Contents

1 Introduction 7
1.1 What is a translation surface? 7
1.2 Examples 20

2 Basic topological and geometrical aspects 43
2.1 Topological classification of surfaces 43
2.2 Covering spaces 45
2.3 Singularities of translation surfaces 50
2.4 Geometric limits 57

3 Symmetries 61
3.1 Analytic automorphisms: isometries and translations 61
3.2 The Veech group 65
3.3 Cut-and-paste constructions 66
3.4 G-coverings 70
3.5 Hooper-Thurston-Veech construction 76
3.6 Application to the baker's surface 80

4 Translation flows 83
4.1 Translation flows and interval exchange transformations 83
4.2 Málaga maps 88
4.3 The jungle of infinite interval exchange transformations 88
4.4 Entropy 94
4.5 Parabolicity 97
4.6 Criteria for completeness of the flow 100

5 Recurrence and diffusion 103
5.1 Recurrence in finite area 103
5.2 The boxes lemma 105
5.3 Recurrence in periodic and non-periodic windtree models with $a = b = 1/2$ 106
5.4 Recurrence in G-coverings 109
5.5 Hooper-Thurston-Veech 113
5.6 Diffusion rate and quantitative recurrence in G-coverings 114

6 Invariant sets and invariant measures 119
6.1 Ergodicity and non-ergodicity of G-coverings 119
6.2 Hooper-Thurston-Veech 122
6.3 Minimality 125
6.4 Typical minimality and ergodicity from approximation by compact surfaces 130
6.5 Remarks 132

A Background on dynamical systems 133
A.1 Topological dynamics and measurable dynamics 133
A.2 Invariant measures of topological systems 133
A.3 Recurrence 134
A.4 Skew-products 135
CONTENTS

B Group action and the hyperbolic plane
 B.1 Approximation in Fuchsian groups ... 139
 B.2 Rosen continued fractions for G_A ... 140

C Compact translation surfaces ... 145
 C.1 Interval exchanges and suspensions ... 145
 C.2 Keane theorem and closed invariant sets 145
 C.3 Deviation of Birkhoff averages and diffusion 146
 C.4 Ergodicity and invariant measures ... 147
 C.5 Oseledets theorem for KZ (Chaika-Eskin) 147

D Eigenvalues of infinite graphs .. 149

E Discussion to have, open problems to solve 151
 E.1 Possible places to cut .. 151
 E.2 Ends of coverings ... 151
 E.3 Non-commutative KZ cocycle ... 151
 E.4 Potential examples for the introduction 151
 E.5 The metrics on flat surfaces of infinite type 152
 E.6 Huge coverings ... 152
 E.7 Panov plane ... 152
 E.8 Ehrenfest ... 153
 E.9 Non-abelian coverings .. 153
 E.10 Further questions ... 153