphs 5

2 Preliminaries

Model of Computation. We consider the standard synchronous message-passing
model of computation where at most t nodes may fail by crashing. A set of
n ≥ 2 nodes V communicate through bidirectional channels E defining a graph
G = (V,E). In the remainder of the paper, we fix G and t, and assume t < κ(G),
the vertex connectivity of G, i.e., the minimum number of nodes whose deletion
disconnects G.

An execution proceeds in a infinite sequence of synchronous rounds, starting
in round 1. In every round, each node v first performs some local computation,
then sends a message to each of its neighbors in G, denoted N(v), and then
receives the messages sent to it from N(v) in that round. When a node crashes
in round r, it fails to send its message to some of its neighbors in round r, and
sends no message in subsequent rounds.

A failure pattern ϕ for G, t specifies, for each node that fails, in which round
number it fails, and which messages it fails to send. It is a set of triples of the
form (v, Fv, fv), indicating that v crashes in round fv, in which it does not send
the messages to ∅ 6= Fv ⊆ N(v). Since at most t nodes can fail, |ϕ| ≤ t, and since
nodes do not recover from a failure, if (v, Fv, fv), (u, Fu, fu) ∈ ϕ then v 6= u.

For an execution with failure pattern ϕ, the faulty nodes are those that
appear in a triplet in ϕ; the others are the correct nodes. A node is active in
round r in ϕ if it is correct, or if it fails in a round later than r. A node that
crashes with Fv = N(v) is said to crash cleanly in ϕ.

Consider any input assignment to the nodes, and a failure pattern ϕ. Our
algorithms are of the following form. Initially, for each node v with input inv, its
view is {(v, inv)}. In each round, each node v sends its view to N(v), and at the
end of the round it updates its view with the new input value-pairs it receives.

We say that u hears from v in ϕ, if in some round u receives a message
containing the input of v. Similarly, we way that u hears from v by round r in ϕ
if u receives a message with v’s input in round r, or before. In other words, there
is a causal path from u to v [23] in an infinite execution with failure pattern
ϕ. Clearly, the existence of such a path depends on ϕ, but not on the input
assignment. Thus, to analyze the structure of all possible failure patterns, we
ignore the input values. This is what we do next, where we may identify ϕ with
the infinite execution with that failure pattern.

Eccentricity and Radius in Failure Patterns. Let distG(u, v) denote the distance
between nodes u and v in G = (V,E). The eccentricity of a node v ∈ V is
defined as eccG(v) = maxu∈V distG(u, v). The diameter of a graph is defined as
maxv∈V eccG(v), and its radius as minv∈V eccG(v). We generalize the notions of
eccentricity and radius to the synchronous t-resilient model.

In the following, failure patterns are denoted by lower case Greek letters
ϕ,ψ, . . ., and sets of failure patterns are denoted by upper case Greek letters

Φ, Ψ, We denote by Φ
(t)
all the set of all failure patterns for G and t. The

failure pattern in which no nodes crash is ϕ∅, and hence Φ
(0)
all = {ϕ∅}.

6 A. Castañeda, P. Fraigniaud, A. Paz, S. Rajsbaum, M. Roy, and C. Travers

Definition 1. Given a node v ∈ V and a failure pattern ϕ ∈ Φ(t)
all , the eccentric-

ity eccG(v, ϕ) ∈ N ∪ {∞} of v in ϕ is the minimum number of rounds required
for all correct nodes to hear from v (i.e., there is causal path from v to every
correct node), or ∞ if not all correct nodes hear from v. If eccG(v, ϕ) ∈ N, we
say that v floods to the correct nodes in ϕ.

Consider any ϕ. Notice that since G is at least (t+1)-connected, and at most
t nodes crash, if a correct node u hears from v, then every correct node receives
a message from v (because it can get from u to every correct node). We thus
have the following claim.

Fact 1 For every v ∈ V , and every ϕ ∈ Φ(t)
all , if eccG(v, ϕ) =∞ then no correct

node hears from v in ϕ.

Definition 2. For v ∈ V and Φ ⊆ Φ
(t)
all , such that there is at least one ϕ ∈ Φ

with eccG(v, ϕ) ∈ N, let

eccG(v, Φ) = max{eccG(v, ϕ) : ϕ ∈ Φ, eccG(v, ϕ) ∈ N}.

Notice that there is at least one ϕ ∈ Φ with eccG(v, ϕ) ∈ N, for any Φ
containing failure patterns where v is correct.

Lemma 1. For v ∈ V and ϕ ∈ Φ(t)
all , let A be the set of all active nodes in round

eccG(v, Φ
(t)
all) under ϕ. Either all nodes in A hear from v by round eccG(v, Φ

(t)
all),

or no node in A hears from v by round eccG(v, Φ
(t)
all) in ϕ.

Proof. Let ϕ′ ∈ Φ(t)
all be the failure pattern identical to ϕ in the first eccG(v, Φ

(t)
all)

rounds, but with all the nodes of A correct in ϕ′. Then, the nodes in A have the

same view in both ϕ and ϕ′ in round eccG(v, Φ
(t)
all).

If eccG(v, ϕ′) ∈ N, by Definition 1, all nodes in A hear from v by time

eccG(v, ϕ′), which is at most eccG(v, Φ
(t)
all), by Definition 2. The same is true for

ϕ, as ϕ and ϕ′ are identical in the first eccG(v, Φ
(t)
all) rounds.

If eccG(v, ϕ′) = ∞, no node in A hears from v in ϕ′, by Fact 1, and then

no node in A hears from v by round eccG(v, Φ
(t)
all) in ϕ because ϕ and ϕ′ are

identical in the first eccG(v, Φ
(t)
all) rounds. ut

Definition 3. Let Φ ⊆ Φ
(t)
all such that for every v ∈ V there is at least one

ϕ ∈ Φ with eccG(v, ϕ) ∈ N. The radius of G with respect to Φ is defined as
radius(G,Φ) = minv∈V eccG(v, Φ).

For t = 0, our notion of eccentricity and radius coincides with the classical

graph-theoretic definition, i.e., eccG(v, Φ
(0)
all) = eccG(v) and radius(G,Φ

(0)
all) =

radius(G). Moreover, in the complete graph Kn, we have radius(Kn, Φ
(t)
all) = t+1,

which together with Lemma 1 implies the correctness of the simple algorithm
discussed in the Introduction.

Synchronous t-Resilient Consensus in Arbitrary Graphs 7

3 Consensus Algorithms in Arbitrary Graphs

We consider the usual consensus problem in which each node starts with an
input value, defined by the following properties. Termination: Every correct
node decides a value; Validity: The decision of a node is equal to the input of
some node; Agreement: The decisions of any pair of nodes are the same.

Oblivious algorithms. Recall that in our algorithms, a node resends to its neigh-
bors the set of input values it has received, each one together with the name
of the node that has the corresponding input value. Thus, to specify a consen-
sus algorithm, we define a function R(G, t) that returns a round number, stating
that all correct nodes decide in round R(G, t). Also, we define a decision function
D(G, t) used by a node to select a consensus value from its view (possibly taking
in consideration the names of the nodes that proposed this inputs). Namely, in
a t-fault tolerant oblivious consensus algorithm for G, after R(G, t) rounds of
communication (independently of the failure pattern or the input assignment),
each node selects a value from its view, as specified by the function D(G, t). We
stress that R(G, t) and D(G, t) are not computed by the nodes, they are given
as part of the algorithm (alternatively, if the nodes “know” G and t, then they
can compute these functions locally).

3.1 A naive algorithm

We describe algorithm PG,tecc = (Recc(G, t),Decc(G, t)), based on a simple idea. Let
us order the n vertices of G as v1, . . . , vn, with

eccG(vi, Φ
(t)
all) ≤ eccG(vi+1, Φ

(t)
all) (1)

for 1 ≤ i < n. In particular, we have radius(G,Φ
(t)
all) = eccG(v1, Φ

(t)
all).

Let Recc(G, t) = eccG(vt+1, Φ
(t)
all), and Decc(G, t) be the function that returns

the input of the smallest5 node among the nodes in {v1, . . . , vt+1}.

Theorem 1. Algorithm PG,tecc solves consensus in eccG(vt+1, Φ
(t)
all) rounds.

Proof. The algorithm satisfies termination as all correct nodes run Recc(G, t) =

eccG(vt+1, Φ
(t)
all) rounds. For validity, the definition of eccG(vt+1, Φ

(t)
all) and Equa-

tion 1 imply that all nodes receive at least one input of a node in {v1, . . . , vt+1}
by round eccG(vt+1, Φ

(t)
all), in every ϕ ∈ Φ(t)

all . For agreement, consider any ϕ ∈
Φ
(t)
all and the set A of all nodes that are active in round eccG(vt+1, Φ

(t)
all) in ϕ.

Lemma 1 and Equation 1 imply that either all nodes in A have received vi’s

input, 1 ≤ i ≤ t+ 1, in round eccG(vt+1, Φ
(t)
all) in ϕ, or none of them has received

it in that round. Therefore, all nodes in A have the same view of the inputs of
the nodes v1, . . . , vt+1, hence Decc(G, t) returns the same value to all of them. ut

It is easy to come up with graphs for which this solution is not optimal, in
terms of number of rounds.
5 Assuming V is a totally ordered set.

8 A. Castañeda, P. Fraigniaud, A. Paz, S. Rajsbaum, M. Roy, and C. Travers

x1 x2 x3 x4 x5 x6 x7 x8 x9

y

Fig. 1: A graph for which PG,tecc is not time optimal.

Lemma 2. There is a graph G for which PG,tecc is not time optimal, with t = 1.

Algorithm PG,tecc is not optimal in the graph in Figure 1 because v2 = x4 needs
many rounds in order to broadcast its input, even when v1 = x5 crashes. Instead,
y broadcasts very quickly when v1 = x5 crashes. As a consequence, y is a better
choice for replacing x5 whenever this latter node crashes. More generally, the
sequence v1, . . . , vn defined in Eq. (1) is not adaptive. In the next subsection, we
define an adaptive sequence, in which the performances of vi are measured only
for failure patterns in which v1, . . . , vi−1 are prevented from flooding.

3.2 An adaptive-eccentricity based algorithm

The algorithm PG,tecc is based on a core set of nodes {v1, . . . , vt+1}, consisting
of the first t + 1 nodes in order of ascending eccentricity. We show here that
there is a more clever way of selecting a core set of t + 1 nodes. The corre-
sponding algorithm, PG,tadapt = (Radapt(G, t),Dadapt(G, t)), is similar, except that,

Radapt(G, t) = radius(G,Φ
(t)
all). As before, Dadapt(G, t) returns the input of the

smallest node among the core set, but now the core set is {s1, . . . , st+1}, as
defined next.

The first node s1 is the same v1 as in PG,tecc . To choose the i-th node, we
consider all the un-chosen nodes, and their eccentricity only among the failure
patterns where the previously selected nodes have ∞ eccentricity, and take the
node that minimizes this quantity.

Formally, to define the core set of t + 1 nodes, we construct a sequence of

pairs (si, Φi), with si ∈ V , and Φi ⊆ Φ
(t)
all , for i = 1, . . . , t + 1, inductively, as

follows. For every node v ∈ V , let Φ∞v = {ϕ ∈ Φ
(t)
all : eccG(v, ϕ) = ∞} and

ΦN
v = {ϕ ∈ Φ(t)

all : eccG(v, ϕ) ∈ N}. Let Φ0 = Φ
(t)
all , and, for i = 1, . . . , t+ 1, let{

si = arg minv∈Vr{s1,...,si−1} eccG(v, ΦN
v ∩ Φi−1),

Φi = Φ∞si ∩ Φi−1,
(2)

where, for i = 1, we interpret {s1, . . . , si−1} as the empty set. In other words,
Φi = Φ∞s1 ∩ · · · ∩ Φ

∞
si , and also Φi = Φi−1 r ΦN

si . Observe that, for every i =
1, . . . , t+1, and every v ∈ V r{s1, . . . , si−1}, ΦN

v∩Φi−1 is not empty as it contains
the failure pattern in which all nodes s1, . . . , si−1 crash cleanly at the first round,

and no other node crashes. Also note that eccG(s1, Φ
N
s1) = radius(G,Φ

(t)
all).

Synchronous t-Resilient Consensus in Arbitrary Graphs 9

For example, in Kn, we have eccKn
(si, Φ

N
si) = t − i + 2 for i = 1, . . . , t +

1 whenever t < n − 1. For t = n − 1, we have eccKn
(si, Φ

N
si) = n − i for

i = 1, . . . , n. In the cycle Cn with t = 1, we have eccCn(s1, Φ
N
s1) = n − 1 and

eccCn(s2, Φ
N
s2) = bn−12 c. For the graph G in Figure 1, s1 = x5 and s2 = y,

eccG(s1, Φ
N
s1) = radius(G,Φ

(1)
all) = 4, and eccG(s2, Φ

N
s2) = 1.

The core set for G, t is {s1, . . . , st+1}, and the core sequence for G is the
ordered sequence (s1, . . . , st+1). A crucial property of this sequence is that, while
the sequence (eccG(vi, Φ

N
vi))1≤i≤t+1 defined in Eq. (1) is non decreasing, and may

even be increasing, the sequence (eccG(si, Φ
N
si ∩Φi−1))1≤i≤t+1 defined in Eq. (2)

is non increasing, and is actually always decreasing. Intuitively, this is because
the maximization in the computation of eccG(v, ΦN

v ∩Φi) for determining si+1 is
taken over the set ΦN

v ∩ Φi which is smaller than the set ΦN
v ∩ Φi−1 used for the

computation of si.

Lemma 3. Consider the core sequence (s1, . . . , st+1) and the pairs defined in
Eq. (2). Then, eccG(si, Φ

N
si∩ Φi−1)) > eccG(si+1, Φ

N
si+1
∩ Φi)), for i ∈ {1, . . . , t}.

The correctness proof of PG,tadapt is very similar to that of PG,tecc .

Theorem 2. Algorithm PG,tadapt solves consensus in radius(G,Φ
(t)
all) rounds.

Finally, observe that PG,t
ecc performs in eccG(vt+1, Φ

(t)
all) rounds according to

the notations of Eq (1), while PG,tadapt performs in radius(G,Φ
(t)
all) = eccG(v1, Φ

(t)
all)

rounds according to the same notations.

4 The Lower Bound

In this section we show that PG,tadapt is time optimal for vertex-transitive graphs,
among oblivious algorithms. Recall that in an oblivious algorithm, the decision
value of a node is based on the set of input values it has seen so far, and not on
the particular failure pattern. Our algorithms PG,t

ecc and PG,tadapt are oblivious.

4.1 Information flow graph

Recall that the view of a node u in a given round r is the set of all pairs (v, inv)
such that u hears from v by round r. The vertices of the information flow graph
have the form (v, viewv), meaning that node v has view viewv in round r, and
there is a directed edge from (v, viewv) to (u, viewu) if and only if (v, inv) ∈ viewu,
i.e., u hears from v by round r. Of course, these properties are conditioned by
the actual failure pattern.

Consider a set of failure patterns Φ ⊆ Φ(t)
all . Let u be a node that is active in

round r in ϕ, for some r ≥ 1. Let viewG(u, ϕ, r) denote the view of u in round r
in ϕ.

Definition 4. The information flow graph in round r with respect to Φ is the
directed graph IFG,Φ,r:

10 A. Castañeda, P. Fraigniaud, A. Paz, S. Rajsbaum, M. Roy, and C. Travers

– V (IFG,Φ,r) = {(u, viewG(u, ϕ, r)) : u ∈ V is active in round r in ϕ ∈ Φ};
– E(IFG,Φ,r) =

{(
(u, viewG(u, ϕ, r)), (v, viewG(v, ϕ, r))

)
: u ∈ viewG(v, ϕ, r)

}
.

Note that a node u may have the same view in two distinct ϕ,ψ ∈ Φ in
round r, i.e., viewG(u, ϕ, r) = viewG(u, ψ, r), in which case (u, viewG(u, ϕ, r))
and (u, viewG(u, ψ, r)) correspond to the same vertex of IFG,Φ,r. Moreover, for
any two distinct nodes u, v, we have (u, viewG(u, ϕ, r)) 6= (v, viewG(v, ϕ, r)), even
if viewG(u, ϕ, r) = viewG(v, ϕ, r).

The set configG(ϕ, r) = {(v, viewG(v, ϕ, r)) : v ∈ V is active in round r in ϕ}
is called the r-round configuration for failure pattern ϕ. See Figure 2 for the in-
formation flow graph of the triangle K3, with one failure, and one communication
round.

configK3
(ϕu clean, 1)

configK3
(ϕu dirty, 1)

configK3
(ϕ∅, 1)

(u, {u, v, w})

(v, {u, v, w})(w, {u, v, w})

(u, {u, v})

(v, {u, v})

(u, {u,w})

(w, {u,w})

(w, {v, w})(v, {v, w})

Fig. 2: IF
K3,Φ

(1)
all ,1

, with the configK3
(ϕ, 1) sets marked, for some ϕ ∈ Φ

(1)
all ; ϕ∅

denotes the failure pattern without failures, ϕu clean the failure patter where u
fails cleanly in round 1 and ϕu dirty the failure patter where u fails in round 1
and sends a message only to v.

Lemma 4. For every failure pattern ϕ ∈ Φ, and every r ≥ 1, the set configG(ϕ, r)
induces a connected subgraph of IFG,Φ,r.

Note that there is an edge from (u, viewG(u, ϕ, r)) to (v, viewG(v, ψ, r)) in
IFG,Φ,r if and only if there exists % ∈ Φ such that u and v are active in round
r in %, and viewG(u, ϕ, r) = viewG(u, %, r), viewG(v, ψ, r) = viewG(v, %, r) and
u ∈ viewG(v, %, r). Furthermore, if there are two failure patterns ϕ and ψ yielding
the same view for a node v but two different views for a node u, then either the
edges from the two views of u to the view of v both exist, or neither exists. This
is specified in the following lemma.

Synchronous t-Resilient Consensus in Arbitrary Graphs 11

Lemma 5. Let ϕ,ψ ∈ Φ and u, v ∈ V such that u and v are active in round r
in both ϕ and ψ. If

(
(u, viewG(u, ϕ, r)), (v, viewG(v, ϕ, r))

)
∈ E(IFG,Φ,r) and

viewG(v, ϕ, r) = viewG(v, ψ, r), then
(
(u, viewG(u, ψ, r)), (v, viewG(v, ψ, r))

)
∈

E(IFG,Φ,r).

4.2 The solvability characterization

The next result provides a solvability characterization for consensus by oblivious
algorithms. In essence, it states that the number r of rounds should be large
enough so that every connected component of IFG,Φ,r has a dominating node.
A connected component of IFG,Φ,r is a connected component of the underlying,
undirected graph of IFG,Φ,r. We say that a node v ∈ V of the graph G dominates
a connected component C of IFG,Φ,r, if the set {(v, viewG(v, ϕ, r)) : ϕ ∈ Φ}
dominates C. That is, for every (w, viewG(w,ϕ, r)) in C, there is an arc from the
vertex (v, viewG(v, ϕ, r)) to (w, viewG(w,ϕ, r)).

Theorem 3. There is an oblivious algorithm solving consensus in r rounds un-

der the set of failure patterns Φ ⊆ Φ(t)
all if and only if every connected component

C of IFG,Φ,r has a dominating node in V .

The two directions of the theorem are proved by the next two lemmas.

Lemma 6. For any Φ ⊆ Φ(t)
all , if every connected component C of IFG,Φ,r has a

dominating node in V , then there is an oblivious algorithm solving consensus in
r rounds under the set of failure patterns Φ.

Proof. To solve consensus we only need to specify the decision function after r
rounds of communication. For every connected component C of IFG,Φ,r, pick a
dominating node v ∈ V of C. Let w be a node. The view vieww of w determines
to which connected component C the vertex (w, vieww) belongs. The decision of
w is the input value of the node v that dominates C.

Clearly, the algorithm satisfies termination and validity. For agreement, con-
sider any ϕ ∈ Φ. Let w and w′ be two nodes that are active in round r in ϕ. By
Lemma 4, the subgraph of IFG,Φ,r induced by configG(ϕ, r) is connected. There-
fore, (w, view(w,ϕ, r)) and (w′, view(w′, ϕ, r)) belongs to the same connected
component C of IFG,Φ,r, thus w and w′ decide the input of the same node. ut

Lemma 7. For any Φ ⊆ Φ(t)
all , if there is an oblivious algorithm solving consensus

in r rounds under the set of failure patterns Φ, then every connected component
C of IFG,Φ,r has a dominating node in V .

Proof (Sketch of proof). We prove the contrapositive: if there is a connected
component C of IFG,Φ,r with no dominating node in V , then there is no oblivious
algorithm solving consensus in r rounds under Φ.

In the proof, we consider a standard connectivity argument a chain of failure
patterns (executions). More specifically, we exhibit a sequence of failure patterns
ϕ1, . . . , ϕn such that (1) all nodes start with 0 in ϕ1, (2) all nodes start with 1

12 A. Castañeda, P. Fraigniaud, A. Paz, S. Rajsbaum, M. Roy, and C. Travers

in ϕn, and (3) there is a node vi that has the same view in round r in both ϕi
and ϕi+1. For proving (3), we exploit the fact that there is no node in V that
dominates C, and thus it is possible to find a node that has the same view in
both failure patterns, in round r. An algorithm cannot exist because the decision
in ϕ1 has to be 0, while the decision in ϕn has to be 1 and, then there are ϕi
and ϕi+1 with distinct decisions, which is a contradiction. ut

4.3 Optimality of PG,t
adapt for symmetric graphs

To conclude, we use the characterization in Theorem 3 to show that PG,tadapt is
time optimal for vertex-transitive graphs, among oblivious algorithms.

An automorphism of G is a bijection π : V → V such that, for every two
nodes u and v, {u, v} ∈ E ⇐⇒ {π(u), π(v)} ∈ E. A graph G = (V,E) is
vertex-transitive if, for every two nodes u and v, there exists an automorphism
π of G such that π(u) = v. For instance, the complete graphs Kn, the cycles Cn,
the d-dimensional hypercubes Qd, the d-dimensional toruses Cn1

× · · · × Cnd
,

the Kneser graphs KGn,k, the Cayley graphs, etc., are all vertex-transitive. The
wheel, composed of a cycle and a central node, is not vertex-transitive, since the
center node has degree n− 1 while the cycle nodes have degree 3.

Theorem 4. If G is vertex-transitive, then there is no oblivious algorithm that

solves consensus in fewer than radius(G,Φ
(t)
all) rounds.

configK3
(ϕu dirty, 1)

configK3
(ϕw dirty, 1)

configK3
(ϕv dirty, 1)

configK3
(ϕ∅, 1)

Fig. 3: The information flow graph IFK3,Φ,1 appearing in the proof of Theorem 4,
for K3 and the failure pattern Φ defined there. ϕ∅ denotes the failure patter
without failures, while ϕx dirty denotes the failure patter where x fails in round
1, sending a message to only one node.

Synchronous t-Resilient Consensus in Arbitrary Graphs 13

Proof (Sketch of proof). Clearly, the result holds if radius(G,Φ
(t)
all) = 1, as con-

sensus is trivially not solvable in zero rounds in any graph with at least 2 nodes,

even with no failures. So we assume now that radius(G,Φ
(t)
all) ≥ 2.

In a vertex-transitive graph G, we have that for every s ∈ V , radius(G,Φ
(t)
all) =

eccG(s, Φ
(t)
all). Therefore, for every s ∈ V , we can assign a failure pattern ϕs ∈ Φ(t)

all

such that radius(G,Φ
(t)
all) = eccG(s, ϕs). Let Φ = {ϕs : s ∈ V } ∪ {ϕ∅}. These

execution sets configG(ϕ, t) for ϕ ∈ Φ are depicted in Figure 3 for the case K3 and
t = 1. We will show a result stronger than the one expressed in the statement of
the theorem. Namely, we show that no oblivious algorithms can solve consensus

in a vertex-transitive graph G under Φ in less than radius(G,Φ
(t)
all) rounds. That

is, even if the algorithm has only to deal with the n + 1 failure patterns in

Φ ⊆ Φ
(t)
all , still consensus is not solvable in fewer than radius(G,Φ

(t)
all) rounds. To

establish this result, let R = radius(G,Φ
(t)
all). Using Theorem 3, it is sufficient to

prove that the following lemma:

Lemma 8. The underlying graph of the information flow graph IFG,Φ,R−1 is
connected and has no dominating vertex.

The theorem directly follows from the previous lemma and the characteriza-
tion in Theorem 3. ut

Theorem 5. If G is vertex-transitive, PG,tadapt is time optimal among oblivious
algorithms.

We conjecture that PG,tadapt is time optimal for all graphs, among oblivious
algorithms. This conjecture is grounded on the fact that Lemma 3 holds for all
graphs, and not only for those that are vertex-transitive.

5 Conclusions
We have studied for the first time the number of rounds needed to solve fault-
tolerant consensus in a crash prone synchronous network with arbitrary struc-
ture. We have defined a notion of dynamic radius of a graph G when t nodes
may crash, which precisely determines the worst case number of rounds needed
to solve oblivious consensus for vertex-transitive networks. The optimality of our
algorithm was shown through a novel consensus solvability characterization in
arbitrary networks, using the notion of information flow. A second consequence
of the characterization is an abstract consensus algorithm that is optimal for all
graphs. Our focus has been in the worst-case number of rounds. An interest-
ing challenge would be to design early deciding algorithms (a problem that is
well-studied in the case of the complete graph e.g. [8]).

An interesting future line of research is to study the case of non-oblivious
algorithms (such algorithms have been considered in the past, e.g. [30]). Remark-
ably, for the case of the complete communication graph, there is no difference
between these two types of algorithms: at the end of round t + 1, every pair of
nodes have the same set of pairs (v, inv) (formally, there is common knowledge
on a set of inputs), hence decisions can be taken considering only this set.

14 A. Castañeda, P. Fraigniaud, A. Paz, S. Rajsbaum, M. Roy, and C. Travers

Recall that, in our algorithms, R(G, t) and D(G, t) are hard-coded for a given
G and t. It is worth exploring if our techniques are useful for the case where the
graph G is not known to the nodes. Indeed, it is a challenge to combine fault-
tolerant arguments with techniques of (failure-free) network computing [28]. Our
results for t = 0 correspond to network computing. Yet, the case of t > 0 for
arbitrary or evolving networks is an intriguing and complex research question.

References

1. Marcos Kawazoe Aguilera and Sam Toueg. A simple bivalency proof that t-resilient
consensus requires t+1 rounds. Information Processing Letters, 71(3):155–158,
1999.

2. Bowen Alpern and Fred B. Schneider. Defining liveness. Inf. Process. Lett.,
21(4):181–185, 1985.

3. Hagit Attiya, Armando Castañeda, Maurice Herlihy, and Ami Paz. Bounds on the
step and namespace complexity of renaming. SIAM J. Comput., 48(1):1–32, 2019.

4. Hagit Attiya and Jenifer Welch. Distributed computing: fundamentals, simulations,
and advanced topics. Wiley series on parallel and distributed computing. Wiley,
2004.

5. Piotr Berman and Juan A. Garay. Fast consensus in networks of bounded degree.
Distributed Computing, 7(2):67–73, Dec 1993.

6. Armando Castañeda, Pierre Fraigniaud, Ami Paz, Sergio Rajsbaum, Matthieu Roy,
and Corentin Travers. A topological perspective on distributed network algorithms.
In Structural Information and Communication Complexity - 26th International
Colloquium, SIROCCO, pages 3–18, 2019.

7. Armando Castañeda, Yannai A. Gonczarowski, and Yoram Moses. Unbeatable
consensus. In Distributed Computing - 28th International Symposium, DISC, pages
91–106, 2014.

8. Armando Castañeda, Yoram Moses, Michel Raynal, and Matthieu Roy. Early
decision and stopping in synchronous consensus: A predicate-based guided tour.
In Amr El Abbadi and Benôıt Garbinato, editors, Networked Systems (NETYS),
KNCS, vol. 10299, pages 206–221, Cham, 2017. Springer.

9. Bernadette Charron-Bost and Shlomo Moran. Minmax algorithms for stabilizing
consensus. CoRR, abs/1906.09073, 2019.

10. Étienne Coulouma, Emmanuel Godard, and Joseph G. Peters. A characterization
of oblivious message adversaries for which consensus is solvable. Theor. Comput.
Sci., 584:80–90, 2015.

11. D. Dolev and H. Strong. Authenticated algorithms for byzantine agreement. SIAM
Journal on Computing, 12(4):656–666, 1983.

12. Danny Dolev. The byzantine generals strike again. Journal of Algorithms, 3(1):14
– 30, 1982.

13. C Dwork, D Peleg, N Pippenger, and E Upfal. Fault tolerance in networks of
bounded degree. In Proceedings of the Eighteenth Annual ACM Symposium on
Theory of Computing, STOC ’86, pages 370–379. ACM, 1986.

14. Cynthia Dwork and Yoram Moses. Knowledge and common knowledge in a byzan-
tine environment: Crash failures. Information and Computation, 88(2):156 – 186,
1990.

15. Michael J. Fischer and Nancy A. Lynch. A lower bound for the time to assure
interactive consistency. Information Processing Letters, 14(4):183 – 186, 1982.

Synchronous t-Resilient Consensus in Arbitrary Graphs 15

16. Michael J. Fischer, Nancy A. Lynch, and Michael Merritt. Easy impossibility proofs
for distributed consensus problems. Distributed Computing, 1(1):26–39, Mar 1986.

17. Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of dis-
tributed consensus with one faulty process. J. ACM, 32(2):374–382, 1985.

18. Chris Godsil and Gordon Royle. Algebraic Graph Theory. Graduate Texts in
Mathematics, 207. Springer-Verlag, New York, 2001.

19. Vassos Hadzilacos. A lower bound for Byzantine agreement with fail–stop proces-
sors. Technical Report 21–83, Department of Computer Science, Harvard Univer-
sity, Cambridge, MA, July 1983.

20. Maurice Herlihy, Dmitry Kozlov, and Sergio Rajsbaum. Distributed Computing
Through Combinatorial Topology. Morgan Kaufmann, 2013.

21. Maurice Herlihy, Sergio Rajsbaum, and Mark R. Tuttle. An axiomatic approach
to computing the connectivity of synchronous and asynchronous systems. Electr.
Notes Theor. Comput. Sci., 230:79–102, 2009.

22. Muhammad Samir Khan, Syed Shalan Naqvi, and Nitin H. Vaidya. Exact byzan-
tine consensus on undirected graphs under local broadcast model. In Proceedings of
the 2019 ACM Symposium on Principles of Distributed Computing, PODC, pages
327–336, 2019.

23. Fabian Kuhn and Rotem Oshman. Dynamic networks: Models and algorithms.
SIGACT News, 42(1):82–96, 2011.

24. Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals
problem. ACM Trans. Program. Lang. Syst., 4(3):382–401, July 1982.

25. Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1996.

26. Yoram Moses and Sergio Rajsbaum. A layered analysis of consensus. SIAM J.
Comput., 31(4):989–1021, 2002.

27. Thomas Nowak, Ulrich Schmid, and Kyrill Winkler. Topological characterization
of consensus under general message adversaries. In Proceedings of the 2019 ACM
Symposium on Principles of Distributed Computing, PODC, pages 218–227, 2019.

28. David Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM,
Philadelphia, PA, 2000.

29. Michel Raynal. Consensus in synchronous systems: A concise guided tour. In 9th
Pacific Rim International Symposium on Dependable Computing (PRDC), pages
221–228, 2002.

30. Michel Raynal. Fault-Tolerant Message-Passing Distributed Systems - An Algo-
rithmic Approach. Springer, 2018.

31. Nicola Santoro and Peter Widmayer. Agreement in synchronous networks with
ubiquitous faults. Theor. Comput. Sci., 384(2-3):232–249, October 2007.

32. Lewis Tseng and Nitin H. Vaidya. Fault-tolerant consensus in directed graphs. In
Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing,
PODC, pages 451–460. ACM, 2015.

33. Lewis Tseng and Nitin H. Vaidya. A note on fault-tolerant consensus in directed
networks. SIGACT News, 47(3):70–91, August 2016.

34. J. H. Wensley, L. Lamport, J. Goldberg, M. W. Green, K. N. Levitt, P. M. Melliar-
Smith, R. E. Shostak, and C. B. Weinstock. Sift: Design and analysis of a fault-
tolerant computer for aircraft control. In Proceedings of the IEEE, volume 66,
pages 1240–1255, Oct 1978.

35. Kyrill Winkler and Ulrich Schmid. An overview of recent results for consensus in
directed dynamic networks. Bulletin of the European Association for Theoretical
Computer Science (EATCS), 128:41–72, June 2019.

	Synchronous t-Resilient Consensusin Arbitrary Graphs

