On the functional-differential equation of advanced type
\[f'(x) = af(2x) \] with \(f(0) = 0 \)

Tsuyoshi Yoneda

Department of Mathematics, Osaka Kyoiku University, Kashiwara, Osaka 582-8582, Japan

Received 25 August 2004
Available online 22 December 2005
Submitted by T. Krisztin

Abstract

In this paper we construct solutions for the equation
\[
\begin{cases}
 f'(x) = af(2x), & -\infty < x < +\infty, \\
 f(0) = 0,
\end{cases}
\]
where \(a \) is a constant with \(a \neq 0 \). The solutions are infinitely differentiable and bounded on \(\mathbb{R} \). Using our method, we can get numerical data easily with a computer. Applying one of the solutions we show that the derivative of order \(k \geq 0 \) of a function \(v \in C^k(\mathbb{R}) \) or \(v \in L_p^k(\mathbb{R}) \) coincides \(\lim_{\epsilon \to 0} v * G_{k,\epsilon} \), where \(L_p^k(\mathbb{R}) \) is the Sobolev space and \(\{G_{k,\epsilon}\}_{\epsilon>0} \) is a family of \(C^\infty \)-functions.

Keywords: Functional-differential equation; Advanced type

1. Introduction

Frederickson [1,2] (1971) investigated functional-differential equations of advanced type
\[f'(x) = af(\lambda x) + bf(x), \] (1)

Frederickson [1] provided a global existence theorem for equations
\[f'(x) = F(f(2x)), \quad x \in \mathbb{R} = (-\infty, +\infty), \]
where F is an odd, continuous function with $F(s) > 0$ for $s > 0$. In [1] he applied the Schauder fixed point theorem to the proof. He showed that the absolute value of the solution $|f(x)|$ is periodic for $x \geq 0$. Frederickson [2] also provided a constructive method of solutions for equations of advanced type

$$f'(z) = af(\lambda z) + bf(z),$$

where $a, b \in \mathbb{C}$ and $\lambda > 1$. He gave solutions in the form of a Dirichlet series

$$\varphi(z, \beta) = \sum_{n \in \mathbb{Z}} c_n e^{\beta \lambda z}, \quad \Re(\beta z) \leq 0,$$

where β is allowed to vary as a parameter. In the case of $b = 0$ and $\beta = i$, the solution is analytic in the upper half plane $\Im z > 0$, continuous on $\Im z \geq 0$, and the line $\Im z = 0$ is a natural boundary.

In this paper, using another method, we construct solutions for the equation

$$\begin{cases} f'(x) = af(2x), & x \in \mathbb{R} = (-\infty, +\infty), \\ f(0) = 0, \end{cases}$$

(2)

where a is a constant with $a \neq 0$. The solution is not unique. If f is a solution, then a constant times f is also a solution. Our solutions are infinitely differentiable and bounded on \mathbb{R}. Using our method we can get numerical data easily with a computer. We also give the Fourier transform of one of our solutions and show the uniqueness of the solution of (2) with a certain condition.

Applying one of the solutions we show that the derivative of order $k \geq 0$ of a function $v \in C^k(\mathbb{R})$ or $v \in L^p_k(\mathbb{R})$ coincides $\lim_{\epsilon \to 0} v \ast G_{k, \epsilon}$, where $L^p_k(\mathbb{R})$ is the Sobolev space and $\{G_{k, \epsilon}\}_{\epsilon > 0}$ is a family of C^∞-functions.

2. Main results

Our main results are the following:

Theorem 1. If $a > 0$, then there exists a solution $f \in C^\infty(\mathbb{R}) \cap L^\infty(\mathbb{R})$ of (2) with $f \neq 0$ such that f vanishes on $(-\infty, 0]$ and $|f|$ has period $4/a$ on $[0, +\infty)$. If $a < 0$, then there exists a solution $f \in C^\infty(\mathbb{R}) \cap L^\infty(\mathbb{R})$ of (2) with $f \neq 0$ such that f vanishes on $[0, +\infty)$ and $|f|$ has period $4/|a|$ on $(-\infty, 0]$.

If there exists a solution f of

$$\begin{cases} f'(x) = 4f(2x), & x \in \mathbb{R}, \\ f(0) = 0, \end{cases}$$

(3)

such that f vanishes on $(-\infty, 0]$ and $|f|$ has period 1 on $[0, +\infty)$, then $f(ax/4)$ is a solution of (2). If $a > 0$, then $f(ax/4)$ vanishes on $(-\infty, 0]$ and $|f(ax/4)|$ has period $4/a$ on $[0, +\infty)$. If $a < 0$, then $f(ax/4)$ vanishes on $[0, +\infty)$ and $|f(ax/4)|$ has period $4/|a|$ on $(-\infty, 0]$.

To construct a solution of (3), we use the function u in the next lemma.

Lemma 2. There exist a nonnegative function u with supp $u \subset [0, 1]$ such that

(i) $u \in C^\infty(\mathbb{R}),$

(ii) $u(x)$ satisfies (3) for $0 \leq x \leq 1/2,$

(iii) $u(x) = u(1 - x)$ for $0 \leq x \leq 1.$
(iv) \(u(x) + u(1/2 - x) = 2 \) for \(0 \leq x \leq 1/2 \),
(v) \(u(x) \) is increase for \(0 \leq x \leq 1/2 \),
(vi) \(u^{(k)}(0) = u^{(k)}(1) = 0 \) for \(k = 0, 1, 2, \ldots \), and
(vii) \(\int_0^1 u(x) \, dx = 1 \).

Remark 3. The function \(u \) in Lemma 2 is unique. If \(v \) satisfies (ii), (iii) and \(v(1/4) = b \) \((b \in \mathbb{R})\), then \(v(x) = bu(x) \) for \(0 \leq x \leq 1 \) (see Theorem 11 and Remark 12).

The graph of the function \(u(x) \) is in Fig. 1.

Theorem 4. A solution \(f(x) \) of (3) is expressed by

\[
f(x) = \sum_{k=1}^{\infty} (-1)^n u(x - k + 1),
\]

where \(u \) is in Lemma 2 and

\[
\begin{aligned}
n_1 &= 0, \\
n_2 &= 1, \\
n_{2k-1} &= 1, \\n_{2k} &= 0, & \text{if } n_k = 1 \,(k \geq 2), \\
n_{2k-1} &= 0, \\n_{2k} &= 1, & \text{if } n_k = 0 \,(k \geq 2).
\end{aligned}
\]

Remark 5. Remark 3 shows that, if \(g(x) \) is a solution of (3) with \(g(x) = g(1 - x) \) for \(0 \leq x \leq 1 \) and \(g(1/4) = b \), then \(g(x) = bf(x) \) for \(0 \leq x \leq 1 \), where \(f \) is in (4). If \(g \) is a solution of (3), then the value of \(g(x) \) on \([2^k, 2^{k+1}]\) is determined by the value of \(g'(x) \) on \([2^{k-1}, 2^k]\), \(k = 0, 1, 2, \ldots \). Therefore, \(g(x) = bf(x) \) for \(x \geq 0 \).

The solution \(f(x) \) satisfies

\[
f(2^n + t) = (-1)^n f(2^n - t), \quad t \in [0, 2^{n+1}], \quad n = 1, 2, \ldots,
\]

and \(|f(x)| \) has period 1 on \([0, +\infty)\) as Frederickson mentioned in [1]. Actually, \(f(x) = f(1 - x) \) \((x \in [0, 1/2])\) implies \(f(1/2 + t) = f(1/2 - t) \) \((t \in [0, 1/2])\). Then \(4f(1 + 2t) = f'(1/2 + t) = -f'(1/2 - t) = -4f(1 - 2t) \) \((t \in [0, 1/2])\), i.e. \(f(1 + t) = -f(1 - t) \) \((t \in [0, 1])\). This is the equality (5) for \(n = 1 \). In the same way we have (5) for \(n = 2, 3, \ldots \). Moreover, \(f \in C^\infty(\mathbb{R}) \).

The graph of the solution \(f(x) \) of (3) is in Fig. 2.

The next theorem is another expression of the solution \(f \). Let

\[
\hat{f}(\xi) = \mathcal{F} f(\xi) = \int_{\mathbb{R}} f(x) e^{-ix\xi} \, dx,
\]
and \(\text{sinc} \xi = \sin(\pi \xi)/(\pi \xi) \). Let \(S \) be the space of all rapidly decreasing functions and \(S' \) be the space of all tempered distributions.

Theorem 6. The Fourier transform of the solution \(f \) in (4) is expressed by

\[
\hat{f}(\xi) = \sum_{k=1}^{\infty} (-1)^n k e^{-i(k-1)\xi} \hat{u}(\xi), \quad \text{in } S',
\]

where

\[
\hat{u}(\xi) = e^{-i\xi/2} \lim_{n \to \infty} \prod_{k=1}^{n} \text{sinc}(\xi/(2^{k+1}\pi)) \cdot \text{sinc}(\xi/(2^{n+1}\pi)), \quad \text{uniformly on } \mathbb{R}.
\]

For a nonnegative integer \(k \) and \(1 \leq p \leq \infty \), let \(L^p_k(\mathbb{R}) \) be the Sobolev space. Applying \(f \) in (4), we have the following.

Theorem 7. Let \(f \) be the solution in (4) and

\[
G_{k,\epsilon}(x) = \left(2^{k(k-1)/2}e^{k+1}\right)^{-1} \left(f \chi_{[0,2^k]}\right)(x/\epsilon).
\]

If \(v \in C^k(\mathbb{R}) \) or \(v \in L^p_k(\mathbb{R}) \) (\(k \geq 0, \ 1 \leq p < \infty \)), then

\[
\frac{d^k v}{dx^k} = \lim_{\epsilon \to 0} v \ast G_{k,\epsilon},
\]

uniformly on each compact subset in \(\mathbb{R} \) or in \(L^p(\mathbb{R}) \), respectively.

Remark 8. \(G_{k,\epsilon} \) is in \(C^\infty(\mathbb{R}) \) with compact support. To prove the theorem, we use Friedrichs’ mollifier \(\frac{d^k v}{dx^k} \ast u_\delta = v \ast \frac{d^k u_\delta}{dx^k} \), where \(u_\delta = u(x/\delta)/\delta, \ \delta > 0, \) and \(u \) is the function in Lemma 2.

We construct a solution of (3) and prove Lemma 2 and Theorem 4 in the next section. We prove Theorems 6 and 7 in Sections 4 and 5, respectively.
3. Construction of a solution of (3)

In this section we prove Lemma 2 and Theorem 4 to construct a solution of (3). The initial value problem (3) is equivalent to the integral equation

\[f(x) = 2 \int_0^{2x} f(t) \, dt, \quad x \in \mathbb{R}. \]

(6)

If \(f \) is a solution of (3) and satisfies \(f(x) = f(1-x) \) (\(0 \leq x \leq 1 \)), then we have

\[2 \int_0^{2x} f(t) \, dt = f(x) = f(1-x) = 2 \int_0^{2(1-x)} f(t) \, dt = 2 \int_0^{2(1-x)} f(1-t) \, dt = 2 \int_{2x-1}^1 f(t) \, dt, \quad \frac{1}{2} \leq x \leq 1. \]

Then we define a function space \(X \) and an operator \(T : X \to X \) as follows:

\[X = \{ u \in L^1(\mathbb{R}) : \text{supp} u \subset [0, 1], \ u(x) = u(1-x) \}, \]

\[Tu(x) = \begin{cases} 2 \int_0^{2x} u(t) \, dt, & x \in [0, 1/2], \\ 2 \int_{2x-1}^1 u(t) \, dt, & x \in (1/2, 1], \\ 0, & x \notin [0, 1]. \end{cases} \]

We construct a function \(u \in X \) such that \(u = Tu \) in the proof of Lemma 2. Then \(u(x) \) satisfies (6) for \(x \in [0, 1/2] \). The function \(u(x) \) satisfies (6) for \(x \in (-\infty, 0] \) clearly. In the proof of Theorem 4 the function \(u(x) \) is extended uniquely to the right (increasing value of \(x \)) by using the equality \(f'(x) = 4f(2x) \).

3.1. Proof of Lemma 2 (Step 1)

We state two lemmas. Let \(\chi_I \) be the characteristic function of the interval \(I \subset \mathbb{R} \).

Lemma 9. The operator \(T \) is expressed by

\[Tu(x) = 2(\chi_{[0,1]} * u)(2x), \quad u \in X, \]

(7)

and satisfies

\[\int_0^1 u(x) \, dx = \int_0^1 Tu(x) \, dx, \]

(8)

\[Tu(x) \geq 0 \quad \text{if} \ u(x) \geq 0, \]

(9)

\[|Tu(x)| \leq 2 \int_0^1 |u(x)| \, dx. \]

(10)
Proof. From \(\text{supp} \ u \subseteq [0, 1] \) and \(\chi_{[0,1]}(2x - t) = \chi_{[2x-1,2x]}(t) \) it follows that

\[
2(\chi_{[0,1]} * u)(2x) = 2 \int_{0}^{1} \chi_{[0,1]}(2x - t)u(t) \, dt = 2 \int_{0}^{1} \chi_{[2x-1,2x]}(t)u(t) \, dt.
\]

Then we have (7). The properties (8)–(10) follows from (7) and the definition of \(T \).

Let \(u_0 = \chi_{[0,1]} \in X \) and \(u_{n+1} = Tu_n, \ n = 0, 1, 2 \ldots \). Then \(\{u_n\}_{n=0}^{+\infty} \) is a sequence of functions in \(X \). It follows from Lemma 9 that

\[
\int_{0}^{1} u_n(x) \, dx = 1, \quad 0 \leq u_n(x) \leq 2, \quad x \in \mathbb{R}.
\] (11)

We note that

\[
Tu_n(x) + Tu_n(1/2 - x) = 2 \quad x \in [0, 1/2], \ n = 0, 1, 2, \ldots
\] (12)

Actually,

\[
2 \int_{0}^{2x} u_n(t) \, dt + 2 \int_{0}^{1-2x} u_n(t) \, dt = 2 \int_{0}^{2x} u_n(t) \, dt + 2 \int_{2x}^{1} u_n(t) \, dt = 2.
\]

Lemma 10. There exists a function \(u \in X \) such that \(u_n(x) \to u(x) \) as \(n \to +\infty \) uniformly on \(\mathbb{R} \).

Proof. Let \(g_n = u_n - u_{n-1}, \ n = 1, 2, \ldots \). Then \(g_{n+1} = Tg_n \) and

\[
\begin{aligned}
g_n(x) + g_n(1/2 - x) &= 0, \quad x \in [0, 1/2], \\
g_n(x) &= g_n(1 - x), \quad x \in [0, 1], \quad n = 1, 2, \ldots \\
g_n(x) + g_n(3/2 - x) &= 0, \quad x \in [1/2, 1].
\end{aligned}
\] (13)

For example,

\[
g_1 = u_1 - u_0 = (4x \chi_{[0,1/2]} + (-4x + 4) \chi_{(1/2,1)}) - \chi_{[0,1]}
\]

\[
= (4x - 1) \chi_{[0,1/2]} + (-4x + 3) \chi_{(1/2,1)},
\]

\[
g_2 = Tg_1 = (16(x - 1/8)^2 - 1/4) \chi_{[0,1/4]} + (16(x - 3/8)^2 + 1/4) \chi_{(1/4,1/2]}
\]

\[
+ (-16(x - 5/8)^2 + 1/4) \chi_{(1/2,3/4]} + (16(x - 7/8)^2 - 1/4) \chi_{[3/4,1]}.
\]

We show

\[
\begin{aligned}
g_n(x) &\leq 0, \quad x \in [0, 1/4] \cup [3/4, 1], \quad n = 1, 2, \ldots, \\
g_n(x) &\geq 0, \quad x \in [1/4, 3/4],
\end{aligned}
\] (14)

by induction. At first, \(g_1 \) satisfies (14) clearly. Assume that \(g_n \) satisfies (14). From \(g_n(x) \leq 0, \ x \in [0, 1/4], \) and \(g_n(x) + g_n(1/2 - x) = 0, \ x \in [0, 1/2], \) it follows that

\[
g_{n+1}(x) = Tg_n(x) = 2 \int_{0}^{2x} g_n(t) \, dt \leq 0, \quad x \in [0, 1/8],
\]

and
\[g_{n+1}(x) = T g_n(x) = 2 \int_0^{2x} g_n(t) \, dt = 2 \int_0^{1/4} g_n(t) \, dt - 2 \int_{1/4}^{2x} g_n(1/2 - t) \, dt = 2 \int_0^{1/4} g_n(t) \, dt - 2 \int_{1/2 - 2x}^{1/4} g_n(t) \, dt = 2 \int_0^{1/4} g_n(t) \, dt - 2 \int_{1/4}^{1/2 - 2x} g_n(t) \, dt \leq 0, \quad x \in [1/8, 1/4]. \]

Using (13) for \(g_{n+1} \), we have (14) for \(n + 1 \) instead of \(n \).

Next we show \(\| g_{n+1} \|_{L^\infty} \leq 1/2 \| g_n \|_{L^\infty}, \quad n = 1, 2, \ldots. \) (15)

We note that \(\text{supp } g \subset [0, 1] \). From (13) for \(g_{n+1} \) it follows that

\[
\begin{align*}
\sup_{x \in [0, 1/2]} |g_{n+1}(x)| &= \sup_{x \in [1/2, 1]} |g_n(x)|, \\
\sup_{x \in [0, 1/4]} |g_{n+1}(x)| &= \sup_{x \in [1/4, 1/2]} |g_{n+1}(x)|.
\end{align*}
\]

Then we have \(\| g_{n+1} \|_{L^\infty} = \sup_{x \in [0, 1/4]} |g_{n+1}(x)| \). For \(x \in [0, 1/4] \) we have

\[
0 \geq g_{n+1}(x) = T g_n(x) = 2 \int_0^{2x} g_n(t) \, dt \geq 2 \int_0^{1/4} g_n(t) \, dt = g_{n+1}(1/8),
\]

since \(g_n(t) \leq 0 \) (\(t \in [0, 1/4] \)) and \(g_n(t) \geq 0 \) (\(t \in [1/4, 1/2] \)). Hence

\[
\| g_{n+1} \|_{L^\infty} = |g_{n+1}(1/8)| = 2 \int_0^{1/4} g_n(t) \, dt \leq \frac{1}{2} \| g_n \|_{L^\infty}.
\]

Therefore, we obtain (15). Thus \(\{u_n\} \) converge uniformly on \(\mathbb{R} \). \(\square \)

By Lemma 10, we have \(u = T u \). Moreover, from Lemma 9, (11) and (12) it follows that \(u \) satisfies (ii)–(v) and (vii) in Lemma 2.

3.2. Proof of Lemma 2 (Step 2)

We show that \(u \) satisfies (i) and (vi) in Lemma 2, i.e., \(u \in C^\infty(\mathbb{R}) \) and \(u^{(k)}(0) = u^{(k)}(1) = 0 \) for \(k = 0, 1, 2, \ldots \) by induction.

Fig. 3. \(g_1(x) \) and \(g_2(x) \).
The equality $u = Tu$, i.e.,
$$u(x) = \begin{cases} 2\int_0^{2x} u(t) \, dt, & x \in [0, 1/2], \\ 2\int_{2x-1}^{1} u(t) \, dt, & x \in (1/2, 1], \\ 0, & x \notin [0, 1] \end{cases}$$
(16)
implies that $u \in C^0(\mathbb{R})$ and $u(0) = u(1) = 0$.
Assume that $u \in C^k(\mathbb{R})$ and $u^{(k)}(0) = u^{(k)}(1) = 0$. Then the equality (16) implies that $u \in C^{k+1}(\mathbb{R} \setminus \{0, 1/2, 1\})$. From $u^{(k)}(0) = 0$ and the continuity of $u^{(k)}$ it follows that
$$\begin{cases} u^{(k+1)}(x) = 0 & (x < 0), \\ u^{(k+1)}(x) = (4u(2x))^{(k)} = 2^{k+2}u^{(k)}(2x) \to 0 & (x \to +0), \end{cases}$$
i.e.,
$$\lim_{x \to \pm 0} u^{(k+1)}(x) = 0.$$ By the mean value theorem, we have that
$$\frac{u^{(k)}(h) - u^{(k)}(0)}{h} = u^{(k+1)}(\theta h) \quad (0 < \theta < 1).$$
As $h \to 0$ we have that $u^{(k+1)}(0) = 0$ and $u^{(k+1)}$ is continuous at 0. By $u(x) = u(1-x)$ we have that $u^{(k+1)}(1) = 0$ and $u^{(k+1)}$ is continuous at 1. By
$$\begin{cases} u^{(k+1)}(x) = (4u(2x))^{(k)} = 2^{k+2}u^{(k)}(2x) \to 0 & (x \to 1/2 - 0), \\ u^{(k+1)}(x) = (-4u(2x-1))^{(k)} = -2^{k+2}u^{(k)}(2x-1) \to 0 & (x \to 1/2 + 0), \end{cases}$$
we have that $u^{(k+1)}(1/2) = 0$ and $u^{(k+1)}$ is continuous at 1/2. Therefore $u \in C^{k+1}(\mathbb{R})$ and $u^{(k+1)}(0) = u^{(k+1)}(1) = 0$.

3.3. Proof of Theorem 4

If f is a solution of (3), then the value of $f(x)$ on $[2^k, 2^{k+1}]$ is determined by the value of $f'(x)$ on $[2^{k-1}, 2^k]$.
We define a function $f \in L^{\infty}(\mathbb{R})$ as follows:
$$\begin{cases} f(x) = 0, & x \in (-\infty, 0), \\ f(x) = u(x), & x \in [0, 1], \\ f(x) = f'(x/2)/4, & x \in (1, 2], \\ f(x) = f'(x/2)/4, & x \in (2^k, 2^{k+1}], & k = 1, 2, \ldots. \end{cases}$$
By induction we show that f is a solution of (3) and that f is expressed by (4). Then from $u^{(k)}(0) = u^{(k)}(1) = 0$ for $k = 0, 1, 2, \ldots$ it follows that $u \in C^{\infty}(\mathbb{R})$.
First we show that
$$\begin{cases} f(x) = u(x) - u(x - 1), & x \in [0, 2], \\ f'(x) = 4f(2x), & x \in [0, 1]. \end{cases}$$
(17)
From $u(x) = u(1-x)$, $u'(x) = -u'(1-x)$ and $u(x) = u'(x/2)/4$ for $x \in [0, 1]$, it follows that, for $x \in [1, 2]$,
$$f(x) = f'(x/2)/4 = u'(x/2)/4 = -u'(1-x/2)/4 = -u(2-x) = -u(x-1).$$
Then we have (17). By (17) we have
\[u'(x) = f'(x) = 4f(2x) = 4u(2x) - 4u(2x - 1), \quad x \in [0, 1]. \quad (18) \]
Assume that, for general \(m \geq 2, \)
\[
\begin{align*}
& \left\{ \begin{array}{l}
 f(x) = \sum_{k=1}^{2(m-1)} (-1)^n u(x - k + 1), \quad x \in [0, 2(m-1)], \\
 f'(x) = 4f(2x), \\
 x \in [0, m-1].
\end{array} \right.
\end{align*}
\]
Then
\[
\begin{align*}
& \left\{ \begin{array}{l}
 f(x) = (-1)^{n_m} u(x - m + 1), \\
 f'(x) = (-1)^{n_m} u'(x - m + 1), \\
 x \in [m - 1, m].
\end{array} \right.
\end{align*}
\] (20)
If \(x \in \{2(m-1), 2m\}, \) then \(x/2 \in [m - 1, m] \) and \(x/2 - m + 1 \in [0, 1]. \) By (20) and (18) we have
\[
\begin{align*}
 f(x) &= \frac{1}{4} f'(x/2) = \frac{1}{4} (-1)^{n_m} u'(x/2 - m + 1) \\
 &= (-1)^{n_m} u(2(x/2 - m + 1)) - (-1)^{n_m} u(2(x/2 - m + 1) - 1) \\
 &= (-1)^{n_m} u(x - (2m - 1) + 1) - (-1)^{n_m} u(x - 2m + 1) \\
 &= (-1)^{n_{2m-1}} u(x - (2m - 1) + 1) + (-1)^{n_{2m}} u(x - 2m + 1).
\end{align*}
\]
This shows that (19) holds for \(m \) instead of \(m - 1. \) Therefore we have (4) and
\[f'(x) = 4f(2x), \quad x \in [0, +\infty). \]
Clearly
\[f'(x) = 4f(2x), \quad x \in (-\infty, 0). \]
Then \(f \) is a solution of (3).

4. Fourier transform of the solution \(f \) in (4)

Let \(w = \chi_{[0,1]} \). Then \(Tv(x) = 2(w * v)(2x) \) for \(v \in L^1(\mathbb{R}) \) with \(\text{supp} \ v \subset [0, 1] \). Hence
\[
\mathcal{F}(Tv)(\xi) = \hat{w}(\xi/2) \hat{v}(\xi/2), \quad \hat{w}(\xi) = e^{-i\xi/2} \text{sinc}(\xi/(2\pi)).
\]
By
\[
\mathcal{F}(T^{k+1}v)(\xi) = \hat{w}(\xi/2) \mathcal{F}(T^k v)(\xi/2),
\]
we have
\[
\mathcal{F}(T^n v)(\xi) = \prod_{k=1}^{n} \hat{w}(\xi/2^k) \cdot \hat{v}(\xi/2^n) = \prod_{k=1}^{n} \left(e^{-i\xi/2^{k+1}} \text{sinc}(\xi/(2^{k+1}\pi)) \right) \cdot \hat{v}(\xi/2^n),
\]
this is
\[
\mathcal{F}(T^n v)(\xi) = e^{-i\xi(1/2^{-n+1})} \prod_{k=1}^{n} \text{sinc}(\xi/(2^{k+1}\pi)) \cdot \hat{v}(\xi/2^n). \quad (21)
\]

Proof of Theorem 6. Using (21), we have
\[
\hat{u}_n(\xi) = \mathcal{F}(T^n \chi_{[0,1]})(\xi) = e^{-i\xi/2} \prod_{k=1}^{n} \text{sinc}(\xi/(2^{k+1}\pi)) \cdot \text{sinc}(\xi/(2^{n+1}\pi)).
\]
Lemma 10 shows that \(u_n = T^n \chi_{[0,1]} \) converges to \(u \) in \(L^1(\mathbb{R}) \). Hence \(\hat{u}_n \) converges to \(\hat{u} \) uniformly on \(\mathbb{R} \). Using the fact that the right-hand side of (4) converges to \(f \) in \(S' \), we have the conclusion.

Theorem 11. Let \(v \in L^1(\mathbb{R}) \) and \(\text{supp} \, v \subset [0,1] \). Then \(T^n v(x) \) converges to \(\hat{v}(0)u(x) \) uniformly on \(\mathbb{R} \), where \(u \) is in Lemma 10.

Proof. By (21) and Theorem 6 we have that \(\| \mathcal{F}(T^n v)\chi_{[-R,R]} \|_{L^1} \) is small uniformly for large \(R > 0 \) and that
\[
\mathcal{F}(T^n v)(\xi) = \hat{u}_n(\xi) \frac{e^{i \xi / 2^n + 1} \hat{v}(\xi / 2^n)}{\text{sinc}(\xi / (2^{n+1} \pi))} \rightarrow \hat{u}(\xi) \hat{v}(0), \quad \text{uniformly on } [-R, R].
\]

Hence \(\mathcal{F}(T^n v) \) converges to \(\hat{v}(0) \hat{u}(\xi) \) in \(L^1(\mathbb{R}) \). Therefore we have the conclusion.

Remark 12. If \(v \) satisfies (1), (2), \(\text{supp} \, v \subset [0,1] \) and \(v(1/4) = b \) (\(b \in \mathbb{R} \)), then \(v = T v \) and
\[
b = v(1/4) = 2 \int_0^{1/2} v(t) \, dt = \int_0^1 v(t) \, dt = \hat{v}(0).
\]

Hence \(v = bu \).

5. **Proof of Theorem 7**

Let \(u_\delta(x) = u(x/\delta)/\delta \). Since \(\int_{\mathbb{R}} u(x) \, dx = 1 \),
\[
v * \frac{d^k u_\delta}{dx^k} = \frac{d^k v}{dx^k} * u_\delta \rightarrow \frac{d^k v}{dx^k} \quad (\delta \rightarrow 0),
\]
uniformly on each compact subset in \(\mathbb{R} \) or in \(L^p(\mathbb{R}) \). From \(u(x) = f(x) \chi_{[0,1]}(x) \) and \(f'(x) = 4f(2x) \) it follows that
\[
\frac{d^k u}{dx^k}(x) = 2^{(k^2 + 3k)/2} f(2^k x) \chi_{[0,1]}(x) = 2^{(k^2 + 3k)/2} (f \chi_{[0,2^k]})(2^k x).
\]

Hence
\[
\frac{d^k u_\delta}{dx^k}(x) = \frac{1}{\delta^{k+1}} \frac{d^k u}{dx^k}(x/\delta) = \frac{2^{(k^2 + 3k)/2}}{\delta^{k+1}} (f \chi_{[0,2^k]})(2^k x/\delta).
\]

Let \(\epsilon = \delta / 2^k \). Then \(\frac{d^k u_\delta}{dx^k}(x) \equiv G_{k,\epsilon}(x) \).

Acknowledgments

The author thanks Professors Eiichi Nakai, Ryuichi Ashino, Akira Morimoto and Mr. Naohito Tomita for their useful comments.

References

