Topological recursion how to count graphs on surfaces?

course 4/4

Vincent Delecroix, CNRS, LaBRI (Bordeaux)

Recall from course 3

 $W_k^{(g)}(t; x_1, \ldots, x_k)$: generating functions of combinatorial maps.

W^(g)_k(t; x₁,...,x_k): generating functions of combinatorial maps.
 ▶ peeling translates into equations on W^(g)_k (Tutte equations)

W_k^(g)(t; x₁,...,x_k): generating functions of combinatorial maps.
 ▶ peeling translates into equations on W_k^(g) (Tutte equations)
 ▶ can compute W₀⁽¹⁾ and W₀⁽²⁾

 $W_k^{(g)}(t; x_1, \ldots, x_k)$: generating functions of combinatorial maps.

- peeling translates into equations on $W_k^{(g)}$ (Tutte equations)
- can compute $W_0^{(1)}$ and $W_0^{(2)}$
- Tutte equations simplify a lot ("topological recursion")

W_k^(g)(t; x₁,...,x_k): generating functions of combinatorial maps.
▶ peeling translates into equations on W_k^(g) (Tutte equations)
▶ can compute W₀⁽¹⁾ and W₀⁽²⁾
▶ Tutte equations simplify a lot ("topological recursion")
Ω_k^(g)(x₁,...,x_k): generating functions of volumes of M_{g,n}^{(comb}(L₁, L₂,...,L_k) (Kontsevich).

W_k^(g)(t; x₁,..., x_k): generating functions of combinatorial maps.
▶ peeling translates into equations on W_k^(g) (Tutte equations)
▶ can compute W₀⁽¹⁾ and W₀⁽²⁾
▶ Tutte equations simplify a lot ("topological recursion")
Ω_k^(g)(x₁,..., x_k): generating functions of volumes of M_{g,n}^{(comb}(L₁, L₂,..., L_k) (Kontsevich).

• peeling translates into equations on $\Omega_k^{(g)}(x_1, \ldots, x_k)$

W_k^(g)(t; x₁,...,x_k): generating functions of combinatorial maps.
▶ peeling translates into equations on W_k^(g) (Tutte equations)
▶ can compute W₀⁽¹⁾ and W₀⁽²⁾
▶ Tutte equations simplify a lot ("topological recursion")
Ω_k^(g)(x₁,...,x_k): generating functions of volumes of M_{g,n}^{(comb}(L₁, L₂,...,L_k) (Kontsevich).

- peeling translates into equations on $\Omega_k^{(g)}(x_1, \ldots, x_k)$
- they simplify into an Eynard-Orantin topological recursion

Objective of course 4

a bit more about Kontsevich TR
 "double scaling" limit of W^(g)_k(t; x₁,...,x_k) and Ω^(g)_k(x₁,...,x_k)

Kontsevich TR

Laplace transform

$$\mathcal{L}(f)(z) := \int_{L>0} e^{-Lz} f(L) dL$$

Laplace transform

$$\mathcal{L}(f)(z) := \int_{L>0} e^{-Lz} f(L) dL$$

Laplace transform of polynomials

$$\mathcal{L}: L^d \mapsto rac{d!}{z^{d+1}}$$

Laplace transform

Lemma

Given a ribbon graph G the volume of the associated (orbifold) cell of $\mathcal{M}_{g,k}^{comb}(L_1, \ldots, L_k)$ has Laplace transform

$$\frac{1}{\#\operatorname{Aut}(G)}\prod_{\substack{e \text{ between} \\ faces \ i \text{ and } j}}\frac{1}{z_i+z_j}$$

Proof of Laplace transform lemma

 $(\ell_e)_{e \in E(G)}$: edge lengths $(L_i)_{i=1,\dots,n}$: boundary length

Proof of Laplace transform lemma

 $(\ell_e)_{e \in E(G)}$: edge lengths $(L_i)_{i=1,\dots,n}$: boundary length

$$A \cdot \begin{pmatrix} \ell_1 \\ \ell_2 \\ \dots \\ \ell_{6g-6+3n} \end{pmatrix} = \begin{pmatrix} L_1 \\ L_2 \\ \dots \\ L_n \end{pmatrix}$$

where A is the edge-face adjacency matrix.

Topological recursion (course 4/4)

Example

Proof of Laplace transform lemma

Let $V_A(L_1, ..., L_n) = \mu_L(V_A(L))$ where μ_L is the measure on $E_L = \{\ell : A\ell = L\}$ such that

$$\mu_L \otimes \prod_{i=1}^n dL_i = \prod_{j=1}^m d\ell_j$$

We have

$$\begin{split} \int_{L_i \ge 0} \exp(-z \cdot L) V_A(L) dL &= \int_{L_i \ge 0} \exp(-z \cdot L) \left(\int_{\ell_i \ge 0, A\ell = L} d\mu_L(\ell) \right) dL \\ &= \int_{\ell_i \ge 0} \exp(-z \cdot (A\ell)) d\ell \\ &= \prod_{j=1}^m \frac{1}{A_{*,j} \cdot z} \end{split}$$

Examples

$$\begin{split} \Omega_{0,3}(z_1,z_2,z_3) &= \frac{1}{2z_1z_2z_3}\\ \Omega_{1,1}(z_1) &= \frac{1}{48z_1^3}\\ \Omega_{0,4}(z_1,z_2,z_3,z_4) &= \frac{1}{4z_1z_2z_3z_4} \left(\frac{1}{z_1^2} + \frac{1}{z_2^2} + \frac{1}{z_3^2} + \frac{1}{z_4^2}\right) \end{split}$$

Topological recursion for Kontsevich volumes

Theorem (Kontsevich) The $\Omega_k^{(g)}(z_1, \ldots, z_k) = \mathcal{L}(Vol(\mathcal{M}_k^{(g)}(L_1, \ldots, L_k)))$ satisfy a topological recursion.

Double scaling limits

Main result

Recall that our functions $W_k^{(g)}(z_1,\ldots,z_k)$ had poles at $z_i = \pm 1$ only.

Theorem

There exists $\widetilde{W}_n^{(g)}(t;\zeta_1,\ldots,\zeta_n)$ such that for any ζ_1,\ldots,ζ_n , as $\delta \to 0$ we have

$$W_n^{(g)}(t;1+\delta\zeta_1,\ldots,1+\delta\zeta_n)\sim t^{2-2g-n}\delta^{(2-2g-n)(p+q)-n}\widetilde{W}_n^{(g)}(t;\zeta_1,\ldots,\zeta_n)$$

where

(p,q) depends on the chosen weights (t₃, t₄,...) and comes from the "nature of the singularity" at +1,
 W̃^(g)_k(t; z₁,..., z_k) satisfies a topological recursion

From $\widetilde{W}_{k}^{(g)}(t; z_{1}, \ldots, z_{k})$ to asymptotics

Choosing the appropriate scaling $\delta = (1 - t/t_c)^{\nu}$ (where ν depends on (p, q)) B. Eynard deduces precise asymptotics for the number of combinatorial maps.

Combinatorial maps and Kontsevich volumes

Kontsevich volume admits a natural generalization with weights

Theorem (Eynard-Orantin) $\widetilde{W}_n^{(g)}(t; z_1, ..., z_k)$ is a (generaliziation of) Kontsevich polynomial $\omega_n^{(g)}(z_1, ..., z_k)$.

(Note: here ω is an appropriate rescaling of Ω)

Going further

Link with other known results

- How to recover E. A. Bender, E. R. Canfield, L. B. Richmond (1993)?
- ▶ How to recover S. R. Carrell, G. Chapuy (2015)?
- Is there a link with M. Albenque, T. Lepoutre bijective approach?

Wish list

- Complete all computations from the course (e.g. the u_k appearing in the z-expansion of W₀⁽¹⁾)
- Make computations with other weights t_i (e.g. triangulations or quadrangulations)
- In each of the above, analyze the corresponding double scaling limit.
- Find weigts with "exotic" scaling ν (or (p, q)).
- Make the double scaling procedure geometric.