Topological recursion how to count objects on surfaces?

course 3/4

Vincent Delecroix, CNRS, LaBRI (Bordeaux)

Topological recursion (course 3/4)

Recall from course 2

Recall from course 2

Tutte equation

The generating series of maps of genus 0 with 1 boundary satisfy the Tutte equation

$$(tx-t)F^2 - (t^2 + x^2 - x)F + (t^2f + tx - t) = 0.$$

where
$$F = W_1^{(0)}(t;x) \in \mathbb{Q}[x^{-1}][[t]]$$
 and $f = W_1^{(0)}(t;1) \in \mathbb{Q}[[t]]$.

Tutte equation

The generating series of maps of genus 0 with 1 boundary satisfy the Tutte equation $\frac{1}{2}$

$$(tx-t)F^2 - (t^2 + x^2 - x)F + (t^2f + tx - t) = 0.$$

where $F = W_1^{(0)}(t;x) \in \mathbb{Q}[x^{-1}][[t]]$ and $f = W_1^{(0)}(t;1) \in \mathbb{Q}[[t]]$. By Bousquet-Mélou–Jehanne we deduced

$$(27t^3)f^2 + (1 - 18t^2)f + (16t^3 - t) = 0$$

Tutte equation

The generating series of maps of genus 0 with 1 boundary satisfy the Tutte equation

$$(tx-t)F^2 - (t^2 + x^2 - x)F + (t^2f + tx - t) = 0.$$

where $F=W_1^{(0)}(t;x)\in\mathbb{Q}[x^{-1}][[t]]$ and $f=W_1^{(0)}(t;1)\in\mathbb{Q}[[t]]$. By Bousquet-Mélou–Jehanne we deduced

$$(27t^3)f^2 + (1 - 18t^2)f + (16t^3 - t) = 0$$

and concluded that

$$f = \frac{18t^2 - 1 + (1 - 12t^2)^{3/2}}{54t^3} = 1 + 2t^3 + 9t^5 + 54t^7 + 378t^9 + \dots$$

Loop equation (generalized Tutte formula)

Loop equation (generalized Tutte formula)

$$\begin{split} & W_{k}^{(g)}(t;x_{1},x_{2},\ldots,x_{k}) = \\ & \frac{t}{x_{1}} \sum_{\substack{l_{1} \sqcup l_{2} = \{2,\ldots,k\} \\ g_{1}+g_{2}=g}} W_{k_{1}+1}^{(g_{1})}(t;x_{1},x_{l_{1}}) \cdot W_{k_{2}+1}^{(g_{2})}(t;x_{1},x_{l_{2}}) \\ & + \frac{t}{x_{1}} W_{k+1}^{(g-1)}(t;x_{1},x_{1},x_{2},\ldots,x_{k}) \\ & + \frac{t^{2}}{x_{1}} \frac{W_{k}^{(g)}(t;x_{1},x_{2},\ldots,x_{k}) - W_{k}^{(g)}(t;1,x_{2},\ldots,x_{k})}{1-x_{1}} \\ & + \frac{t^{2}}{x_{1}} \sum_{j=2}^{k} \frac{\partial}{\partial x_{j}} \frac{W_{k-1}^{(g)}(t;x_{1},\ldots,\hat{x_{j}},\ldots,x_{k}) - W_{k-1}^{(g)}(t;x_{2},\ldots,x_{k})}{x_{1}-x_{j}} \end{split}$$

Objective of course 3

- rewrite $W_1^{(0)}(t; x_1)$ in terms of Zhukovsky's variable
- ightharpoonup compute $W_k^{(g)}(t;x_1,\ldots,x_k)$ for any (g,k)
- ribbon graphs and Kontsevich topological recursion

Topological recursion (course 3/4) $\ \ \Box$ Disk amplitude $W_1^{(0)}(t;x)$ and Zhukovsky's variable

Disk amplitude $W_1^{(0)}(t;x)$ and Zhukovsky's variable

1-cut for disk amplitude (Brown's lemma)

Let
$$T = \frac{1}{6}$$
. Then the discriminant

Let
$$T=\frac{-1+\sqrt{1-12t^2}}{6}$$
. Then the discriminant
$$\Delta=(t^2+x^2-x)^2-4(tx-t)(t^2f+tx-t) \text{ of the Tutte equation factorizes as } \Delta=(x-(T+1))^2(x^2+2Tx+T-3t^2).$$

Corollary

We have

$$W_1^{(0)}(x;t) = \frac{t^2 + x^2 - x - (x - (T+1))\sqrt{(x^2 + 2Tx + T - 3t^2)}}{2t(x-1)}$$

Zhukovsky's variable

Let
$$a, b \in \mathbb{Q}[[t]](T)$$
 be such that $x^2 + 2Tx + T - 3t^2 = (x - a)(x - b)$ and define

$$\alpha := \frac{a+b}{2} = -T$$
 and $\gamma := \frac{a-b}{4} = \frac{\sqrt{T^2 - T + 3t^2}}{2}$

Zhukovsky's variable:

$$x(z) = \frac{a+b}{2} + \frac{a-b}{4} \left(z + \frac{1}{z} \right)$$
$$z(x) = \frac{1}{2\gamma} \left(x - \alpha + \sqrt{(x-\alpha)^2 - 4\gamma^2} \right)$$

Zhukovsky's variable

The Zhukovsky's variable is such that

$$\sqrt{(x(z)-a)(x(z)-b)}=\gamma\left(z-\frac{1}{z}\right).$$

And one has

$$W_1^{(0)}(t;x(z)) = \sum_{k>1} u_k z^{-k}$$

where $u_k \in \mathbb{Q}[[t]]$.

Topological recursion (course 3/4)

Cylinder amplitude: $W_2^{(0)}(t; x_1, x_2)$

Cylinder amplitude: $W_2^{(0)}(t; x_1, x_2)$

The loop equation

Theorem (loop equation (special case g = 0, k = 2))

$$W_2^{(0)}(t; x_1, x_2) = 2\frac{t}{x_1} W_2^{(0)}(t; x_1, x_2) \cdot W_1^{(0)}(t; x_1)$$

$$+ \frac{t^2}{x_1} \cdot \frac{W_2^{(0)}(t; x_1, x_2) - W_2^{(0)}(t; 1, x_2)}{1 - x_1}$$

$$+ \frac{t^2}{x_1} \cdot \frac{\partial}{\partial x_2} \frac{W_1^{(0)}(t; x_1) - W_1^{(0)}(t; x_2)}{x_1 - x_2}$$

- no more quadratic term
- allows to compute term by term

Computation of $W_2^{(0)}(t; x_1, x_2)$

$$W_2^{(0)}(t; x_1, x_2) = \left(\frac{1}{x_1^2 x_2^2}\right) t^3 + \left(\frac{3}{x_1^4 x_2^2} + \frac{2}{x_1^3 x_2^3} + \frac{3}{x_1^2 x_2^4} + \frac{2}{x_1^3 x_2^2} + \frac{2}{x_1^2 x_2^3} + \frac{1}{x_1^2 x_2^2}\right) t^5 + O(t^7)$$

Topological recursion (course 3/4)

$$\sqsubseteq$$
 Cylinder amplitude: $W_2^{(0)}(t; x_1, x_2)$

We can rewrite the loop equation as

$$\begin{split} &\left(x_1 - 2tW_1^{(0)}(t; x_1) + \frac{t^2}{x_1 - 1}\right)W_2^{(0)}(t; x_1, x_2) = \\ &+ t^2 \cdot \frac{W_2^{(0)}(t; 1, x_2)}{x_1 - 1} \\ &+ t^2 \cdot \frac{\partial}{\partial x_2} \frac{W_1^{(0)}(t; x_1) - W_1^{(0)}(t; x_2)}{x_1 - x_2} \end{split}$$

Topological recursion (course 3/4)

$$\sqsubseteq$$
 Cylinder amplitude: $W_2^{(0)}(t; x_1, x_2)$

We can rewrite the loop equation as

$$\begin{split} &\left(x_1 - 2tW_1^{(0)}(t;x_1) + \frac{t^2}{x_1 - 1}\right)W_2^{(0)}(t;x_1, x_2) = \\ &+ t^2 \cdot \frac{W_2^{(0)}(t;1, x_2)}{x_1 - 1} \\ &+ t^2 \cdot \frac{\partial}{\partial x_2} \frac{W_1^{(0)}(t;x_1) - W_1^{(0)}(t;x_2)}{x_1 - x_2} \end{split}$$

Recall

$$2tW_1^{(0)}(t;x) = \frac{t^2 + x^2 - x - (x - (T+1))\sqrt{(x^2 + 2Tx + T - 3t^2)}}{x - 1}$$

We can rewrite the loop equation as

$$\left(x_{1}-2tW_{1}^{(0)}(t;x_{1})+\frac{t^{2}}{x_{1}-1}\right)W_{2}^{(0)}(t;x_{1},x_{2}) =
+t^{2} \cdot \frac{W_{2}^{(0)}(t;1,x_{2})}{x_{1}-1}
+t^{2} \cdot \frac{\partial}{\partial x_{2}} \frac{W_{1}^{(0)}(t;x_{1})-W_{1}^{(0)}(t;x_{2})}{x_{1}-x_{2}}$$

Recall

$$2tW_1^{(0)}(t;x) = \frac{t^2 + x^2 - x - (x - (T+1))\sqrt{(x^2 + 2Tx + T - 3t^2)}}{x - 1}$$

rewrites

$$\frac{t^2}{x-1} + x - 2tW_1^{(0)}(t;x) = \frac{(x - (T+1))}{x-1}\sqrt{(x^2 + 2Tx + T - 3t^2)}$$

Topological recursion (course 3/4)

$$\sqsubseteq$$
 Cylinder amplitude: $W_2^{(0)}(t; x_1, x_2)$

Hence

$$W_2^{(0)}(t;x_1,x_2) = \frac{t^2 \frac{W_2^{(0)}(t;1,x_2)}{x_1-1} + t^2 \cdot \frac{\partial}{\partial x_2} \frac{W_1^{(0)}(t;x_1) - W_1^{(0)}(t;x_2)}{x_1-x_2}}{M(x_1)\sqrt{(x_1-a)(x_1-b(t))}}$$

1-cut for cylinder amplitude (Brown's lemma)

Theorem

 $W_2^{(0)}(x(z_1),x(z_2))x'(z_1)x'(z_2)$ is a rational function of z_1 and z_2 which behaves as $O(z_1^{-2})$ as large z_1 and has a pole only at $z_1=1/z_2$ and this pole is a double pole with coefficients $-z_2^{-2}$ and no residue.

Corollary

$$W_2^{(0)}(x(z_1), x(z_2))x'(z_1)x'(z_2) = \frac{-1}{(z_1z_2 - 1)^2}$$

$$= \frac{1}{(z_1 - z_2)^2} - \frac{x'(z_1)x'(z_2)}{(x(z_1) - x(z_2))^2}.$$

Proof

 $W_2^{(0)}(x(z_1),x(z_2))$ is a rational function of z_2 with possible poles at $+1,-1,z_2,1/z_2$.

Proof

 $W_2^{(0)}(x(z_1),x(z_2))$ is a rational function of z_2 with possible poles at $+1,-1,z_2,1/z_2$. One shows that there is no poles at the zeros $\{+1,-1\}$ of $M(x(z_1))$.

Topological recursion (course 3/4)

Higher topological recursion

Higher topological recursion

Higher topological recursion

For
$$(g,k)$$
 with $2g+k-2>0$ (ie $\neq \{(0,1),(0,2)\}$) let $\omega_k^{(g)}(z_1,\ldots,z_k):=W_k^{(g)}(x(z_1),x(z_2),\ldots,x(z_k))x'(z_1)\ldots x'(z_k)$

Theorem

For (g, k) with 2g + k - 2 > 0, $\omega_k^{(g)}$ is a rational function of its Zhukovsky variables z_1, \ldots, z_k with poles only at the branch points $z_i = \pm 1$ and which behaves as $O(z_i^{-2})$ at large z_i . They satisfy the topological recursion (next slide)

Topological recursion

$$\omega_{k+1}^{(g)}(z_0, L) = \frac{1}{2} \operatorname{Res}_{z \to \pm 1} \left(\frac{1}{z_0 - z} - \frac{1}{z_0 - 1/z} \right) \frac{z}{2y(z)x'(1/z)}$$

$$\left(\sum_{\substack{g_1 + g_2 = g \\ I_1 \cup I_2 = I}}' \omega_{1+|I_1|}^{(g_1)}(z, z_{I_1}) \omega_{1+|I_2|}^{g_2}(z^{-1}, z_{I_2}) + \omega_{k+2}^{(g-1)}(z, z^{-1}, z_{I}) \right)$$

where $y(z) = \frac{1}{2}M(x)\sqrt{(x-a)(x-b)}$, $I = \{2, 3, ..., k\}$ and \sum' means that we exclude the terms in $\omega_0^{(1)}$.

Eynard's general statement

What we have sketched holds in a very general setting (including bipartite maps, triangulations, quadrangulations, etc). Topological recursion (course 3/4)

Kontsevich recursion

Kontsevich recursion

Topological recursion (course 3/4)

Kontsevich recursion

Motivation

- ➤ Kontsevich TR is a "simpler" topological recursion (introduced by Kontsevich for proving Witten's conjecture)
- (next course) We will see that Kontsevich TR is the "double scaling limit" of the combinatorial maps TR.

Ribbon graphs and combinatorial moduli space

For 2g - 2 + k > 0, let $\mathcal{R}_{g,k}$ be the set of trivalent ribbon graphs of genus g and k boundaries.

Ribbon graphs and combinatorial moduli space

For 2g - 2 + k > 0, let $\mathcal{R}_{g,k}$ be the set of trivalent ribbon graphs of genus g and k boundaries.

Set

$$\mathcal{M}_{g,k}^{comb} := \bigcup_{G \in \mathcal{R}_{g,k}} (G \times (\mathbb{R}_+)^{E(G)}) / \operatorname{Aut}(G)$$

and $\mathcal{M}_{g,k}^{comb}(L_1, L_2, \dots, L_k)$ be the graphs where the boundary lengths L_i are fixed.

Topological recursion (course 3/4)

Kontsevich recursion

Example of (g, k) = (0, 3)

Topological recursion (course 3/4)

Kontsevich recursion

Example of (g, k) = (1, 1)

The Kontsevich measure

measure
$$\mu_{g,k}$$
 on $\mathcal{M}_{g,k}$: $d\mu_{g,k}\prod_{i=1}^k dL_i = 2^{2g-2+k}\prod_{e\in E(G)}\ell_e.$

The Kontsevich measure

measure
$$\mu_{g,k}$$
 on $\mathcal{M}_{g,k}$: $d\mu_{g,k}\prod_{i=1}^k dL_i = 2^{2g-2+k}\prod_{e\in E(G)}\ell_e.$

Theorem (Kontsevich)

Let

$$V_{g,k}(L_1,\ldots,L_k) := \mu_{g,k}(\mathcal{M}_{g,k}^{comb}(L_1,\ldots,L_k)).$$

Then $V_{g,k}$ is an homogeneous polynomial of degree 6g - 6 + 2k with only even powers of L_i . Its Laplace transform

$$\omega_{g,k}^{K}(z_1,\ldots,z_k) = \left(\int_{\mathbb{R}_+^k} L_1 \cdots L_k e^{-z_i L_i} V_{g,k}(L_1,\ldots,L_k) dL_1 \cdots dL_k\right)$$

satisfies a topological recursion (next slide).

Topological recursion for (Laplace transform's of) Kontsevich volumes

$$\omega_{g,k}^{K}(z_{1},...,z_{k}) = \operatorname{Res}_{z\to 0} K(z_{1},z)$$

$$\left(\omega_{g-1,k+1}(z,-z,z_{l}) + \sum_{\substack{g_{1}+g_{2}=g\\l_{1}\sqcup l_{2}=l}}^{\prime} \omega_{g_{1},1+|l_{1}|}(z,z_{l_{1}})\omega_{g_{2},1+|l_{2}|}(z,z_{l_{2}})\right)$$

where $I = \{2, \dots, k\}$ and

$$K(z_1,z) = \frac{1}{2z(z-z_1)^2}$$
 and $\omega_{0,2}(z_1,z_2) = \frac{1}{(z_1-z_2)^2}$

Tutte's equation for Kontsevich volumes

Lemma

$$\omega_{g,k}^{\mathit{Kon}} = \sum_{G \in \mathcal{R}_{g,k}} \frac{1}{\# \operatorname{Aut}(G)} \prod_{e \ \mathit{between face i and j}} \frac{1}{z_i + z_j}$$

