Computing Dirichlet fundamental domains

Vincent Delecroix (CNRS - Max-Planck Institut für Mathematik Bonn) on going joint work with Aurel Page (INRIA - Bordeaux)
Models of hyperbolic geometry

In \mathbb{R}^{n+1} we consider

- **hyperboloid model**

 $\mathbb{H}^n = \{(x_1, \ldots, x_n, y) : x_1^2 + \ldots + x_n^2 - y^2 = -1 \text{ and } y > 0\}$

- **disk model**

 $\mathbb{D}^n = \{(x_1, \ldots, x_n, 0) : x_1^2 + \ldots + x_n^2 < 1\}$

- **Klein model**

 $\mathbb{K}^n = \{(x_1, \ldots, x_n, 1) : x_1^2 + \ldots + x_n^2 < 1\}$
Geodesics

The quadratic form $x_1^2 + \ldots + x_n^2 - y^2$ induces on the hyperboloid \mathbb{H}^n a Riemannian metric whose geodesics are the intersection of linear subspaces in \mathbb{R}^{n+1} with \mathbb{H}^n.

Geodesics project as segments on K_n. Geodesics project as circles orthogonal to the boundary on D_n.

V. Delecroix
The quadratic form $x_1^2 + \ldots + x_n^2 - y^2$ induces on the hyperboloid \mathbb{H}^n a Riemannian metric whose geodesics are the intersection of linear subspaces in \mathbb{R}^{n+1} with \mathbb{H}^n.

Geodesics project as segments on \mathbb{K}^n.

Geodesics project as circles orthogonal to the boundary on \mathbb{D}^n.

Geodesics
Geodesics

The quadratic form $x_1^2 + \ldots + x_n^2 - y^2$ induces on the hyperboloid \mathbb{H}^n a Riemannian metric whose geodesics are the intersection of linear subspaces in \mathbb{R}^{n+1} with \mathbb{H}^n.

Geodesics project as segments on \mathbb{K}^n.

Geodesics project as circles orthogonal to the boundary on \mathbb{D}^n.
Geodesics (Klein projection)

picture by Martin von Gagern
Geodesics (disk projection)

picture by Martin von Gagern
Isometries

The group $\text{SO}^+(n, 1)$ of transformations of \mathbb{R}^{n+1} preserving the quadratic form $x_1^2 + \ldots + x_n^2 - y^2$ is the group of isometries of $\mathbb{H}^n (\approx \mathbb{D}^n \approx \mathbb{K}^n)$.
The group $\text{SO}^+(n, 1)$ of transformations of \mathbb{R}^{n+1} preserving the quadratic form $x_1^2 + \ldots + x_n^2 - y^2$ is the group of isometries of $\mathbb{H}^n (\cong \mathbb{D}^n \cong \mathbb{K}^n)$.

We are interested in discrete subgroups of $\text{SO}^+(n, 1)$ that are relevant in hyperbolic geometry: if M is a hyperbolic n-manifold then M is isometric to a quotient \mathbb{H}^n/Γ,
The group $\text{SO}^+(n, 1)$ of transformations of \mathbb{R}^{n+1} preserving the quadratic form $x_1^2 + \ldots + x_n^2 - y^2$ is the group of isometries of $\mathbb{H}^n (\simeq \mathbb{D}^n \simeq \mathbb{K}^n)$.

We are interested in discrete subgroups of $\text{SO}^+(n, 1)$ that are relevant in

1. hyperbolic geometry: if M is a hyperbolic n-manifold then M is isometric to a quotient \mathbb{H}^n/Γ,

2. number theory: automorphic forms of arithmetic groups (e.g., congruence groups ($n = 2$) and Bianchi groups ($n = 3$)),

3. combinatorial group theory: Coxeter groups.
Isometries

The group $\text{SO}^+(n,1)$ of transformations of \mathbb{R}^{n+1} preserving the quadratic form $x_1^2 + \ldots + x_n^2 - y^2$ is the group of isometries of $\mathbb{H}^n (\simeq \mathbb{D}^n \simeq \mathbb{K}^n)$.

We are interested in discrete subgroups of $\text{SO}^+(n,1)$ that are relevant in

1. hyperbolic geometry: if M is a hyperbolic n-manifold then M is isometric to a quotient \mathbb{H}^n/Γ,

2. number theory: automorphic forms of arithmetic groups (e.g., congruence groups ($n = 2$) and Bianchi groups ($n = 3$)),

3. combinatorial group theory: Coxeter groups.
Bianchi groups in $\text{SO}^+(1, 3) \simeq \text{PSL}_2(\mathbb{C})$

Fix $\mathcal{O} \subset \mathbb{Q}[\sqrt{-d}]$ an order (e.g., $\mathcal{O} = \mathbb{Z}[i]$). Then $\text{PSL}_2(\mathcal{O}) \subset \text{PSL}_2(\mathbb{C})$ is a discrete subgroup called a Bianchi group.
Bianchi groups in $\text{SO}^+(1, 3) \cong \text{PSL}_2(\mathbb{C})$

Fix $\mathcal{O} \subset \mathbb{Q}[\sqrt{-d}]$ an order (e.g., $\mathcal{O} = \mathbb{Z}[i]$). Then $\text{PSL}_2(\mathcal{O}) \subset \text{PSL}_2(\mathbb{C})$ is a discrete subgroup called a Bianchi group.

Geometry \leftrightarrow number theory

1. covolume of $\text{PSL}_2(\mathcal{O})$ \leftrightarrow Dedekind zeta function of K,
2. cusps of $\text{PSL}_2(\mathcal{O})$ \leftrightarrow ideal classes of \mathcal{O}.

We will describe an algorithm that computes a presentation ($i.e.$. generators and relations). Example (Swan) $\text{SL}_2(\mathbb{Z}[i]) = \langle (1 \ 1 \ 0 \ 1), (1 \ i \ 0 \ 1), (-i \ 0 \ 0 \ i), (0 \ -1 \ 1 \ 0) \rangle$

Study of Bianchi group is not new: Bianchi (1892), Swan (1971), Riley (1983), ..., Yasaki (Gunnell's algorithm, 2010), Aranes (SageMath), Page (Magma), ...
Bianchi groups in $\text{SO}^+(1, 3) \simeq \text{PSL}_2(\mathbb{C})$

Fix $\mathcal{O} \subset \mathbb{Q}[\sqrt{-d}]$ an order (e.g., $\mathcal{O} = \mathbb{Z}[i]$). Then $\text{PSL}_2(\mathcal{O}) \subset \text{PSL}_2(\mathbb{C})$ is a discrete subgroup called a Bianchi group.

Geometry \leftrightarrow number theory

1. covolume of $\text{PSL}_2(\mathcal{O}) \leftrightarrow$ Dedekind zeta function of K,

2. cusps of $\text{PSL}_2(\mathcal{O}) \leftrightarrow$ ideal classes of \mathcal{O}.

We will describe an algorithm that computes a presentation (i.e., generators and relations). Example (Swan)

$$\text{SL}(2, \mathbb{Z}[i]) = \left\langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & i \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \right\rangle$$
Bianchi groups in $\text{SO}^+(1, 3) \simeq \text{PSL}_2(\mathbb{C})$

Fix $\mathcal{O} \subset \mathbb{Q}[\sqrt{-d}]$ an order (e.g., $\mathcal{O} = \mathbb{Z}[i]$). Then $\text{PSL}_2(\mathcal{O}) \subset \text{PSL}_2(\mathbb{C})$ is a discrete subgroup called a Bianchi group.

Geometry \leftrightarrow number theory

1. covolume of $\text{PSL}_2(\mathcal{O})$ \leftrightarrow Dedekind zeta function of K,
2. cusps of $\text{PSL}_2(\mathcal{O})$ \leftrightarrow ideal classes of \mathcal{O}.

We will describe an algorithm that computes a presentation (i.e., generators and relations). Example (Swan)

$$\text{SL}(2, \mathbb{Z}[i]) = \langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & i \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \rangle$$

study of Bianchi group is not new: Bianchi (1892), Swan (1971), Riley (1983), ..., Yasaki (Gunnell’s algorithm, 2010), Aranes (SageMath), Page (Magma), ...
Poincaré’s polyhedron theorem (compact case)

Let P be a polyhedral cone in \mathbb{R}^{n+1} which intersects the hyperboloid \mathbb{H}^n compactly.

Theorem (Poincaré)

Let P be a Poincaré polyhedron with facets $\{F_s\}_{s \in S}$. Then the group Γ_P generated by S is a discrete subgroup of $\text{SO}^+(n, 1)$. Moreover we have a presentation $\Gamma_P = \langle S | R \rangle$ where R are the relations $(s_k s_{k-1} \ldots s_1)^m$ obtained along the ridges.
Poincaré’s polyhedron theorem (compact case)

Let P be a polyhedral cone in \mathbb{R}^{n+1} which intersects the hyperboloid \mathbb{H}^n compactly. A labeling of the facets F_s of P with elements $s \in \text{SO}^+(n,1)$ is called a face pairing if S is symmetric, $s(F_{s-1}) = F_s$ and s maps the inward normal of F_{s-1} to the outward normal of F_s.

Theorem (Poincaré)

Let P be a Poincaré polyhedron with facets $\{F_s\}_{s \in S}$. Then the group Γ_P generated by S is a discrete subgroup of $\text{SO}^+(n,1)$. Moreover we have a presentation $\Gamma_P = \langle S | R \rangle$ where R are the relations $(s_k s_{k-1} \ldots s_1)^m$ obtained along the ridges.
Poincaré’s polyhedron theorem (compact case)

Let P be a polyhedral cone in \mathbb{R}^{n+1} which intersects the hyperboloid \mathbb{H}^n compactly.
A labeling of the facets F_s of P with elements $s \in \text{SO}^+(n,1)$ is called a face pairing if S is symmetric, $s(F_{s^{-1}}) = F_s$ and s maps the inward normal of $F_{s^{-1}}$ to the outward normal of F_s.
It is a Poincaré polyhedron if furthermore following identifications along the ridges, we see total dihedral angles of the form $2\pi/m$.

Theorem (Poincaré)

Let P be a Poincaré polyhedron with facets $\{F_s\}_{s \in S}$. Then the group Γ_P generated by S is a discrete subgroup of $\text{SO}^+(n,1)$. Moreover we have a presentation $\Gamma_P = \langle S \mid R \rangle$ where R are the relations $(s_k s_{k-1} \ldots s_1)^m$ obtained along the ridges.
The \((6,6,6)\)-triangle group

\[
\langle r, s, t | r^2, s^2, t^2, (rs)^6, (st)^6, (tr)^6 \rangle
\]

picture by Anton Sherwood
A genus 2 surface group

\[\langle a, b, c, d \mid b^{-1}aba^{-1}d^{-1}cdc^{-1} \rangle \simeq \langle a, b, c, d \mid [a, b][c, d] \rangle \]
Dirichlet domains

Definition

Let $\Gamma \subseteq \text{SO}^+(n, 1)$ be discrete and $p_0 \in \mathbb{H}^n$. The *Dirichlet domain* of Γ at p_0 is

$$\text{Dir}(\Gamma, p_0) := \{ q \in \mathbb{H}^n : \forall \gamma \in \Gamma, d(p_0, q) \leq d(p_0, \gamma q) \}.$$
Dirichlet domains

Definition

Let $\Gamma \subset \text{SO}^+(n, 1)$ be discrete and $p_0 \in \mathbb{H}^n$. The *Dirichlet domain* of Γ at p_0 is

$$\text{Dir}(\Gamma, p_0) := \{ q \in \mathbb{H}^n : \forall \gamma \in \Gamma, d(p_0, q) \leq d(p_0, \gamma q) \}.$$

Theorem

The Dirichlet domain is a (generalized) Poincaré polyhedron.
Dirichlet domains

Definition

Let $\Gamma \subset \text{SO}^+(n, 1)$ be discrete and $p_0 \in \mathbb{H}^n$. The Dirichlet domain of Γ at p_0 is

$$\text{Dir}(\Gamma, p_0) := \{q \in \mathbb{H}^n : \forall \gamma \in \Gamma, d(p_0, q) \leq d(p_0, \gamma q)\}.$$

Theorem

The Dirichlet domain is a (generalized) Poincaré polyhedron.

Warning: when $n \geq 3$, even if Γ is finitely generated, P_{Γ, p_0} can have infinitely many sides.
Dirichlet domain is a Poincaré polyhedron

To each $\gamma \in \text{SO}^+(n, 1)$ we associate a half-space

$$H_\gamma := \{ z \in \mathbb{H}^n : d(p_0, q) \leq d(p_0, \gamma^{-1} q) \}$$
Dirichlet domain is a Poincaré polyhedron

To each $\gamma \in \text{SO}^+(n, 1)$ we associate a half-space

$$H_\gamma := \{ z \in \mathbb{H}^n : d(p_0, q) \leq d(p_0, \gamma^{-1}q) \}$$

H_γ can be seen as a linear half-space in \mathbb{R}^{n+1} and the associated hyperplanes F_γ satisfy the conditions of the face pairing $\gamma(F_{\gamma^{-1}}) = F_\gamma$.
Dirichlet domain is a Poincaré polyhedron

To each $\gamma \in \text{SO}^+ (n, 1)$ we associate a half-space

$$H_\gamma := \{ z \in \mathbb{H}^n : d(p_0, q) \leq d(p_0, \gamma^{-1} q) \}$$

H_γ can be seen as a linear half-space in \mathbb{R}^{n+1} and the associated hyperplanes F_γ satisfy the conditions of the face pairing $\gamma(F_{\gamma^{-1}}) = F_\gamma$.

By definition, the Dirichlet domain is the (infinite) intersection

$$P_{\Gamma, p_0} = \bigcap_{\gamma \in \Gamma \setminus \{1\}} H_\gamma.$$
The algorithm

We are given generators S_0 of a discrete subgroup Γ of $\text{SO}^+(n, 1)$ and a point p_0 and the aim is to construct the associated Dirichlet domain $\text{Dir}(\Gamma, p_0)$.

$\text{Dirichlet}(S_0, p_0)$:
Input: $S_0 \subset \text{SO}^+(n, 1), p_0 \in \mathbb{H}^n$
Output: $\text{Dir}(S_0, p_0)$
The algorithm

We are given generators \(S_0 \) of a discrete subgroup \(\Gamma \) of \(\text{SO}^+(n, 1) \) and a point \(p_0 \) and the aim is to construct the associated Dirichlet domain \(\text{Dir}(\Gamma, p_0) \).

Dirichlet\((S_0, p_0)\):

Input: \(S_0 \subset \text{SO}^+(n, 1), \ p_0 \in \mathbb{H}^n \)

Output: \(\text{Dir}(S_0, p_0) \)

We will need the following procedure

```plaintext
procedure reduce(x, S):
Input: \( x \in \mathbb{H}^n, S \subset \text{SO}^+(n, 1) \) finite
Output: an element \( \gamma \in \langle S \rangle \) so that \( \gamma x \in P_S \) where \( P_S := \bigcap_{s \in S} H_s \) and

\[
H_s = \{ q \in \mathbb{H}^n : d(p_0, q) \leq d(p_0, s^{-1} q) \}
\]
```
The algorithm

\textbf{Dirichlet}(S_0, p_0):

\textbf{Input:} \(S_0 \subset \text{SO}^+(n, 1), \ p_0 \in \mathbb{H}^n \)

\textbf{Output:} \(\text{Dir}(S_0, p_0) \)

- \textbf{initialization:} set \(P_0 = P_{S_0} = \bigcap_{s \in S_0 \cup S_0^{-1}} H_s \)
- \textbf{inductive step:} we construct \(P_{n+1} \) from \(P_n \) by adding the following half-spaces and removing the redundant ones
 - for each equivalence class of ridge, add partial monodromies along the ridge and define \(S'_{n+1} \),
 - for each \(s \in S_0 \), add \(H_{s^{-1}s'} \) where \(s' = \text{reduce}(s p_0, S'_{n+1}) \) to define \(S_{n+1} \),
- \textbf{Stop} when \(P_n \) is a Poincaré polyhedron.
It works

Theorem (Voigt, Page)

If $\Gamma = \langle S \rangle \subset \text{SO}^+(n, 1)$ is geometrically finite, then the procedure described above terminates and constructs the Dirichlet domain.
An implementation detail

For the purpose of the algorithm, we don’t need a full description of the polytopes $P_S = \bigcap_{s \in S} H_s$
An implementation detail

For the purpose of the algorithm, we don’t need a full description of the polytopes $P_S = \bigcap_{s \in S} H_s$ but
- a non-redundant system of hyperplanes,
- the ridges as pairs of supporting hyperplanes.
An implementation detail

For the purpose of the algorithm, we don’t need a full description of the polytopes $P_S = \bigcap_{s \in S} H_s$ but

- a non-redundant system of hyperplanes,
- the ridges as pairs of supporting hyperplanes.

This data will be updated at each inductive step of the algorithm by adding new half-spaces and discarding the redundant ones.
An implementation detail

For the purpose of the algorithm, we don’t need a full description of the polytopes $P_S = \bigcap_{s \in S} H_s$ but

- a non-redundant system of hyperplanes,
- the ridges as pairs of supporting hyperplanes.

This data will be updated at each inductive step of the algorithm by adding new half-spaces and discarding the redundant ones.

The most efficient, is (probably) through linear programming (for $n \geq 4$)?
Concrete implementation: SageMath, e-antic and Normaliz

Many interesting examples (such as Bianchi groups) are defined over number fields.
Concrete implementation: SageMath, e-antic and Normaliz

Many interesting examples (such as Bianchi groups) are defined over number fields. Polyhedra over number fields are available in SageMath and Normaliz 3.7.0. with Code contribution from V. Braun, M. Koeppe, J.-P. Labbé, W. Bruns, V. Delecroix, J. Rüth, S. Gutsche, ...
Concrete implementation: SageMath, e-antic and Normaliz

Many interesting examples (such as Bianchi groups) are defined over number fields. Polyhedra over number fields are available in SageMath and Normaliz 3.7.0. with Code contribution from V. Braun, M. Koeppe, J.-P. Labbé, W. Bruns, V. Delecroix, J. Rüth, S. Gutsche, ...

...demo...
References

- SageMath http://www.sagemath.org/
- (Py)Normaliz https://www.normaliz.uni-osnabrueck.de/
- e-antic https://github.com/videlec/e-antic
- R. Riley "Applications of a computer implementation of Poincaré’s theorem on fundamental polyhedra" (1983)
- H. Seifert "Komplexe mit Seitenzuordnung" (1975)
- J. Voight "Computing fundamental domains for Fuchsian groups" (2009)