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LRecall from course 3

From Tutte equation to TR

W,Eg)(t; X1,...,Xx): generating functions of combinatorial maps.
P peeling translates into equations on W,Eg) (Tutte equations)
> can compute Wél) and WO(Z)

» Tutte equations simplify a lot ("topological recursion™)

Qg(g)(xl, ...,Xk): generating functions of volumes of

M;?:Tb(Ll, Ly, ..., L) (Kontsevich).

. . . g
> peeling translates into equations on QS( )(xl, ey Xk)

» they simplify into an Eynard-Orantin topological recursion
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Objective of course 4

» a bit more about Kontsevich TR
> "double scaling” limit of W,Eg)(t;xl, ..., Xxx) and
Qs(g)(xl, . ,Xk)
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Laplace transform

L(F)(z) = / e L2 f(L)dlL
L>0
Laplace transform of polynomials

d!

.qd '
L:L +—>—Zd+1.
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Laplace transform

Lemma
Given a ribbon graph G the volume of the associated (orbifold) cell
of M;‘?,’("b(Ll, ..., L) has Laplace transform

faces i and j
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Proof of Laplace transform lemma

(Ce)ecE(c): edge lengths
(Li)i=1,..n: boundary length

l1 L1
A. b _| L
€6g—6+3n I—n

where A is the edge-face adjacency matrix.
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Proof of Laplace transform lemma

Let Va(Ly,...,Ln) = pr(Va(L)) where i is the measure on
E; = {¢: Al = L} such that

m@HdLi = Hdﬁi
i=1 j=1
We have

/L,-zo exp(—z - L)Va(L)dL = /L,-zo exp(—z - L) (/e,-zo,Ae:L d,uL(E)) dL
_ /Z _eelz (A

m

1
jzlA*J-z
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Examples
1
Qo3(z1,22,23) = 212273
1
Q -

11(21) 4873

1 1 1 1 1
a2 = o (Gt )

4 \41 2 3 4
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Topological recursion for Kontsevich volumes

Theorem (Kontsevich)
The Q&) (z1,..., z¢) = L(VoI(ME(Ly,.. ., Ly))) satisfy a
topological recursion.
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Main result

Recall that our functions W,Eg)(zl, ...,2k) had poles at z; = +1
only.

Theorem
There exists W,Sg)(t; C1,-..,Cpn) such that for any (i,...,(n, as
0 — 0 we have

W (£:146¢1, . .. 146C,) ~ 228705 28=npra)=n &) (¢ ¢ )

where

» (p,q) depends on the chosen weights (t3, ts,...) and comes
from the "nature of the singularity” at +1,

> W,Eg )(t; z1,...,2x) satisfies a topological recursion
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From /V|7k(g)(t; z1,...,2) to asymptotics

Choosing the appropriate scaling 6 = (1 — t/t.)” (where v depends
on (p,q)) B. Eynard deduces precise asymptotics for the number
of combinatorial maps.
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Combinatorial maps and Kontsevich volumes

Kontsevich volume admits a natural generalization with weights

Theorem (Eynard-Orantin)
W,Sg)(t; 71,...,2k) is a (generaliziation of) Kontsevich polynomial
w,(1g)(21, ce ,Zk).

(Note: here w is an appropriate rescaling of Q)
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Link with other known results

» How to recover E. A. Bender, E. R. Canfield, L. B. Richmond
(1993)7
» How to recover S. R. Carrell, G. Chapuy (2015)?

» Is there a link with M. Albenque, T. Lepoutre bijective
approach?
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Wish list

v

Complete all computations from the course (e.g. the uy
appearing in the z-expansion of Wél))

Make computations with other weights t; (e.g. triangulations
or quadrangulations)

In each of the above, analyze the corresponding double scaling
limit.
Find weigts with "exotic” scaling v (or (p, q)).

Make the double scaling procedure geometric.
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