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A rotation is a 2-interval exchange transformation

We will study the dynamics of interval exchange transformations
from both the topological and measurable viewpoints.

> A rotation preserves the Lebesgue measure.

» Warning: a rotation is not continuous.
But we can build a continuous map T : X, — X, where X, is a
Cantor set, T is an homeomorphism and there is a projection

p : Xo — | that commutes with the dynamics. (we say that T is a
factor of T)
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To each point x € [0, 1] that is not singular we associate a
biinfinite sequence that is the coding of x (for rotations these are
called Sturmian sequences).

Taking the closure of the set of codings, we obtain a shift

X, C {A, B}~
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Coding

Theorem

If « is irrational, there is a unique continuous map p : X, — [0,1]
so that the coding of p(w) is w. All points have exactly one
preimage except the singular orbits that have two.

There is only one singular point for T~! (i.e. a) that has a well
defined future orbit with code w_ € {A, B}{01.23,-}

There is exactly one singular point for T (i.e. 1 — «) that has a
well defined past orbit wy € {A, B}{-»=2-10}

The points in X, that projects to the same point then correspond
to the orbit of wy ABw_ and wi BAw_.
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Dynamical results

Theorem
Let v be irrational, and X, be the Sturmian shift associated to the
rotation T,,. Then:

» px,(n) = n+1, in particular X, has 0 entropy;,
> the shift X, is minimal (all orbits are dense);

» (Hecke (1922), Ostrowski (1922)) any clopen Y C X, has
bounded remainder: there exists vy and Cy so that

n

> v (Tax) = py)

k=0

Vx € Xo,Vn >0, < Cy.

In particular, the shift X, is uniquely ergodic.

remark: for the clopens Y = [A] or Y = [B] we can pick Cy =1
(1-balancedness).



Complexity and minimality

Proof.

Irrationality!
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Rauzy induction and continued fractions

For a pair of positive real numbers A = (Aa, Ag) we consider the
map Ty : [0, |A]] = [0, [A]] given by

Ta(x) =x+— (x+Ag) mod (Aa+ Ag).
The map T) is a rescaling of the rotation with a = Ag/(Aa + Ag).

The Rauzy induction is the procedure which associates to the map
Ty the induced map on [0, min(Aa, Ag)].
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Rauzy induction and continued fractions

top induction
case A\g > Ay

B

A B
|
:A

A B

B ——
»—»—“
B A ;

(A, AB) = (A, A — Aa)

bot induction
case A\g < Aa
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Rauzy induction and Rohlin towers

Rauzy induction describes a sequence of two Rohlin towers of a
rotation.

(...Sage...)
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Hecke-Ostrowski theorem

Theorem

» (Hecke (1922), Ostrowski (1922)) any clopen Y C X, has
bounded remainder: there exists uy and Cy so that

n

> (e (TEx) = py)

k=0

Vx € X,,¥n >0, < Cy.

In particular, the shift X, is uniquely ergodic.

Proof.

We proceed in several steps:
» It is enough to do it for cylinders Y = [u],
» Letters have uniform frequencies,

» From letters to all cylinders (...Sage ...).

O
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Rauzy induction and continued fractions

Let bot
L[ APt if A > Mg,
A(A) - { AP if A < Ag.

10 11
top __ bot __
(1) =)

Then the Rauzy induction can be written R(\) = A(X\)71A (it is

piecewise linear). And its powers is a matrix product:
R™(A\) = (An(X)) " A where

where

An(N) = ANA(RN) ... A(R™1N).
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Rauzy induction and continued fractions

From this description it is possible to show that (A, Ag) can be
written as
B 1
L ———
DY 1
an+———r
1
a+—

This is called the continued fraction of Ag/Aa.

(...exercise ...)
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