IMA2017_continued_fractions

August 24, 2017

1 Continued fractions

The continued fraction is a current way of working with Computable numbers in Sage. We demonstrate how to create an infinite precision real numbers using them.

Ideally, it should also be possible to construct real numbers by specifying a sequence of digits.

1.1 Finite continued fractions

1.2 The infinite continued fraction of π

(and how to make π rational)

```
In [2]: cf = continued_fraction(pi)
In [3]: cf
Out[3]: [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, ...]
In [4]: q = cf.convergent(20)
       q
Out[4]: 21053343141/6701487259
In [5]: q.denominator() * pi == q.numerator()
Out [5]: 6701487259*pi == 21053343141
In [6]: bool(q.denominator() * pi == q.numerator())
Out[6]: True
In [ ]:
1.3 Infinite continued fraction from its partial quotients
In [8]: w = words.ThueMorseWord([1,2])
       W
In [9]: # this is infinite!
       print w.length()
       print w[50000]
+Infinity
1
In [10]: cf = continued_fraction(w)
In [11]: cf
Out[11]: [1; 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2...]
In [12]: show(cf)
[1; 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2...]
In [13]: cf.numerical_approx()
```

```
Out[13]: 1.42238873688279
In [14]: cf.numerical_approx(digits=1000)
Out[14]: 1.422388736882785488341547116024565825306879108991711829311892452916456747
In [17]: parent(cf.value())  # not ideal...
Out[17]: Real Lazy Field
In [16]: cf.value()
Out[16]: 1.422388736882786?
In []:
```