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Tutte equation

The generating series of maps of genus 0 with 1 boundary satisfy
the Tutte equation

(tx — t)F? — (2 + x> — x)F + (t*f + tx — t) = 0.

where F = W (t;x) € QIx~Y[[t] and f = W V(t;1) € Q[t]].
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Tutte equation

The generating series of maps of genus 0 with 1 boundary satisfy
the Tutte equation

(tx — t)F? — (> + x*> — x)F + (t*f + tx — t) = 0.

where F = W (t;x) € QIx~Y[[t] and f = W V(t;1) € Q[t]].
By Bousquet-Mélou—Jehanne we deduced

(7t3)f2 + (1 — 18t2)f + (16t> —t) =0
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Tutte equation

The generating series of maps of genus 0 with 1 boundary satisfy
the Tutte equation

(tx — t)F? — (> + x*> — x)F + (t*f + tx — t) = 0.

where F = W (t;x) € QIx~Y[[t] and f = W V(t;1) € Q[t]].
By Bousquet-Mélou—Jehanne we deduced

(27¢3)F2 + (1 — 18t)f + (16> —t) =0
and concluded that

_18t2 — 1+ (1 — 12t2)3/2

f
54¢3

=14+2:34+9¢° + 54t + 378t +. ...



Topological recursion (course 3/4)

|—Recall from course 2

Loop equation (generalized Tutte formula)
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LRecaII from course 2

Loop equation (generalized Tutte formula)

W (31,50, ., %) =

t (81) (4. (&2)
o g W (t xa, xiy ) - Wi (t xa, xi,)
11|_|12:{2,...,k}
81+8=¢

t -1
+ X_]_Wlfil )(t, X1, X1, X2, ... 7Xk)

n t_2 W,Eg)(t;xl,XQ,...,xk) - W,Eg)(t;l,x2,...,xk)
X1 1—x

9 W,Eg)l(t;xl,...,)/(},...,xk)— Wlfi)l(t;X%--‘

t2
LB 0 W2
xlzaxj X1 — Xj
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LRecaII from course 2

Objective of course 3

> rewrite Wl(o)(t;xl) in terms of Zhukovsky's variable

> compute W,Eg)(t;xl, ..., xk) for any (g, k)

» ribbon graphs and Kontsevich topological recursion
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Disk amplitude Wl(o)(t;x) and Zhukovsky's
variable
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1-cut for disk amplitude (Brown's lemma)

Theorem

1+vV1—12¢2

Let T = — 5 . Then the discriminant

A = (t2 + x? — x)?2 — 4(tx — t)(t>f + tx — t) of the Tutte equation
factorizes as A = (x — (T +1))?(x® + 2Tx + T — 3t?).

Corollary
We have

WO (x; ) = t2+x2—x—(x—(Tzzr(j)_)\l/)(x2+2Tx+ T —312)
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Zhukovsky's variable

Let a,b € Q[[t]](T) be such that
x?+2Tx+ T —3t? = (x — a)(x — b) and define

_a+b T and __a—b_\/Tz—T—l—3t2
@i= o= nd 5= —— = 5

Zhukovsky's variable:

b —b 1
x(z):a—; —I—a4 (z-l—;)

2(x) = (x—oz—i-\/x—a 472))
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Zhukovsky's variable

The Zhukovsky's variable is such that

VE@ - a6@ b= (2 1)

And one has

Wl(o)(t; x(z)) = Z uz=k

k>1

where u, € Q[[t]].



R
Topological recursion (course 3/4)

L Cylinder amplitude: WZ(O)(t; X1, X2)

Cylinder amplitude: W (t X1, X2)
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The loop equation

Theorem (loop equation (special case g = 0, k = 2))

t
WZ(O)(t;X]_,XQ) :2X—1 Wz(o)(t;xl,xz) . Wl(o)(t;xl)

t2 ' W2(0)(t;x1,x2) — Wz(o)(t; 1, x)

+ R
X1 1 — X1
20 wO(a) - WO ()
X1 O0xo X1 — Xo

» no more quadratic term

> allows to compute term by term
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Computation of Wz(o)(t;X]_,XQ)
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We can rewrite the loop equation as

t2
<X1 - 2th0)(t,X1) + E) WZ(O)(t;X]_7X2) =

2(0)(t; 17X2)
xp—1
0 WO(txa) - W (8 x0)
8xz X1 — X2

+ %

+t2-
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We can rewrite the loop equation as

t2
<X1 - 2th0)(t,X1) + H) WZ(O)(t;X]_,X2) =

> WO(t:1, %)

xp—1
0 wWOtxa) - WOt %)
8xz X1 — X2

+t

+t2-

Recall

24+ x2—x—(x—(T+1)y/(x2+2Tx + T — 3t2)
x—1

2tW1(0)(t; x) =
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We can rewrite the loop equation as

2
(xl — 2tW1(0)(t;x1) + t) WZ(O)(t,xl,Xz) =
xp — 1
0
+ t2 ) W2( )(t; 1,X2)
x1—1
L 0 WMO(tx) - Wt x)
8X2 X1 — X2

Recall

24+ x2—x—(x—(T+1)y/(x2+2Tx + T — 3t2)

x—1

2tW1(0)(t; x) =

rewrites

t? ©,. ,_ (x=(T+1)
X_1+X—2tW1 (t,x)——x_l

V2 2T+ T —382)
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Hence

2w’ (t1X2)+t2 0 W (tx) =W ()

X1— 0xa X1—X2

M(x1)v/(xa — a)(xa — b(t))

WQ(O)(t;XLXZ) =
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1-cut for cylinder amplitude (Brown's lemma)

Theorem

W2(0)(X(Z]_),X(ZQ))X/(Z]_)X/(ZQ) is a rational function of z; and z
which behaves as O(zfz) as large z1 and has a pole only at

71 = 1/2 and this pole is a double pole with coefficients —z, 2
and no residue.

Corollary

-1
(2122 — 1)2
_ 1 X (21)X(2)
-2l (&) - @)

W (x(21), x(22))X (21)X'(22) =
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Proof

WZ(O)(X(Zl),X(ZQ)) is a rational function of z» with possible poles
at +1,-1,2,1/2.
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Proof

WZ(O)(x(zl),x(zz)) is a rational function of z with possible poles
at +1,—1,z,1/z,. One shows that there is no poles at the zeros
{+1, -1} of M(x(z1)).
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Higher topological recursion

For (g, k) with 2g + k —2 > 0 (ie # {(0,1),(0,2)}) let

Wz, z) = WO (x(@), x(22), ... x(2))X (1) . X (2)
Theorem
For (g, k) with2g + k —2 >0, w,((g) is a rational function of its
Zhukovsky variables zi, ..., zx with poles only at the branch

points z; = +1 and which behaves as O(z;?) at large z;. They
satisfy the topological recursion (next slide)
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Topological recursion

&) (29, L —R e :
Wi (20, L) = 5 Resza (zo—z 20— 1/z) 2y(2)x'(1/z)
_ “1), -
Yoo wiE) ozl (27 z) + L (2,27 2)
g1+g=g
Lhub=I

where y(z x)y/(x—a)(x—b I—{23 .k} and 3’

means that we echude the terms in w(() .
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|—Higher topological recursion

Eynard’s general statement

> What we have sketched holds in a very general setting
(including bipartite maps, triangulations, quadrangulations,
etc).
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L Kontsevich recursion

Motivation

» Kontsevich TR is a "simpler” topological recursion
(introduced by Kontsevich for proving Witten's conjecture)

» (next course) We will see that Kontsevich TR is the "double
scaling limit" of the combinatorial maps TR.
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Ribbon graphs and combinatorial moduli space

For 2g — 2+ k > 0, let R4 i be the set of trivalent ribbon graphs
of genus g and k boundaries.
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L Kontsevich recursion

Ribbon graphs and combinatorial moduli space

For 2g — 2+ k > 0, let R4 i be the set of trivalent ribbon graphs
of genus g and k boundaries.

Set
Mg = | (6 x (R)F®)/Aut(G)
GERg,k
and M0 (Ly, Ly, ..., Lk) be the graphs where the boundary

lengths L; are fixed.
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[ Kontsevich recursion

Example of (g, k) = (0,3)
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[ Kontsevich recursion

Example of (g, k) = (1,1)
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The Kontsevich measure

k
measure fig k on Mg i dpig i H dL; = 2?82tk H Le.
i=1 ecE(G)
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The Kontsevich measure

k
measure fig x on Mg 1 dpg k H dL; = 2282tk H Le.
i=1 ecE(G)

Theorem (Kontsevich)

Let
Vg,k(l-lv sy Lk) = Mg,k(Mngb(Lla sy Lk))

Then Vg  is an homogeneous polynomial of degree 6g — 6 + 2k
with only even powers of L;. Its Laplace transform

wgk(zl,...,zk): (/
R

satisfies a topological recursion (next slide).

Ly Lee @5V i (Ly, ..., Ly)dLy - - de>

k
T
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Topological recursion for (Laplace transform'’s of)
Kontsevich volumes

werlz1,- -, 2k) = Res; 0 K(21,2)

!/

we-1h1(2, 2,21+ D Wey 1) (2, 20wy 1411 (2, 21)

g1+82=g
hub=I

where | ={2,...,k} and

1 1
K(z1,z) = ——5 and wo2(z1,220) =

22(z — z1)? 2

(21— 2)
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Tutte's equation for Kontsevich volumes

Lemma

Kon _ 1
2 #Aut(G) 1] s

GER,, e between face i and j !
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