Interval exchange transformations
Part II: Minimality, Rauzy induction and
Teichmüller flow)

Vincent Delecroix

November 2015, Salta
Rotations

Recall that for rotation we have:

Theorem

Let α be irrational, and X_α be the Sturmian shift associated to the rotation T_α. Then:

- $p_{X_\alpha}(n) = n + 1$, in particular X_α has 0 entropy;
- the shift X_α is minimal (all orbits are dense);
- (Hecke (1922), Ostrowski (1922)) any clopen $Y \subset X_\alpha$ has bounded remainder: there exists μ_Y and C_Y so that

\[
\forall x \in X_\alpha, \forall n \geq 0, \quad \left| \sum_{k=0}^{n} (\chi_Y(T_\alpha^k x) - \mu_Y) \right| \leq C_Y.
\]

In particular, the shift X_α is uniquely ergodic.
An interval exchange transformation is a piecewise translation of the interval that is a bijection from $I \{ \alpha_1^{top}, \ldots, \alpha_{d-1}^{top} \}$ to $I \{ \alpha_1^{bot}, \ldots, \alpha_{d-1}^{bot} \}$.

The above interval exchange can be defined from:

- a "permutation" $\pi = (A \ B \ C \ D \ C \ A \ D \ B)$,
- a length vector $\lambda = (\lambda_A, \lambda_B, \lambda_C, \lambda_D)$.
Interval exchange transformations

An interval exchange transformation is a piecwise translation of the interval that is a bijection from \(I \setminus \{\alpha_{1}^{\text{top}}, \ldots, \alpha_{d-1}^{\text{top}}\} \) to \(I \setminus \{\alpha_{1}^{\text{bot}}, \ldots, \alpha_{d-1}^{\text{bot}}\} \).

The above interval exchange can be defined from:

- a "permutation" \(\pi = \begin{pmatrix} A & B & C & D \\ C & A & D & B \end{pmatrix} \),
- a length vector \(\lambda = (\lambda_A, \lambda_B, \lambda_C, \lambda_D) \).
Main motivation: rational billiards

(... Sage ...)
As we did for rotations, we could code orbits in \(\{A, B, C, D\}^\mathbb{Z} \) (except the singular ones). We obtain a shift \(X_{\pi, \lambda} \) and a factor map \(p : X_{\pi, \lambda} \to I \).
As we did for rotations, we could code orbits in \{A, B, C, D\}^\mathbb{Z} (except the singular ones). We obtain a shift $X_{\pi, \lambda}$ and a factor map $p : X_{\pi, \lambda} \to I$. All orbits of the iet $T_{\pi, \lambda}$ has one preimage in $X_{\pi, \lambda}$ except the singular ones that have two (i.e. the future orbits of $\alpha_{1}^{bot}, \ldots, \alpha_{2}^{bot}$ and the past orbits of $\alpha_{1}^{top}, \ldots, \alpha_{d-1}^{bot}$).
Connections

\[\Sigma^{\text{top}} := \{ \alpha_1^{\text{top}}, \ldots, \alpha_{d-1}^{\text{top}} \} \text{ (singularities of } T) \]

\[\Sigma^{\text{bot}} := \{ \alpha_1^{\text{bot}}, \ldots, \alpha_{d-1}^{\text{bot}} \} \text{ (singularities of } T^{-1}). \]

A connection is a triple \((m, \alpha, \beta)\) where \(m \geq 0, \alpha \in \Sigma^{\text{top}}, \beta \in \Sigma^{\text{bot}}\) and \(T^m \beta = \alpha.\)
Connections

$\Sigma^{\text{top}} := \{\alpha_{1}^{\text{top}}, \ldots, \alpha_{d-1}^{\text{top}}\}$ (singularities of T)

$\Sigma^{\text{bot}} := \{\alpha_{1}^{\text{bot}}, \ldots, \alpha_{d-1}^{\text{bot}}\}$ (singularities of T^{-1}).

A connection is a triple (m, α, β) where $m \geq 0$, $\alpha \in \Sigma^{\text{top}}$, $\beta \in \Sigma^{\text{bot}}$ and $T^m \beta = \alpha$.

- A rotation has a connection if and only if the angle is rational.
Connections

$\Sigma^{top} := \{\alpha^{top}_1, \ldots, \alpha^{top}_{d-1}\}$ (singularities of T)

$\Sigma^{bot} := \{\alpha^{bot}_1, \ldots, \alpha^{bot}_{d-1}\}$ (singularities of T^{-1}).

A connection is a triple (m, α, β) where $m \geq 0$, $\alpha \in \Sigma^{top}$, $\beta \in \Sigma^{bot}$ and $T^m \beta = \alpha$.

- A rotation has a connection if and only if the angle is rational.
- If the length data λ is rational

$$\dim_{\mathbb{Q}} \left(\mathbb{Q} \frac{\lambda_1}{\lambda_d} + \mathbb{Q} \frac{\lambda_2}{\lambda_d} + \ldots + \mathbb{Q} \frac{\lambda_{d-1}}{\lambda_d} \right) = 1$$

then there are $d - 1$ connections (and all orbits are periodic).
Connections

\[\Sigma^{\text{top}} := \{ \alpha_{1}^{\text{top}}, \ldots, \alpha_{d-1}^{\text{top}} \} \text{ (singularities of } T) \]
\[\Sigma^{\text{bot}} := \{ \alpha_{1}^{\text{bot}}, \ldots, \alpha_{d-1}^{\text{bot}} \} \text{ (singularities of } T^{-1}). \]

A **connection** is a triple \((m, \alpha, \beta)\) where \(m \geq 0\), \(\alpha \in \Sigma^{\text{top}}\), \(\beta \in \Sigma^{\text{bot}}\) and \(T^{m} \beta = \alpha\).

\[\triangleright \text{ A rotation has a connection if and only if the angle is rational.} \]
\[\triangleright \text{ If the length data } \lambda \text{ is rational} \]
\[\dim_{\mathbb{Q}} \left(\mathbb{Q} \frac{\lambda_{1}}{\lambda_{d}} + \mathbb{Q} \frac{\lambda_{2}}{\lambda_{d}} + \ldots + \mathbb{Q} \frac{\lambda_{d-1}}{\lambda_{d}} \right) = 1 \]

then there are \(d - 1\) connections (and all orbits are periodic).

\[\triangleright \text{ If the length data } \lambda \text{ is maximally irrational} \]
\[\dim_{\mathbb{Q}} \left(\mathbb{Q} \frac{\lambda_{1}}{\lambda_{d}} + \mathbb{Q} \frac{\lambda_{2}}{\lambda_{d}} + \ldots + \mathbb{Q} \frac{\lambda_{d-1}}{\lambda_{d}} \right) = d - 1 \]

then there are no connection.
Coding

Theorem

Let $X_{\pi,\lambda}$ be the shift associated to an interval exchange transformation $T_{\pi,\lambda}$ on d intervals with π irreducible. Then the following are equivalent

- $p_{\pi,\lambda}(n) = (d - 1)n + 1$,
- $T_{\pi,\lambda}$ has no connection.
Theorem

Let $X_{\pi, \lambda}$ be the shift associated to an interval exchange transformation $T_{\pi, \lambda}$ on d intervals with π irreducible. Then the following are equivalent

- $p_{\pi, \lambda}(n) = (d - 1)n + 1$,
- $T_{\pi, \lambda}$ has no connection.

In general

$$\lim_{n \to \infty} \frac{p_{\pi, \lambda}(n)}{n} = (d - 1) - \#\text{connections}.$$
Minimality: Keane theorem

Theorem

If $T_{\pi,\lambda}$ has no connection then $X_{\pi,\lambda}$ is minimal. In other words, all infinite orbits of $T_{\pi,\lambda}$ are dense.
Minimality: Keane theorem

Theorem

If $T_{\pi,\lambda}$ has no connection then $X_{\pi,\lambda}$ is minimal. In other words, all infinite orbits of $T_{\pi,\lambda}$ are dense.

Corollary

Let π be a primitive substitution. Then for almost every λ with respect to the Lebesgue measure, the interval exchange transformation $T_{\pi,\lambda}$ is minimal.
Minimality: Keane theorem

Theorem

If $T_{\pi,\lambda}$ has no connection then $X_{\pi,\lambda}$ is minimal. In other words, all infinite orbits of $T_{\pi,\lambda}$ are dense.

Corollary

Let π be a primitive substitution. Then for almost every λ with respect to the Lebesgue measure, the interval exchange transformation $T_{\pi,\lambda}$ is minimal.

Corollary

In a rational billiard, excepted countably many directions the flow is minimal.
Back and forth between iet and translation surfaces

Poincaré maps

suspensions

I. E. T.

Translation Surfaces
Back and forth between i.e.t. and translation surfaces

- Rauzy induction
- Poincaré maps
- I. E. T.
- Translation Surfaces
- Teich. flow
- suspensions