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From Tutte equation to TR

W
(g)
k (t; x1, . . . , xk): generating functions of combinatorial maps.

I peeling translates into equations on W
(g)
k (Tutte equations)

I can compute W
(1)
0 and W

(2)
0

I Tutte equations simplify a lot (”topological recursion”)

Ω
(g)
k (x1, . . . , xk): generating functions of volumes of
Mcomb

g ,n (L1, L2, . . . , Lk) (Kontsevich).

I peeling translates into equations on Ω
(g)
k (x1, . . . , xk)

I they simplify into an Eynard-Orantin topological recursion
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Recall from course 3

Objective of course 4

I a bit more about Kontsevich TR

I ”double scaling” limit of W
(g)
k (t; x1, . . . , xk) and

Ω
(g)
k (x1, . . . , xk)
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Laplace transform

L(f )(z) :=

∫
L>0

e−Lz f (L)dL

Laplace transform of polynomials

L : Ld 7→ d!

zd+1
.
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Kontsevich TR

Laplace transform

Lemma
Given a ribbon graph G the volume of the associated (orbifold) cell
of Mcomb

g ,k (L1, . . . , Lk) has Laplace transform

1

# Aut(G )

∏
e between

faces i and j

1

zi + zj
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Kontsevich TR

Proof of Laplace transform lemma

(`e)e∈E(G): edge lengths
(Li )i=1,...,n: boundary length

A ·


`1
`2
. . .

`6g−6+3n

 =


L1
L2
. . .
Ln


where A is the edge-face adjacency matrix.
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Kontsevich TR

Example
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Kontsevich TR

Proof of Laplace transform lemma
Let VA(L1, . . . , Ln) = µL(VA(L)) where µL is the measure on
EL = {` : A` = L} such that

µL ⊗
n∏

i=1

dLi =
m∏
j=1

d`i

We have∫
Li≥0

exp(−z · L)VA(L)dL =

∫
Li≥0

exp(−z · L)

(∫
`i≥0,A`=L

dµL(`)

)
dL

=

∫
`i≥0

exp(−z · (A`))d`

=
m∏
j=1

1

A∗,j · z



Topological recursion (course 4/4)

Kontsevich TR

Examples

Ω0,3(z1, z2, z3) =
1

2z1z2z3

Ω1,1(z1) =
1

48z31

Ω0,4(z1, z2, z3, z4) =
1

4z1z2z3z4

(
1

z21
+

1

z22
+

1

z23
+

1

z24

)
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Kontsevich TR

Topological recursion for Kontsevich volumes

Theorem (Kontsevich)

The Ω
(g)
k (z1, . . . , zk) = L(Vol(M(g)

k (L1, . . . , Lk))) satisfy a
topological recursion.
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Double scaling limits

Main result

Recall that our functions W
(g)
k (z1, . . . , zk) had poles at zi = ±1

only.

Theorem
There exists W̃

(g)
n (t; ζ1, . . . , ζn) such that for any ζ1, . . . , ζn, as

δ → 0 we have

W
(g)
n (t; 1+δζ1, . . . 1+δζn) ∼ t2−2g−nδ(2−2g−n)(p+q)−nW̃

(g)
n (t; ζ1, . . . , ζn)

where

I (p, q) depends on the chosen weights (t3, t4, . . .) and comes
from the ”nature of the singularity” at +1,

I W̃
(g)
k (t; z1, . . . , zk) satisfies a topological recursion



Topological recursion (course 4/4)

Double scaling limits

From W̃
(g)
k (t; z1, . . . , zk) to asymptotics

Choosing the appropriate scaling δ = (1− t/tc)ν (where ν depends
on (p, q)) B. Eynard deduces precise asymptotics for the number
of combinatorial maps.
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Double scaling limits

Combinatorial maps and Kontsevich volumes

Kontsevich volume admits a natural generalization with weights

Theorem (Eynard-Orantin)

W̃
(g)
n (t; z1, . . . , zk) is a (generaliziation of) Kontsevich polynomial

ω
(g)
n (z1, . . . , zk).

(Note: here ω is an appropriate rescaling of Ω)
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Going further

Link with other known results

I How to recover E. A. Bender, E. R. Canfield, L. B. Richmond
(1993)?

I How to recover S. R. Carrell, G. Chapuy (2015)?

I Is there a link with M. Albenque, T. Lepoutre bijective
approach?
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Going further

Wish list

I Complete all computations from the course (e.g. the uk
appearing in the z-expansion of W

(1)
0 )

I Make computations with other weights ti (e.g. triangulations
or quadrangulations)

I In each of the above, analyze the corresponding double scaling
limit.

I Find weigts with ”exotic” scaling ν (or (p, q)).

I Make the double scaling procedure geometric.
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