The many ways of computing with real numbers

Vincent Delecroix, CNRS, LaBRI (Bordeaux, France)

What is a real number :

• infinite amount of data to represent a single number

- infinite amount of data to represent a single number
- elementary arithmetic (+, -, *, /)

- infinite amount of data to represent a single number
- elementary arithmetic (+, -, *, /)
- comparison (equality = and comparison <)

- infinite amount of data to represent a single number
- elementary arithmetic (+, -, *, /)
- comparison (equality = and comparison <)
- exponential like functions (*n*-th roots, exp, log, cos, cosh, ...)

- infinite amount of data to represent a single number
- elementary arithmetic (+, -, *, /)
- comparison (equality = and comparison <)
- exponential like functions (*n*-th roots, exp, log, cos, cosh, ...)
- advanced functions (ζ , Γ , ...)

What is a real number :

- infinite amount of data to represent a single number
- elementary arithmetic (+, -, *, /)
- comparison (equality = and comparison <)
- exponential like functions (*n*-th roots, exp, log, cos, cosh, ...)
- advanced functions (ζ , Γ , ...)

What is a real number :

- infinite amount of data to represent a single number
- elementary arithmetic (+, -, *, /)
- comparison (equality = and comparison <)
- exponential like functions (*n*-th roots, exp, log, cos, cosh, ...)
- advanced functions (ζ , Γ , ...)

Short list of problems :

solve ODE numerically (with given error bound)

What is a real number :

- infinite amount of data to represent a single number
- elementary arithmetic (+, -, *, /)
- comparison (equality = and comparison <)
- exponential like functions (*n*-th roots, exp, log, cos, cosh, ...)
- advanced functions (ζ , Γ , ...)

Short list of problems :

solve ODE numerically (with given error bound)

2 convex hull

What is a real number :

- infinite amount of data to represent a single number
- elementary arithmetic (+, -, *, /)
- comparison (equality = and comparison <)
- exponential like functions (*n*-th roots, exp, log, cos, cosh, ...)
- advanced functions (ζ , Γ , ...)

Short list of problems :

solve ODE numerically (with given error bound)

2 convex hull

3 optimization (e.g. find minima of a given function)

What is a real number :

- infinite amount of data to represent a single number
- elementary arithmetic (+, -, *, /)
- comparison (equality = and comparison <)
- exponential like functions (*n*-th roots, exp, log, cos, cosh, ...)
- advanced functions (ζ , Γ , ...)

- solve ODE numerically (with given error bound)
- 2 convex hull
- optimization (e.g. find minima of a given function)
- o compute with lattices in Lie groups (e.g. Hecke groups)

What is a real number :

- infinite amount of data to represent a single number
- elementary arithmetic (+, -, *, /)
- comparison (equality = and comparison <)
- exponential like functions (*n*-th roots, exp, log, cos, cosh, ...)
- advanced functions (ζ , Γ , ...)

- solve ODE numerically (with given error bound)
- 2 convex hull
- optimization (e.g. find minima of a given function)
- o compute with lattices in Lie groups (e.g. Hecke groups)
- proving identities (e.g. $\sqrt{2}\sqrt{3} = \sqrt{6}$)

What is a real number :

- infinite amount of data to represent a single number
- elementary arithmetic (+, -, *, /)
- comparison (equality = and comparison <)
- exponential like functions (*n*-th roots, exp, log, cos, cosh, ...)
- advanced functions (ζ , Γ , ...)

- solve ODE numerically (with given error bound)
- 2 convex hull
- optimization (e.g. find minima of a given function)
- o compute with lattices in Lie groups (e.g. Hecke groups)
- proving identities (e.g. $\sqrt{2}\sqrt{3} = \sqrt{6}$)
- proving identities (e.g. $\cos(x)^2 + \sin(x)^2 = 1$)

What is a real number :

- infinite amount of data to represent a single number
- elementary arithmetic (+, -, *, /)
- comparison (equality = and comparison <)
- exponential like functions (*n*-th roots, exp, log, cos, cosh, ...)
- advanced functions (ζ , Γ , ...)

Short list of problems :

- solve ODE numerically (with given error bound)
- 2 convex hull

7

- optimization (e.g. find minima of a given function)
- ompute with lattices in Lie groups (e.g. Hecke groups)
- proving identities (e.g. $\sqrt{2}\sqrt{3} = \sqrt{6}$)
- proving identities (e.g. $\cos(x)^2 + \sin(x)^2 = 1$)

computable numbers

Blum–Shub–Smale (BSS)

computable numbers : a real number whose sequence of digits is provided by a program (ie a number = program).

Blum–Shub–Smale (BSS)

computable numbers : a real number whose sequence of digits is provided by a program (ie a number = program).

 ${\rm \, 0\!\!\!\! 0}$ form a countable subfield $\mathbb{R}_{\textit{comp}} \subset \mathbb{R}$ of the real numbers

Blum–Shub–Smale (BSS)

computable numbers : a real number whose sequence of digits is provided by a program (ie a number = program).

- **(**) form a countable subfield $\mathbb{R}_{comp} \subset \mathbb{R}$ of the real numbers
- no equaliy program available (one would have to detect whether a given program will output zeros forever)

Blum-Shub-Smale (BSS)

computable numbers : a real number whose sequence of digits is provided by a program (ie a number = program).

- $\textbf{0} \ \ \text{form a countable subfield } \mathbb{R}_{\textit{comp}} \subset \mathbb{R} \ \text{of the real numbers}$
- no equaliy program available (one would have to detect whether a given program will output zeros forever)

Blum–Shub–Smale (BSS) : machines in which real number are atomic objects together with comparisons

computable numbers : a real number whose sequence of digits is provided by a program (ie a number = program).

- ${\tt 0} \hspace{.1in}$ form a countable subfield $\mathbb{R}_{\textit{comp}} \subset \mathbb{R}$ of the real numbers
- no equaliy program available (one would have to detect whether a given program will output zeros forever)

Blum–Shub–Smale (BSS) : machines in which real number are atomic objects together with comparisons

 allow to have a notion of "decidability" for computations involving real numbers

• integers, rationals

- integers, rationals
- "decidable real fields" (subfield of the computable real numbers in which one can decide equality) :

- integers, rationals
- "decidable real fields" (subfield of the computable real numbers in which one can decide equality) :
 - algebraic numbers $\overline{\mathbb{Q}} \cap \mathbb{R}$

- integers, rationals
- "decidable real fields" (subfield of the computable real numbers in which one can decide equality) :
 - algebraic numbers $\overline{\mathbb{Q}} \cap \mathbb{R}$
 - ► linear combinations of π and e with rational coefficients Qπ + Qe (algebraically the vector space Q²)

- integers, rationals
- "decidable real fields" (subfield of the computable real numbers in which one can decide equality) :
 - algebraic numbers $\overline{\mathbb{Q}} \cap \mathbb{R}$
 - ▶ linear combinations of π and e with rational coefficients Qπ + Qe (algebraically the vector space Q²)
 - ▶ polynomial expressions in π with rational coefficients Q[π] (algebraically the polynomial ring Q[X])

- integers, rationals
- "decidable real fields" (subfield of the computable real numbers in which one can decide equality) :
 - algebraic numbers $\overline{\mathbb{Q}} \cap \mathbb{R}$
 - ▶ linear combinations of π and e with rational coefficients Qπ + Qe (algebraically the vector space Q²)
 - ▶ polynomial expressions in π with rational coefficients Q[π] (algebraically the polynomial ring Q[X])
- computable numbers (recall : equality is only semi-decidable)

- integers, rationals
- "decidable real fields" (subfield of the computable real numbers in which one can decide equality) :
 - algebraic numbers $\overline{\mathbb{Q}} \cap \mathbb{R}$
 - ▶ linear combinations of π and e with rational coefficients Qπ + Qe (algebraically the vector space Q²)
 - ▶ polynomial expressions in π with rational coefficients Q[π] (algebraically the polynomial ring Q[X])
- computable numbers (recall : equality is only semi-decidable)
- the Real-RAM model (close to BSS)

- integers, rationals
- "decidable real fields" (subfield of the computable real numbers in which one can decide equality) :
 - algebraic numbers $\overline{\mathbb{Q}} \cap \mathbb{R}$
 - ▶ linear combinations of π and e with rational coefficients Qπ + Qe (algebraically the vector space Q²)
 - ▶ polynomial expressions in π with rational coefficients Q[π] (algebraically the polynomial ring Q[X])
- computable numbers (recall : equality is only semi-decidable)
- the Real-RAM model (close to BSS)
- floating point

- integers, rationals
- "decidable real fields" (subfield of the computable real numbers in which one can decide equality) :
 - algebraic numbers $\overline{\mathbb{Q}} \cap \mathbb{R}$
 - ▶ linear combinations of π and e with rational coefficients Qπ + Qe (algebraically the vector space Q²)
 - ▶ polynomial expressions in π with rational coefficients Q[π] (algebraically the polynomial ring Q[X])
- computable numbers (recall : equality is only semi-decidable)
- the Real-RAM model (close to BSS)
- floating point
- interval and ball arithmetic

Some Sage parents in blue

- integers, rationals IntegerRing, RationalField
- "decidable real fields" (subfield of the computable real numbers in which one can decide equality) :
 - algebraic numbers $\overline{\mathbb{Q}} \cap \mathbb{R}$ NumberField, AlgebraicRealField
 - ► linear combinations of π and e with rational coefficients Qπ + Qe (algebraically the vector space Q²) ???
 - ▶ polynomial expressions in π with rational coefficients Q[π] (algebraically the polynomial ring Q[X]) ???
- computable numbers (recall : equality is only semi-decidable) RealLazyField (almost), SymbolicRing (mostly broken)
- the Real-RAM model (close to BSS) ???
- floating point RealDoubleField, RealField
- interval and ball arithmetic RealIntervalField, RealBallField

two reasons

• error analysis is painfull (saved by interval/ball arithmetic)

two reasons

- error analysis is painfull (saved by interval/ball arithmetic)
- e need equality tests, e.g. alignment of three points in geometric situation

```
sage: u = V([0.31, 0.73])
sage: v = V([0.12, 0.57])
sage: w = (2*u + v)/3
sage: m = matrix( [u.list() + [1],
....: v.list() + [1],
....: w.list() + [1]])
sage: m.det()
2.1094237467877975e-17
```

two reasons

- error analysis is painfull (saved by interval/ball arithmetic)
- e need equality tests, e.g. alignment of three points in geometric situation

```
sage: u = V([0.31, 0.73])
sage: v = V([0.12, 0.57])
sage: w = (2*u + v)/3
sage: m = matrix( [u.list() + [1],
....: v.list() + [1],
....: w.list() + [1]])
sage: m.det()
```

```
2.1094237467877975e-17
```

(in such situation interval/ball arithmetic can discard equality but can not prove equality)

Solution : doing mixed algebraic (to check equality) / approximation (for comparisons)

Solution : doing mixed algebraic (to check equality) / approximation (for comparisons) (origin (?) EGC (Exact Geometric Computation) Yap 1990')

Solution : doing mixed algebraic (to check equality) / approximation (for comparisons) (origin (?) EGC (Exact Geometric Computation) Yap 1990')

This is what is used

- in Sage for number fields (NumberField, AlgebraicRealField, AlgebraicField)
- re-Antic https://github.com/videlec/e-antic
- LEDA http://www.algorithmic-solutions.com/leda/index.htm
- Core library http://cs.nyu.edu/exact/core_pages/ used among others in CGAL https://www.cgal.org/ (including the Core Library)

A bit of optimization in Sage

... Jupyter demo ...

The Sage symbolic mess

... Jupyter demo ...

It is delicate to go beyond algebraic numbers mostly because we know very little about transcendental numbers. For example, $\mathbb{Q}[e + \pi]$ is out of reach

It is delicate to go beyond algebraic numbers mostly because we know very little about transcendental numbers. For example, $\mathbb{Q}[e + \pi]$ is out of reach : $e + \pi$ is not proven to be irrational !

It is delicate to go beyond algebraic numbers mostly because we know very little about transcendental numbers. For example, $\mathbb{Q}[e + \pi]$ is out of reach : $e + \pi$ is not proven to be irrational !

Available theorems for transcendence

- Lindemann–Weierstrass theorem (1880') : exp(a), log(a) transcendental when a is algebraic
- **Gelfond–Schneider theorem** (1930') : *a^b* is transcendental when both *a* and *b* are algebraic

It is delicate to go beyond algebraic numbers mostly because we know very little about transcendental numbers. For example, $\mathbb{Q}[e + \pi]$ is out of reach : $e + \pi$ is not proven to be irrational !

Available theorems for transcendence

- Lindemann–Weierstrass theorem (1880') : exp(a), log(a) transcendental when a is algebraic
- **Gelfond–Schneider theorem** (1930') : *a^b* is transcendental when both *a* and *b* are algebraic

One big conjecture

• Schanuel's conjecture (1960') : let $z_1, ..., z_n$ be real numbers linearly independent over \mathbb{Q} . Then $\mathbb{Q}(z_1, ..., z_n, \exp(z_1), ..., \exp(z_n))$ has transcendence degree at least n.

Floating point performances (technical, in progress)

Comparisons between

- machine floating point double
- mpfr real numbers mpfr_t
- mpfi intervals mpfi_t
- arb balls arb_t

...C demo ...

What is implemented (in Sage and elsewhere)?

- machine integer and floats RealDoubleField
- integers IntegerRing (using GMP, MPIR)
- rationals RationalField (using GMP, MPIR)
- floating point RealField (using mpfr)
- interval arithmetic RealIntervalField (using mpfi)
- ball arithmetic RealBallField (using arb)
- embedded number fields NumberField or AlgebraicRealField (relying on NTL and mpfi)
- iRRAM http://irram.uni-trier.de/ (inactive since May 2015)
- reallib (http://daimi.au.dk/~barnie/RealLib/) (inactive since April 2015)

TODO list 1 (genuine real field)

• promote RR as the mathematical real field representing any kind of (exact) real numbers such as π , $\cos(3/2 + \sqrt{2})$, ... (currently in the symbolic ring SR)

TODO list 1 (genuine real field)

- promote RR as the mathematical real field representing any kind of (exact) real numbers such as π , $\cos(3/2 + \sqrt{2})$, ... (currently in the symbolic ring SR)
- variadic domain/codomain for functions

```
exp: RR -> RR_{>0}
RDF -> RDF
RealField(n) -> RealField(n)
RealIntervalField(n) -> RealIntervalField(n)
RealBallField(n) -> RealBallField(n)
```

• field of computable numbers (promote RLF ?)

field of computable numbers (promote RLF ?)
 ... Jupyter demo for continued fractions ...

• field of computable numbers (promote RLF?)

... Jupyter demo for continued fractions ...

arithmetic for continued fraction (Gosper algorithm) (Sage ticket #19120)

• field of computable numbers (promote RLF?)

... Jupyter demo for continued fractions ...

- arithmetic for continued fraction (Gosper algorithm) (Sage ticket #19120)
- finite \mathbb{Z} -submodules and \mathbb{Q} -submodules of real numbers (relevant when dealing only with linear transformations with integral coordinates $GL(n,\mathbb{Z})$).

TODO list 3 (low-level)

• more fast_float for ZZ, QQ, RealIntervalField, RealBallField, etc (possibly with C versions)

TODO list 3 (low-level)

- more fast_float for ZZ, QQ, RealIntervalField, RealBallField, etc (possibly with C versions)
- cleaning QQbar (meta-ticket #1833)
 - better trees for QQbar (handle n-ary +, node reordering, simplicifcations, etc), possibly share code with the Pynac library
 - creation of a NumberFieldRealEmbedding class and better interactions between embedded number fields (NumberField) and the algebraic field (AlgebraicRealField).
 - introduce Antic as a backend for number fields
 - use arb more than mpfi + accurate polynomial evaluation

TODO list 4 (wish list)

• cylindrical decomposition (real algebraic geometry)

TODO list 4 (wish list)

- cylindrical decomposition (real algebraic geometry)
- automatic theorem proving

TODO list 4 (wish list)

- cylindrical decomposition (real algebraic geometry)
- automatic theorem proving
- solve Schanuel's conjecture ;-)