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A rotation is a 2-interval exchange transformation

The rotation of angle α is the map Tα : [0, 1]→ [0, 1] defined by

Tα(x) = (x + α) mod 1.

It can be seen as a 2-interval exchange transformation

1− α α

+α +α− 1

We will study the dynamics of interval exchange transformations
from both the topological and measurable viewpoints.
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We will study the dynamics of interval exchange transformations
from both the topological and measurable viewpoints.

I A rotation preserves the Lebesgue measure.

I Warning: a rotation is not continuous.

But we can build a continuous map T̂ : Xα → Xα where Xα is a
Cantor set, T̂ is an homeomorphism and there is a projection
p : Xα → I that commutes with the dynamics. (we say that T is a
factor of T̂ )
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Coding

A B

x0 x1x1 x2x2x3x3 x4x4x5x5 x6x6 x7x7

aba

x−1x−2 x−3x−4

To each point x ∈ [0, 1] that is not singular we associate a
biinfinite sequence that is the coding of x (for rotations these are
called Sturmian sequences).
Taking the closure of the set of codings, we obtain a shift
Xα ⊂ {A,B}Z.
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Coding

Theorem
If α is irrational, there is a unique continuous map p : Xα → [0, 1]
so that the coding of p(w) is w. All points have exactly one
preimage except the singular orbits that have two.

There is only one singular point for T−1 (i.e. α) that has a well
defined future orbit with code ω− ∈ {A,B}{0,1,2,3,...}.
There is exactly one singular point for T (i.e. 1− α) that has a
well defined past orbit ω+ ∈ {A,B}{...,−2,−1,0}.
The points in Xα that projects to the same point then correspond
to the orbit of ω+ABω− and ω+BAω−.
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Dynamical results

Theorem
Let α be irrational, and Xα be the Sturmian shift associated to the
rotation Tα. Then:

I pXα(n) = n + 1, in particular Xα has 0 entropy;

I the shift Xα is minimal (all orbits are dense);

I (Hecke (1922), Ostrowski (1922)) any clopen Y ⊂ Xα has
bounded remainder: there exists µY and CY so that

∀x ∈ Xα,∀n ≥ 0,

∣∣∣∣∣
n∑

k=0

(χY (T n
αx)− µY )

∣∣∣∣∣ ≤ CY .

In particular, the shift Xα is uniquely ergodic.

remark: for the clopens Y = [A] or Y = [B] we can pick CY = 1
(1-balancedness).
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Complexity and minimality

Proof.
Irrationality!



Rauzy induction and continued fractions

For a pair of positive real numbers λ = (λA, λB) we consider the
map Tλ : [0, |λ|]→ [0, |λ|] given by

Tλ(x) = x 7→ (x + λB) mod (λA + λB).

The map Tλ is a rescaling of the rotation with α = λB/(λA + λB).

The Rauzy induction is the procedure which associates to the map
Tλ the induced map on [0,min(λA, λB)].
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Rauzy induction and Rohlin towers

Rauzy induction describes a sequence of two Rohlin towers of a
rotation.

(. . . Sage . . . )
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I (Hecke (1922), Ostrowski (1922)) any clopen Y ⊂ Xα has
bounded remainder: there exists µY and CY so that

∀x ∈ Xα,∀n ≥ 0,

∣∣∣∣∣
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k=0

(χY (T n
αx)− µY )
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In particular, the shift Xα is uniquely ergodic.

Proof.

We proceed in several steps:

I It is enough to do it for cylinders Y = [u],

I Letters have uniform frequencies,

I From letters to all cylinders (. . . Sage . . . ).
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Rauzy induction and continued fractions

Let

A(λ) =

{
Abot if λA > λB ,
Atop if λA < λB .

where

Atop =

(
1 0
1 1

)
Abot =

(
1 1
0 1

)
.

Then the Rauzy induction can be written R(λ) = A(λ)−1λ (it is
piecewise linear). And its powers is a matrix product:
Rn(λ) = (An(λ))−1 λ where

An(λ) = A(λ)A(Rλ) . . .A(Rn−1λ).
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Rauzy induction and continued fractions

From this description it is possible to show that (λA, λB) can be
written as

λB
λA

= a0 +
1

a1 +
1

a2 +
1

. . .

.

This is called the continued fraction of λB/λA.

(. . . exercise . . . )
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