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1 Introduction

Given P a polygon in the Euclidean plane R2 we consider the billiard dynamics
in P : a frictionless point mass evolve in straight lines and bounces off the edges
according to the law of geometric optics 1.

The billiard flow is not well-defined when a trajectory hits a corner.
The dynamics happen on the unit tangent bundle to P which is 3-dimensional.

The Liouville measure on the unit tangent bundle is preserved by the dynamics.

Exercise 1. Let P be a triangle.

1. Write down in coordinates the first return map of the billiard flow on the
edges of P .

2. Deduce that the first return map preserves the Liouville measure.

It will be useful to consider polygonal billiards as a family of dynamical
systems.

• How chaotic a polygonal billiard can be ? eg does there exists a mixing
billiard?

• What dynamical properties hold for all billiards ? eg does all polygonal
billiard admit a periodic orbit?

• What dynamical properties hold for a generic (in the topological sense or
measurable sense) billiard ?

Let P be a polygon with angles α1, . . . , αn. The double of P consists in
taking P and a reflection P ′ and glue the corresponding sides together. We
obtain a flat sphere with conical singularities of angles 2α1, . . . , 2αn. The
billiard trajectory in P lifts as trajectories of the geodesic flow in S2(P ).

All questions on polygonal billiards can legitimately be asked in
the more general setting of flat sphere with conical singularities
. . . and why not in higher genera?

1the angle of incidence equals the angle of reflection
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TODO

Figure 1: A billiard in a triangle and the associated geodesic in its double.

2 Geometry of Euclidean structures

Theorem 2 (”Uniformisation” [Tro86]). Let X be a compact conformal surface
and x1, . . . , xn distinct points on X. Let α1, . . . , αn be positive real numbers
such that

n∑
i=1

(2π − αi) = 2πχ(X).

Then there exists a (conformal) euclidean structure on X with conical metrics
of angle αi at xi. It is furthermore unique if we normalize the total area to be
one.

Both the proof of uniqueness and existence uses harmonic functions on the
surface X. We refer to the article of [Tro86].

Corollary 3. For any genus and any α1, . . . , αn with
∑n

i=1(2π−αi) = 2π(2−
2g) the moduli space of euclidean structures on X with angles Mg,n(α1, . . . , αn)
is canonically isomorphic to the moduli space of conformal structures Mg,n.

It is in particular connected of complex dimension 3g − 3 + n.

Theorem 4. All conical structures on compact surfaces admit a geodesic trian-
gulation whose vertices are the conical points and each edge bounds two distinct
faces.

Exercise 5. 1. Show that for g = 0, n = 3 all conical metrics are the double
of a triangle (hint: what is the dimension of the moduli space?)

2. Does there exists a conical metric on the sphere which is not the double of
a Euclidean disk? What is the minimal n needed for this construction?

2.1 Holonomy, foliation and unfolding

Let (X,x1, . . . , xn) be a compact surface endowed with a conical euclidean struc-
ture with singularities at the vertices x1, . . . , xn.

The equivalence classes of unit tangent vectors under parallel transport form
a foliation endowed with a parallel vector field. Two such leaves are isomorphic
(as Riemann surfaces) and the different vector fields differ by rotation. Such a
family of vector field is called a translation surface.

Theorem 6. If the polygon is rational then the leaves are compact. If the
polygon is irrational then the leaves are dense.

The unfolding can be identified to the Abelian covering determined by the
kernel of the holonomy mapping.

Exercise 7. What is the topology of the unfolding? hint: apply Riemann-
Hurwitz
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2.2 Periodic trajectories

Remark zero : if we have a closed orbit we have a metric cylinder!
The objective of this section is to discuss the following conjecture and partial

result.

Question 8. Let (X,x1, . . . , xn) be a Euclidean structure on a compact surface.
Does it admit infinitely many closed regular geodesics?

Theorem 9 (R. E. Schwartz [Sch09]). Let T be a triangle all of whose angles
smaller than 11

18π then T admits a periodic orbit.

2.3 R. Schwartz strategy

To prove the existence of periodic trajectory, one strategy is to build them !
More precisely, we want to tile the moduli space of Euclidean structures on
CP1 \ {0, 1,+∞} with open sets that contains a fixed combinatorial trajectory.

The main difficulty in R. Schwartz proof is that such a tiling must be infinite
because there are points that can not be tiled.

2.4 Stable and unstable geodesics

Definition 10. Let X be an Euclidean structure and γ a periodic trajectory.
We say that γ is stable if it persists under small deformations in the space of
all conical metrics with n conical singularities.

Exercise 11. When angles are fixed, all periodic trajectories are stable.

Proposition 12. Let X be an Euclidean structure and γ a periodic trajectory.
Then the γ is stable if and only if its image is zero in H1(X \ {x1, . . . , xn};Z).

Proof. The only thing that could go wrong in a neighbouring surface is that we
get some non-trivial holonomy at the junction. But this is exactly measured in
H1(X).

Combinatorial version for billiard in polygons.

Exercise 13. #odd−#even is the same for all letters,

Theorem 14 (W. P. Hooper [Hoo07]). All periodic trajectories in a right tri-
angle are unstable.

Question 15. Can we characterize Euclidean structures all of whose trajecto-
ries are unstable?

Proof. We can assume that α is irrational.
LetX be the double of P and X̃ → X its translation cover (it is a Z covering).

X̃ admits an involution ι which acts as a rotation by π in each rhombus. (the
quotient by this involution is actually a sphere)
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We claim that for any periodic trajectory γ, the associated maximal cylinder
is stabilized by ι. In particular it has two fixed points on its circumference.

Now γ and ι(γ) projects to the same geodesic on the double! Its homology
class is hence 2γ3 where γ3 is the closed loop around p3 (that supports the
conical singularity of angle π/2.

Theorem 16 (H. Masur[Mas86, Mas88]). Let T be a rational polygon. Then
there are periodic trajectories in a dense set of directions. Furthermore the
growth rate is Θ(L2).

2.5 Entropy

Topological entropy is zero (equivalently, word complexity grows slower than
any exponential).

Theorem 17. For rational polygons it is Θ(L3) (and conjecturally ∼ cL3).

Question 18. Is the word complexity of any polygonal billiard Θ(L3) ? ∼
c(T )L3 ?

interesting approach: compute the constant c for all rational triangle and
see whether c(T ) admits some continuation point.

Question 19. Let L ⊂ {1, 2, 3}∗ be the subset of words on the alphabet on
{1, 2, 3} that encode some piece of orbit in some triangular billiard. Does there
exists k such that

#{w ∈ L : |w| ≤ R} = O(Rk).

2.6 Ergodicity

Theorem 20 (KMS). For rational polygons, the unit tangent bundle is foliated
by invariant compact surfaces. This gives rise to a one parameter decompostion
of the Liouville measure. Almost every of them are ergodic.

The proof consists of two steps - (elegant) Masur’s criterion - (very technical)
almost every direction satisfies Masur’s criterion (-¿ Could the second point be
deduced from Minsky-Weiss?)

Vorobets quantitative version

2.7 Weak-mixing

Theorem 21 (Katok). Translation flows are never mixing

Theorem 22 (AF). Almsot sure in strata + rank one.

3 Questions

• What does look like a generic geodesic flow on the 2-sphere? (C1 topology?
C2 topology?)
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