Interval exchange transformations Part III: Linear recurrence and invariant measures

Vincent Delecroix

November 2015, Salta

Rauzy induction and Teichmüller flow

The Rauzy induction can be viewed as a first return map of the Teichmüller flow.

Theorem

Let $T_{\pi,\lambda}$ be an i.e.t. without connection. Let $A_n(\pi,\lambda)$ the matrix products associated to the Rauzy induction (i.e. $\lambda = A_n(\pi,\lambda)\lambda^{(n)}$) and let $C_{\pi,\lambda} := \bigcap_{n>0} A_n(\pi,\lambda)\mathbb{R}_+^{\mathcal{A}}$. The map

$$\mathcal{M}_{\mathcal{T}} \to \mathbb{R}_{+}^{\mathcal{A}}$$

$$\mu \mapsto (\mu[\alpha])_{\alpha \in \mathcal{A}}$$

induces an homeomorphism between $\mathcal{M}_{\mathcal{T}}$ and $\mathbb{P}\mathcal{C}_{\pi,\lambda}$.

Theorem

Let $T_{\pi,\lambda}$ be an i.e.t. without connection. Let $A_n(\pi,\lambda)$ the matrix products associated to the Rauzy induction (i.e. $\lambda = A_n(\pi,\lambda)\lambda^{(n)}$) and let $C_{\pi,\lambda} := \bigcap_{n>0} A_n(\pi,\lambda)\mathbb{R}_+^{\mathcal{A}}$. The map

$$\mathcal{M}_{\mathcal{T}} \to \mathbb{R}_{+}^{\mathcal{A}}$$

$$\mu \mapsto (\mu[\alpha])_{\alpha \in \mathcal{A}}$$

induces an homeomorphism between $\mathcal{M}_{\mathcal{T}}$ and $\mathbb{P}\mathcal{C}_{\pi,\lambda}$.

Corollary

▶ a d-iet has at most d — 1-invariant measures.

Theorem

Let $T_{\pi,\lambda}$ be an i.e.t. without connection. Let $A_n(\pi,\lambda)$ the matrix products associated to the Rauzy induction (i.e. $\lambda = A_n(\pi,\lambda)\lambda^{(n)}$) and let $C_{\pi,\lambda} := \bigcap_{n>0} A_n(\pi,\lambda)\mathbb{R}_+^A$. The map

$$\mathcal{M}_{\mathcal{T}} \to \mathbb{R}_{+}^{\mathcal{A}}$$

$$\mu \mapsto (\mu[\alpha])_{\alpha \in \mathcal{A}}$$

induces an homeomorphism between $\mathcal{M}_{\mathcal{T}}$ and $\mathbb{P}\mathcal{C}_{\pi,\lambda}$.

Corollary

- ▶ a d-iet has at most d 1-invariant measures.
- irrational angle rotations are uniquely ergodic!

Theorem

Let $T_{\pi,\lambda}$ be an i.e.t. without connection. Let $A_n(\pi,\lambda)$ the matrix products associated to the Rauzy induction (i.e. $\lambda = A_n(\pi,\lambda)\lambda^{(n)}$) and let $C_{\pi,\lambda} := \bigcap A_n(\pi,\lambda)\mathbb{R}_+^{\mathcal{A}}$. The map

$$\mathcal{M}_{\mathcal{T}} \to \mathbb{R}_{+}^{\mathcal{A}}$$

$$\mu \mapsto (\mu[\alpha])_{\alpha \in \mathcal{A}}$$

induces an homeomorphism between $\mathcal{M}_{\mathcal{T}}$ and $\mathbb{P}\mathcal{C}_{\pi,\lambda}$.

Corollary

- \triangleright a d-iet has at most d 1-invariant measures.
- irrational angle rotations are uniquely ergodic!

rk: sharp bound (Katok, Veech, Fickenscher), symbolic systems (Boshernitzan, Monteil), finite topological rank (Bezuglyi-Kwiatkowski-Medynets-Solomyak).

Linear recurrence and Boshernitzan condition

Let $X\subset\mathcal{A}^{\mathbb{Z}}$ be a minimal shift with an invariant measure $\mu.$ We define

$$\varepsilon_n(X,\mu) = \min_{u \in \mathcal{L}_{X,n}} \mu([u]).$$

Linear recurrence and Boshernitzan condition

Let $X\subset \mathcal{A}^{\mathbb{Z}}$ be a minimal shift with an invariant measure $\mu.$ We define

$$\varepsilon_n(X,\mu) = \min_{u \in \mathcal{L}_{X,n}} \mu([u]).$$

Definition

We say that (X, T, μ)

- ▶ is linearly recurrent if $\liminf_{n\to\infty} n\varepsilon_n(X,\mu) > 0$,
- ▶ satisfies Boshernitzan condition if $\limsup_{n\to\infty} n\varepsilon_n(X,\mu) > 0$.

Definition

 (X, T, μ) is linearly recurrent if $\liminf_{n \to \infty} n\varepsilon_n(X, \mu) > 0$.

Definition

 (X, T, μ) is linearly recurrent if $\liminf_{n \to \infty} n \varepsilon_n(X, \mu) > 0$.

Theorem (Boshernitzan, Lenz-Boshernitzan)

 (X, T, μ) is linearly recurrent iff $\exists C, \ \forall u, \ \forall v \in \mathcal{R}_u, \ |v| \leq C|u|$.

Definition

 (X, T, μ) is linearly recurrent if $\liminf_{n \to \infty} n \varepsilon_n(X, \mu) > 0$.

Theorem (Boshernitzan, Lenz-Boshernitzan)

 (X, T, μ) is linearly recurrent iff $\exists C, \ \forall u, \ \forall v \in \mathcal{R}_u, \ |v| \leq C|u|$.

Theorem

Let $T_{\pi,\lambda}:I\to I$ be a linearly recurrent iet. Then there exists C_1 , C_2 so that for all $x,y\in I$ and $n\geq 1$

$$d(T^n x, x) \ge \frac{C_1}{n}$$
 and $\min_{0 \le k \le n-1} d(y, T^k x) \le \frac{C_2}{n}$.

▶ LR ⇒ unique ergodicity

Definition

 (X, T, μ) is linearly recurrent if $\liminf_{n \to \infty} n \varepsilon_n(X, \mu) > 0$.

Theorem (Boshernitzan, Lenz-Boshernitzan)

 (X, T, μ) is linearly recurrent iff $\exists C, \ \forall u, \ \forall v \in \mathcal{R}_u, \ |v| \leq C|u|$.

Theorem

Let $T_{\pi,\lambda}:I\to I$ be a linearly recurrent iet. Then there exists C_1 , C_2 so that for all $x,y\in I$ and $n\geq 1$

$$d(T^n x, x) \ge \frac{C_1}{n} \quad and \quad \min_{0 \le k \le n-1} d(y, T^k x) \le \frac{C_2}{n}.$$

- ▶ LR ⇒ unique ergodicity
- i.e.t. with periodic Rauzy induction is LR (substitutive)

Definition

 (X, T, μ) is linearly recurrent if $\liminf_{n \to \infty} n \varepsilon_n(X, \mu) > 0$.

Theorem (Boshernitzan, Lenz-Boshernitzan)

$$(X, T, \mu)$$
 is linearly recurrent iff $\exists C, \ \forall u, \ \forall v \in \mathcal{R}_u, \ |v| \leq C|u|$.

Theorem

Let $T_{\pi,\lambda}:I\to I$ be a linearly recurrent iet. Then there exists C_1 , C_2 so that for all $x,y\in I$ and $n\geq 1$

$$d(T^n x, x) \ge \frac{C_1}{n} \quad and \quad \min_{0 \le k \le n-1} d(y, T^k x) \le \frac{C_2}{n}.$$

- ▶ LR ⇒ unique ergodicity
- ▶ i.e.t. with periodic Rauzy induction is LR (substitutive)
- for rotations: T_{α} LR $\Leftrightarrow \alpha$ has bounded partial quotients

Boshernitzan criterion

Definition

 (X, T, μ) satisfies Boshernitzan condition if $\limsup_{n \to \infty} n\varepsilon_n(X, \mu) > 0$.

Boshernitzan criterion

Definition

 (X, T, μ) satisfies Boshernitzan condition if $\limsup_{n \to \infty} n\varepsilon_n(X, \mu) > 0$.

Theorem

Let (X, T, μ) be a shift that satisfies Boshernitzan criterion. Then it is uniquely ergodic.

Boshernitzan criterion

Definition

 (X, T, μ) satisfies Boshernitzan condition if $\limsup_{n \to \infty} n\varepsilon_n(X, \mu) > 0$.

Theorem

Let (X, T, μ) be a shift that satisfies Boshernitzan criterion. Then it is uniquely ergodic.

rk: the converse is not true! But not far...

Correspondence

(symbolic)		(geometric)	
$n\varepsilon_n$	Rauzy in-	Teichmüller	best approximations
	duction	flow	
$\lim \inf > 0$	finite time	bounded	$\lim\inf q_n\{q_n\alpha\}>0$
(LR)	positive-	g_t -orbit	
	ness		
lim sup > 0	?	non-	$\limsup q_{n+1}\{q_n\alpha\}>0$
(Bosh.		divergent	
cond.)		g_t -orbit	

Correspondence

(symbolic)		(geometric)	
$n\varepsilon_n$	Rauzy in-	Teichmüller	best approximations
	duction	flow	
$\lim \inf > 0$	finite time	bounded	$\lim\inf q_n\{q_n\alpha\}>0$
(LR)	positive-	g_t -orbit	
	ness		
lim sup > 0	?	non-	$\limsup q_{n+1}\{q_n\alpha\}>0$
(Bosh.		divergent	
cond.)		g_t -orbit	

Lagrange spectrum (set of $\liminf n\varepsilon_n$) and Dirichlet spectrum (set of $\limsup n\varepsilon_n$)...(Markov, Hall, Moreira, Ferenczi, Hubert-Marchese-Ulcigrai, Boshernitzan-Delecroix)