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Overview of the course

I course 1 (march 1st)
I graphs, surfaces, combinatorial maps
I generating functions
I general idea of the topological recursion (TR)

I course 2 (march 8th)
I proving TR for combinatorial maps
I solving TR for combinatorial maps
I consequences

I course 3 (march 22th): asymptotics

I course 4 (march 29th): other TR
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Introduction

What is a surface?

The genus

The genus of a surface is the maximal number of disjoint simple
closed curves such that cutting along them do not disconnect the
surface.
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Genus quizz
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Introduction

Combinatorial maps: building surfaces from polygons

Polygon gluings or simple combinatorial maps

simple combinatorial map: finite set of polygons whose edges are
glued by pair or unglued. On each boundary we mark an edge with
a label from 1 to k where k is the number of boundaries.

1 1
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Introduction

Combinatorial maps: building surfaces from polygons

Ordinary combinatorial maps

(ordinary) combinatorial map: finite set of polygons all of whose
edges are glued by pair. Some of the polygons are labeled from 1
to k and called boundaries, on each of them we chose an edge and
give it a number from 1 to k .

1



Topological recursion (course 1/4)

Introduction

Combinatorial maps: building surfaces from polygons

Statistics

Given a combinatorial map m we denote

I ni (m): number of i-gons, i = 1, 2, . . .,

I `i (m): length of the i-th boundary, i = 1, 2, . . . , k.

1

n3(m) = 3, `1(m) = 3.
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Combinatorial maps: building surfaces from polygons

Combinatorial map examples

1

n3 = 1
`1 = 1

1

2

n4 = 4
`1 = `2 = 4

1

n1 = 1
n2 = 2
`1 = 1

Which maps are simple?
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Generating functions

Why using generating function?

generating function: formal power series whose coefficients count
something

1. Inductive construction of objects translate into equations on
generating functions,

2. Analysis can be used to study asymptotics.
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Generating functions

The generating series of combinatorial maps
For g ≥ 0, k ≥ 0 define

W
(g)
k (x1, x2, . . . , xk ; t1, t2, . . .) =∑

m∈Maps
(g)
k

1

# Aut(m)

t
n1(m)
1 t

n2(m)
2 · · ·

x
1+`1(m)
1 x

1+`2(m)
2 · · · x1+`k (m)

k

WFS
(g)
k (x1, x2, . . . , xk ; t1, t2, . . .) =∑

m∈FSMaps
(g)
k

1

# Aut(m)

t
n1(m)
1 t

n2(m)
2 · · ·

x
1+`1(m)
1 x

1+`2(m)
2 · · · x1+`k (m)

k

where Maps
(g)
k and FSMaps

(g)
k are respectively the ordinary and

simple combinatorial maps of genus g with k boundary
components.
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Topological recursion for combinatorial maps

The main theorem (informal version)

W
(g)
k (x1, x2, . . . , xk ; t3, t4, . . . ; t) =∑

m∈M(g)
k

1

# Aut(m)

t
n1(m)
1 t

n2(m)
2 · · ·

x
1+`1(m)
1 x

1+`2(m)
2 · · · x1+`k (m)

k

Theorem
topological recursion: inductive formulas on the W

(g)
k

initial conditions: explicit solutions for W
(g=0)
k=1 and W

(g=0)
k=2

References: Bender–Canfield (1994), Tutte (1960), Brown (1965),
Bousquet-Mélou–Jehanne (2006), Eynard (2006), . . .
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Topological recursion for combinatorial maps

Ordinary versus simple maps

Theorem
There is a formula relating W

(g)
k to WFS

(g)
k .

initial conditions: explicit solutions for WFS
(g=0)
k=1 and WFS

(g=0)
k=2

Conjecturally, WFS
(g)
k also satisfies a topological recursion.

References: Krikun (2007), Borot–Garcia-Failde (2020),
Borot–Charbonnier–Do–Garcia-Failde (2019), . . .
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Combinatorial maps

Encoding maps via permutations

Combinatorial maps
labeled combinatorial map with k boundaries: triple (σ, α, φ) of
permutations on {1, 2, . . . , 2N} where α is an involution without
fixed points, σαφ = Id and 1, 2, . . . , k belong to distinct orbits of
φ.

i · σ

i · σα

i

1, . . . , 2N are called half-edges or oriented edges
The vertices and edges of the map are respectively the cycles of σ
and α.
The faces and boundaries of the map are respectively the cycles of
φ that does not contain and contain 1, . . . , k .
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Combinatorial maps

Encoding maps via permutations

Labeled combinatorial map examples

1
2

3

4

σ=(1, 2, 4)(3)
α=(1, 2)(3, 4)
φ=(1)(2, 4, 3)

1
6

2

10

3

7

4
8

5

911
14

12

15

13
16

17 18
19

20

21

22
23 24

σ=?
α=?
φ=?
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Combinatorial maps

Encoding maps via permutations

Isomorphism
Two labeled combinatorial maps with k boundaries (σ, α, φ) are
isomorphic if there exists a permutation τ such that
∀i ∈ {1, . . . , k}, τ(i) = i and

τστ−1 = σ′ τατ−1 = β′ τφτ−1 = φ′.

1
2

3

4

σ=(1, 2, 4)(3)
α=(1, 2)(3, 4)
φ=(1)(2, 4, 3)

1
4

2

3

σ=(1, 3, 4)(2)
ε=(1, 4)(2, 3)
φ=(1)(3, 4, 2)
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Combinatorial maps

Simple maps

Simple maps

A map with k boundaries (σ, α, φ) is simple if for each cycle of σ
(corresponding to a vertex) at most one half-edge belongs to a
boundary.
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Surfaces

Building surfaces from combinatorial maps

Polygon gluings are surfaces

To a map (σ, α, φ) with k boundaries one can associate a
topological space which consists of gluing the polygons associated
to the faces according to the permutation α.

Lemma
The topological space obtained from (σ, α, φ) is a surface with
boundaries if and only if (σ, α, φ) is a simple map.

exercise: describe the list of possible neighborhoods of a point in
an ordinary map.
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Surfaces

Surface topological classification

Surfaces

Theorem (Jordan curve theorem)

A simple closed curve on the sphere separates it into two regions
homeomorphic to an open disk.

Corollary

The sphere has genus zero.
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Surfaces

Surface topological classification

Surface classification theorem

Theorem
Up to homeomorphism bordered surfaces are classified by their
genus g and their number of boundary components k.
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Surfaces

Surface topological classification

Proof of the classification theorem
step 1: remove boundaries
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Surfaces

Surface topological classification

Proof of the classification theorem
step 2: reduction to combinatorial maps
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Surfaces

Surface topological classification

Proof of the classification theorem
step 3: connectedness of the flip graph

Consider two moves on the space of combinatorial maps (without
boundary)

1. contract edges whose endpoints are distinct

2. remove edges whose adjacent faces are distinct

The moves do not modify the topology of the surface.

By applying these moves we are reduced to the problem of
connecting maps with a single face and a single vertex. We encode
such a map by a circular word in which each letters appear twice.
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Consider two moves on the space of combinatorial maps (without
boundary)

1. contract edges whose endpoints are distinct

2. remove edges whose adjacent faces are distinct

The moves do not modify the topology of the surface.
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Surfaces

Surface topological classification

Proof of the classification theorem
step 3: connectedness of the flip graph

Any map is connected to the canonical map a1b1a1b1 · · · agbgagbg
by applying at most 4g moves of type 2 (2g forward and 2g
backward)

Y

ZT

X b

b

a a

aXbYaZbT

Y

ZT

X b

b

a aa’ b’

a′b′a′b′TZYX
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Surfaces

Surface topological classification

step 4: show that the canonical map indeed has genus g

In order to show that the map with one face and one vertex with
circular code a1b1a1b1 · · · agbgagbg has genus g one has to apply
arguments from algebraic topology involving singular homology. It
is admitted for this course that this map has genus g .
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Surfaces

Computing the genus of a combinatorial map

Euler characteristic

Theorem
Let m be a combinatorial map (without boundary) with v(m)
vertices, e(m) edges and f (m) faces. Then

v(m)− e(m) + f (m) = 2− 2g .
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Surfaces

Computing the genus of a combinatorial map

Proof of the Euler characteristic

The map considered in the previous proof a1b1a1b1 · · · agbgagbg
has v = 1, e = 2g and f = 1 and hence v − e + f = 2− 2g .

The operations of adding/removing edges from the previous proof
preserves Euler characteristic.
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