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Introduction Prefix codes are a simple and powerful class of variable-length codes that
are widely used in information compression and transmission. A famous example of prefix
codes are Huffman’s codes [Huf52]. In general, variable length codes are not resistant to
errors, since one deletion, insertion or change of a symbol can desynchronize the decoder
causing incorrect decoding of the whole remaining part of the message. However, in a large
class of codes called synchronizing codes resynchronization of the decoder is possible in
such situations. It is known that almost all maximal finite prefix codes are synchronizing
[FJTZ03]. Synchronization of finite prefix codes has been investigated a lot [Ba16,Bis08,
BP09, CDSGV92, Sch64, Sch67], see also the book [BPR10] and references therein. For
efficiency reasons it is important to use as short words resynchronizing the decoder as
possible to decrease synchronization time. However, despite the interest to synchronizing
prefix codes, the computational complexity of finding short synchronizing words for them
has not been studied so far. We provide a systematic investigation of this topic.

Each recognizable (by a finite automaton) maximal prefix code can be represented by
an automaton decoding the star of this code. For a finite code, this automaton can be
exponentially smaller than the representation of the code by listing all its words (consider,
for example, the code of all words of some fixed length). This can of course happen
even if the code is synchronizing. In different applications the first or the second way of
representing the code can be useful. In some cases large codes having a short description
may be represented by a minimized decoder, while in other applications the code can
be described by simply providing the list of all codewords. We study the complexity of
problems for both arbitrary and literal decoders of finite prefix codes.

Huffman decoders There is a strong relation between partial automata and prefix
codes [BPR10]. A set X of words is called a prefix code if no word in X is a prefix of
another word. The class of recognizable (by an automaton) prefix codes can be described
as follows. Take a strongly connected partial automaton A and pick a state r in it. Then
the set of all first return words of r (that is, words mapping r to itself such that each
non-empty prefix does not map r to itself) is a recognizable prefix code. Moreover, each
recognizable prefix code can be obtained this way. A prefix code is called maximal if it
is not a subset of another prefix code. The class of maximal recognizable prefix codes
corresponds to the class of complete automata. If a state r can be picked in an automaton
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in such a way that the set of all first return words is a finite prefix code, we call the
automaton a partial Huffman decoder. If such automaton is complete (and thus the finite
prefix code is maximal), we call it simply a Huffman decoder.

For the mentioned classes of decoders we obtain the following inapproximability result.

Theorem 1. Unless P = NP, the problem of finding a shortest synchronizing words cannot
be approximated in polynomial time within a factor of

(i) n1−ε for any ε > 0 for n-state binary strongly connected automata;
(ii) c log n for some c > 0 for binary n-states Huffman decoders;

(iii) n
1
2
−ε for any ε > 0 for binary n-state partial Huffman decoders.

We remark that for strongly connected automata the bound is optimal because there
exists a O(n)-approximation algorithm [GH11]. We also conjecture that for binary n-states
Huffman decoders the c log n-inapproximability bound is optimal.

Literal decoders The literal automaton of a maximal finite prefix code X is defined
as follows. The set of its states is the set of proper prefixes of the words in X and the
transitions are naturally defined to concatenate letters to the prefixes (or to map to the
empty prefix if the resulting word is in X). The number of states of a literal automaton is
polynomially equivalent to the total length of all words in the corresponding finite prefix
code. Thus, it is a natural model for the problems where the code is provided by simply
enumerating all its codewords.

Theorem 2. For literal n-state decoders there exist
(i) a polynomial time O(log n)-approximation algorithm
and
(ii) for any ε > 0 a quasi-polynomial time (1 + ε)-approximation algorithm
for the problem of finding a shortest synchronizing word.

We conjecture that there exists a polynomial time exact algorithm for this problem.

Mortal words A word is called mortal for a partial automaton A if its mapping is
undefined for all the states of A. The techniques that we develop can be easily adapted
to get the same inapproximability for the problem of finding a shortest mortal word. This
problem is connected for instance to the famous Restivo’s conjecture [Res81].

Theorem 3. Unless P = NP, the problem of finding a shortest mortal word cannot be
approximated in polynomial time within a factor of

(i) n1−ε for any ε > 0 for n-state binary strongly connected partial automata;
(ii) c log n for some c > 0 for n-state binary partial Huffman decoders.

We also propose a simple polynomial time O(log n)-approximation algorithm for this
problem in partial literal decoders.
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FIXED POINTS OF STURMIAN MORPHISMS AND THEIR DERIVATED WORDS
ABSTRACT

KAREL KLOUDA, KATEŘINA MEDKOVÁ, EDITA PELANTOVÁ, AND ŠTĚPÁN STAROSTA

1. Introduction

Sturmian words are probably the most studied object in combinatorics on words. They are aperiodic
words over a binary alphabet having the least factor complexity possible, in other words, their factor
complexity satisfies Cu(n) = n+1 for each n ∈ N. Many properties, characterizations and generalizations
are known, see for instance [4, 3, 2].

One of their characterizations is in terms of return words to their factors. Let u = u0u1u2 · · · be a
binary infinite word with ui ∈ {0, 1}. Let w = uiui+1 · · ·ui+n−1 be its factor. The integer i is called
an occurrence of the factor w. A return word to a factor w is a word uiui+1 · · ·uj−1 with i and j being
two consecutive occurrences of w such that i < j. In [13], Vuillon showed that an infinite word u is
Sturmian if and only if each nonempty factor w has exactly two distinct return words. A straightforward
consequence of this characterization is that if w is a prefix of u, we may write

u = rs0rs1rs2rs3 · · ·

with si ∈ {0, 1} and r0 and r1 being the two return words to w. The coding of these return words, the
word du(w) = s0s1s2 · · · is called the derivated word of u with respect to w, introduced in [6]. A simple
corollary of the characterization by return words and a result of [6] is that the derivated word du(w) is
also a Sturmian word. This simple corollary follows also from other results. For instance, it follows from
[1], where the authors investigate the derivated word of a standard Sturmian word and give its precise
description. It also follows from the investigation of a more general setting in [5], which may in fact be
used to describe derivated words of any episturmian word — generalized Sturmian words [7].

By the main result of [6], if u is a fixed point of a primitive morphism, the set of all derivated words
of u is finite (the result also follows from [8]). In this case, again by [6], a derivated word itself is a fixed
point of a primitive morphism.

In this article we study derivated words of fixed points of primitive Sturmian morphisms. By the results
of [10], any primitive Sturmian morphism may be decomposed using elementary Sturmian morphisms
— generators of the Sturmian monoid. We user the elementary Sturmian morphisms to describe the
relation between the derivated words of a Sturmian sequence. The main result of our article is an exact
description of the morphisms fixing the derivated words du(w) of u, where u is fixed by a Sturmian
morphism ψ and w is its prefix. For this purpose, we introduce an operation ∆ acting on the set of
Sturmian morphisms with unique fixed point, see Definition 4. Iterating this operation we create the
desired list of the morphisms as stated in Theorem 5. The Sturmian morphisms with two fixed points
are treated separately, see Proposition 6.

We continue our study by counting the number of derivated words, in particular by counting the distinct
elements in the sequence

(
∆k(ψ)

)
k≥1

. This number depends on the decomposition of ψ into the generators
of the special Sturmian monoid, see below in Section 2. Using this decomposition, Propositions 8 and 9
provide the exact number of derivated words for two specific classes of Sturmian morphisms.
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2 FIXED POINTS OF STURMIAN MORPHISMS AND THEIR DERIVATED WORDS

For a general Sturmian morphism ψ, Proposition 7 gives a sharp upper bound on their number. The
upper bound depends on the number of the elementary morphisms in the decomposition of ψ.

For our purposes, we do not fix the alphabet of a derivated word; two derivated words which differ
only by a permutation of letters are identified one with another. Moreover, in the sequel, we work only
with infinite words which are uniformly recurrent, i.e. each prefix w of u occurs in u infinitely many
times and the set of all return words to w is finite (and, thus, the alphabet of the derivated word of u
with respect to w is finite). Our aim is to describe the set

Der(u) = {du(w) : w is a prefix of u}.

2. Sturmian morphisms

Let A be a finite alphabet. A morphism over A∗ is a mapping ψ : A∗ 7→ A∗ such that ψ(vw) =
ψ(v)ψ(w) for all v, w ∈ A∗. The domain of the morphism ψ can be naturally extended to AN by

ψ(u0u1u2 · · · ) = ψ(u0)ψ(u1)ψ(u2) · · · .

A morphism ψ is primitive if there exists a positive integer k such that the letter a occurs in the word
ψk(b) for each pair of letters a, b ∈ A. A fixed point of a morphism ψ is an infinite word u such that
ψ(u) = u.

A morphism ψ is a Sturmian morphism if ψ(u) is a Sturmian word for any Sturmian word u. The set
of Sturmian morphisms together with composition forms the so-called Sturmian monoid usually denoted
St. We work with these four elementary Sturmian morphisms:

ϕa :

{
0→ 0

1→ 10
ϕb :

{
0→ 0

1→ 01
ϕα :

{
0→ 01

1→ 1
ϕβ :

{
0→ 10

1→ 1

and with the monoid M generated by them, i.e. M = 〈ϕa, ϕb, ϕα, ϕβ〉. The monoid M is also called
special Sturmian monoid. For a nonempty word u = u0 · · ·un−1 over the alphabet {a, b, α, β} we put

ϕu = ϕu0
◦ ϕu1

◦ · · · ◦ ϕun−1
.

The monoidM is not free. It is easy to show that for any k ∈ N we have

ϕαakβ = ϕβbkα and ϕaαkb = ϕbβka.

We can equivalently say that the following rewriting rules hold on the set of words from {a, b, α, β}∗:

(1) αakβ = βbkα and aαkb = bβka for any k ∈ N .

In [12], the author reveals a presentation of the Sturmian monoid which includes the special Sturmian
monoidM = 〈ϕa, ϕb, ϕα, ϕβ〉. A presentation of the special Sturmian monoid follows from this result. It
is also given explicitly in [9]:

Theorem 1. Let w, v ∈ {a, b, α, β}∗. The morphism ϕw is equal to ϕv if and only if the word v can be
obtained from w by applying the rewriting rules (1).

Note that the presentation of a generalization of the Sturmian monoid, the so-called episturmian
monoid, is also known, see [11]. The next lemma summarizes several simple and well-known properties
of Sturmian morphisms we exploit in the sequel.

Lemma 2. Let w ∈ {a, b, α, β}+.
(i) The morphism ϕw is primitive if and only if w contains at least one Greek letter α or β and at

least one Latin letter a or b.
(ii) If ϕw is primitive, then each of its fixed points is aperiodic and uniformly recurrent.
(iii) If ϕw is primitive, then it has two fixed points if and only if w belongs to {a, α}∗.

For w ∈ {a, b, α, β}∗ the rules (1) preserve positions in w occupied by Latin letters {a, b} and positions
occupied by Greek letters {α, β}. We define that a < b and α < β which allows the following definition.
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Definition 3. Let w ∈ {a, b, α, β}∗. The lexicographically greatest word in {a, b, α, β}∗ which can be
obtained from w by application of rewriting rules (1) is denoted N(w). If ψ = ϕw, then the word N(w)
is the normalized name of the morphism ψ and it is also denoted by N(ψ) = N(w).

3. Derivated words of fixed points of Sturmian morphisms

Let ψ ∈ 〈ϕa, ϕb, ϕα, ϕβ〉 and N(ψ) = w ∈ {a, b, α, β}∗ \ {a, α}∗ be the normalized name of the
morphism ψ. The word w has a prefix akβ or αkb for some k ∈ N. This property enables us to define
a transformation on the set of morphisms fromM\ 〈ϕa, ϕα〉. This transformation is in fact the desired
algorithm returning the morphisms ψ1, ψ2, . . . , ψ` mentioned above.

Definition 4. Let w ∈ {a, b, α, β}∗ \ {a, α}∗ be the normalized name of a morphism ψ, i.e., ψ = ϕw. We
put

∆(w) =

{
N(w′akβ) if w = akβw′,

N(w′αkb) if w = αkbw′

and, moreover, ∆(ψ) = ϕ∆(w).

Theorem 5. Let ψ ∈ 〈ϕa, ϕb, ϕα, ϕβ〉 be a primitive morphism and N(ψ) = w ∈ {a, b, α, β}∗ \ {a, α}∗
be its normalized name. Denote u the fixed point of ψ. The word x is (up to a permutation of letters) a
derivated word of u with respect to one of its prefixes if and only if x is the fixed point of the morphism
∆j(ψ) for some j ≥ 1.

Given a finite word u, we define the cyclic shift of u = u0u1 · · ·un−1 to be the word

cyc(u) = u1u2 · · ·un−1u0.

Proposition 6. Let w ∈ {a, α}∗ be the normalized name of a primitive morphism ψ and let a be its first
letter.

(i) Let u be the fixed point of ψ starting with 0. Denote v = b−1N(wb) ∈ {a, β}∗. We have
Der(u) = {v} ∪Der(v), where v is the unique fixed point of the morphism ϕv .

(ii) Let u be the fixed point of ψ starting with 1. Put v = cyc(w). We have Der(u) = Der(v), where
v is the fixed point of the morphism ϕv.

4. The number of derivated words

Proposition 7. If w ∈ {a, b, α, β}∗ \ {a, α}∗ it the normalized name of a primitive Sturmian morphism
ψ = ϕw and u is a fixed point of ψ, then

(2) 1 ≤ #Der(u) ≤ 3|w| − 4 .

Moreover, for any length n ≥ 2 there exist normalized names w′, w′′ ∈ {a, b, α, β}∗ \ {a, α}∗ of length n
such that

(i) ϕw′ and ϕw′′ are not powers of other Sturmian morphisms,
(ii) for the fixed points u′ and u′′ of the morphism ϕw′ and ϕw′′ , the lower resp. the upper bound in

(2) is attained.

We also provide precise numbers of distinct derivated words for these three types of morphisms:
(1) ψ is a standard morphism fromM, i.e. ψ ∈ 〈ϕb, ϕβ〉,
(2) ψ is a standard morphism fromM◦ E, i.e. ψ ∈ 〈ϕb, ϕβ〉 ◦ E,
(3) ψ is a morphism from 〈ϕa, ϕα〉.
To describe these numbers, we introduce the following morphism F : {a, b, α, β}∗ 7→ {a, b, α, β}∗

determined by
F (a) = α, F (α) = a, F (b) = β, F (β) = b,

and we set
cycF(w1w2w3 · · ·wn) = w2w3 · · ·wnF (w1)

for a finite word w1w2w3 · · ·wn.
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Proposition 8. Let u be a fixed point of a standard Sturmian morphism ψ which is not a power of any
other Sturmian morphism.

(i) If ψ = ϕw, then u has |w| distinct derivated words, each of them (up to a permutation of letters)
is fixed by one of the morphisms

ϕv0 , ϕv1 , ϕv2 , . . . , ϕv|w|−1
, where vk = cyck(w) for k = 0, 1, . . . , |w| − 1.

(ii) If ψ = ϕw ◦ E, then u has |w| distinct derivated words, each of them (up to a permutation of
letters) is fixed by one of the morphisms

ϕv0 ◦ E,ϕv1 ◦ E,ϕv2 ◦ E, . . . , ϕv|w|−1
◦ E, where vk = cyckF (w) for k = 0, 1, . . . , |w| − 1.

Proposition 9. Let w ∈ {α, a}∗ be the normalized name of a primitive morphism ψ such that the letter
a is a prefix of w. Moreover, assume that ψ is not a power of any other Sturmian morphism.

(i) The fixed point of ψ starting with 0 has exactly 1 + |w|α distinct derivated words.
(ii) The fixed point of ψ starting with 1 has exactly 1 + |w|a distinct derivated words.
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Abstract. A word u is a scattered factor of w if there exist u1, u2, ..., un,
and v0, v1, .., vn such that u = u1u2...un and w = v0u1v1u2v2...unvn. We
consider the set of length-k scattered factors (k-spectrum) of a given
word w, denoted ScatFactk(w). We prove several properties of the sets
ScatFactk(w) in the case of words w over a binary alphabet of length
2k for which the number of occurrences of each letter is equal. Such
words are called strictly balanced. In particular, motivated by the task
of recognising whether a set of words is a k-spectra of some word w,
we consider the question of which cardinalities n = | ScatFactk(w)| are
obtainable for each k. We also consider the task of reconstructing words
from their strictly balanced scattered factors.

1 Introduction

A scattered factor of w can be thought of as a representation of w in which some
parts are missing. As such, there is considerable interest in the relationship of
a word and its scattered factors from both a theoretical and practical point of
view. For an introduction, see [3]. On the one hand, it is easy to imagine how,
in any situation where discrete, linear data is read from an imperfect input –
such as when sequencing DNA or during the transmission of a digital signal –
scattered factors form a natural model, as multiple parts of the input may be
missed, but the rest will remain unaffected and in-sequence. On the other hand,
from a more theoretical perspective, there have been efforts to bridge the gap
between the non-commutative field of combinatorics on words with traditional
commutative mathematics via Parikh matricies (cf. e.g., [5, 6]) which are closely
related to, and influenced by the topic of scattered factors.

One of the most fundamental questions about scattered factors of words and
sets of scattered factors in general, is: given a set S of words (of length k), is S the
set of scattered factors (or a k-spectrum) of some word w. In general, it remains
a long standing goal of the theory to give a “nice” descriptive characterisation of
scattered factor sets (and similarly, k-spectra), and to better understand their
structure [3]. Another fundamental question concerning k-spectra, and one well
motivated in several applications, is the question of reconstruction: given a word
w of length n, for what values k does the k-spectrum of w uniquely determined?
This question has generally had more success with definitive answers in a variety
of cases. In particular, in [1], the exact bound of n

2 +1 is given in the general case.



Other variations, including for the definition of k-spectra where multiplicities are
also taken into account, are considered in [4], while [2] considers the question of
reconstructing words from their palindromic scattered factors.

In the current work, we consider the restricted setting of strictly balanced
words: words over a binary alphabet {a, b} with equal numbers of as and bs. We
show that the cardinality of their scattered factor sets ranges between k+ 1 and
2k and we prove for every k+1 ≤ i ≤ 3k−2 whether a k-spectrum of cardinality
i exists. Moreover some results between 3k− 1 and 2k are given. In Section 4 we
approach the question of reconstructing strictly balanced words from k-spectra
in the specific case that the spectra are also limited to strictly balanced words
only. While we are not able to resolve the question completely, we conjecture
that the situation is similar to the general case; we show that this bound holds
in the case that w contains at most two blocks of bs.

Before we are able to present our results, we need to define the setting of
strictly balanced words. We consider words w over an alphabet Σ = {a, b}. The
number of occurrences of a letter a ∈ Σ in a word w ∈ Σ∗ is denoted by |w|a.
The subset of Σ∗ which contains only words with equal numbers of occurrences
of letters is defined by Σ∗sb = {w ∈ Σ∗| ∀x, y ∈ Σ : |w|x = |w|y} and these
words are called strictly balanced. For example, abaa is not strictly balanced,
while abbaba is.

Definition 1. A word u = a1 . . . an ∈ Σn, for n ∈ N, is a scattered factor of
a word w ∈ Σ+ if there exists v0, . . . , vn ∈ Σ∗ with w = v0a1v1 . . . vn−1anvn.
Let ScatFact(w) denote the set of w’s scattered factors and consider addition-
ally ScatFactk(w) (full k-spectrum) and ScatFact≤k(w) (k-spectrum) as the two
subsets of ScatFact(w) which contain only the scattered factors of length k ∈ N
or the ones up to length k ∈ N.

We note two obvious, but important symmetries regarding k-spectra: forw ∈
Σ∗. ScatFact(wR) = {uR | u ∈ ScatFact(w)} and ScatFact(w) = {u | u ∈
ScatFact(w)} hold with the renaming morphism ·. Thus, from a structural point
of view, it is sufficient to consider only one representative (here the lexicograph-
ically smallest with a < b) from the equivalence classes.

2 Cardinalities of k-Spectra of Strictly Balanced Words

In the current section, we are interested in the cardinalties of the k spectra,
and in the question: which cardinalities are not possible? It is a straightforward
observation that not every subset of Σk is a k-spectrum of some word w. For
example aa and bb can only be scattered factors of a word containing both as
and bs, and therefore having either ab or ba as a scattered factor. In fact, for
k = 2, the sets {aa, ab, bb} and {aa, ba, bb} are the smallest possible k-spectra
of words of length 2k in both the general case, and when restricted to strictly
balanced words only. Moreover these sets are equivalent in the sense that one is
a renaming (or a reversal) of the other. Note that the largest possible set in this
case is {aa, ab, ba, bb} which has size 4 = 2k = 2k. Our first result generalises
the previous observation about minimal-size and maximal-size k-spectra.



Lemma 1. For all k ∈ N, the smallest reachable cardinality for any w ∈ Σ2k
sb

is |ScatFactk(w)| = k + 1, reached exactly for w = akbk (up to renaming and
reversal), and ScatFactk(akbk) = {arbs| r + s = k, r, s ∈ [k]0} holds.

Lemma 2. Let k ∈ N. Then w ∈ {ab, ba}k if and only if ScatFactk(w) = Σk.

By the Lemmas 1 and 2, the characterisation for the smallest and the largest
closure w.r.t. cardinality of the given set S are given. Now the gap in between
will be investigated. Since there does not exist a gap for k = 2, assume k ∈ N≥3.
The following two statements show that 2k − 1 and 2k are always reachable and
thus the possible cardinalities for k = 3 are fully characterised.

1. |ScatFactk(w)| = 2k − 1 iff w ∈ {(ab)ia2b2(ab)k−i−2 | i ∈ [k − 2]0} (in
particular ScatFactk(w) = Σk\{bi+1ak−i−1}),

2. |ScatFactk(w)| = 2k iff w ∈ {ak−1babk−1, ak−1bka}

The cardinality of 2k is important since there is a gap between k + 1 and 2k,
i.e. ∀w ∈ Σ2k

sb : |ScatFactk(w)| 6∈ {k + 2, . . . , 2k − 1}. This shows that with
increasing k the number of possible cardinalities at the beginning of the scala
from k + 1 to 2k decreases: the larger k is the more unlikely it is somehow to
find a k-spectrum of a small cardinality. To investigate the second gap we have
|ScatFactk(ak−ibkai)| = k(i+1)−i2+1 for i ∈

[
bk2 c

]
. It is worth noting that this

includes all square numbers being at least four: |ScatFactk(a
k
2 bka

k
2 )| =

(
k
2 + 1

)2
holds for k even. Moreover |ScatFactk(ak−2bka2)| = 3k− 3 holds. This result is
important since it will be shown in the following that the cardinalities 2k+ 1 up
to 3k− 4 are not reachable. In other words ak−2bka2 delivers the third smallest
cardinality after k + 1 and 2k. Contrarily the cardinality 3k − 2 belongs to the
word ak−1b2abk−2.

Proposition 1. For k ≥ 5, no word w ∈ Σ2k
sb has k-spectrum of cardinality

2k + i for i ∈ [k − 4], i.e. between 2k + 1 and 3k − 4 is a cardinality-gap.

We will end this analysis with the conjecture that in contrast to the first
gap, the last gap ends earlier the larger k is. More precisely, if for k ∈ N≥4 and
i ∈ [k − 2]0, w = a2b2(ab)k−3−iba(ab)i holds then |ScatFactk(w)| = 2k − 2 − i
follows. Notice that this conjecture implies that indeed similar to the second gap
here 4k− 4 is always reached. On the other hand, in contrast to the second gap,
the third gap is not of the form 4k − 4− i for i ∈ [k − 4].

3 Reconstructing Strictly Balanced Words from their
k-Spectra

As with the general case, it is easy to see that strictly balanced words of length
2k are not uniquely determined by their scattered factors of length k. In the
current section we discuss the question of when a strictly balanced word w of
length 2k is uniquely identified by the set ScatFactk′(w) ∩Σk′

sb for 2k > k′ > k.



Of course if k′ is odd then ScatFactk′(w) ∩Σk′

sb = ∅ for all words w, so in these
cases the answer is trivially negative. In the general case, Dress and Erdös [1]
showed, that if ScatFactk+1(w) = ScatFactk+1(w′) holds for w,w′ ∈ Σ2k then
w = w′ follows. If w is strictly balanced we found a straightforward proof for
their proposition. However, in both proofs, there is a necessity in some cases to
consider scattered factors u consisting mostly of as or mostly of bs – i.e., that do
not belong to Σ∗sb. Thus it remains an open problem whether the same bound of
k + 1 (or in the case that k is even, k + 2) is sufficient. While we do not resolve
the question completely, we conjecture that these bounds do still hold.

Conjecture 1. Let k ∈ N. Let k′ = k + 1 if k is odd, and k′ = k + 2 if k is even.
Let w,w′ ∈ Σ2k

sb such that ScatFactk′(w) = ScatFactk′(w′). Then w = w′.

It is possible to show that the conjecture holds when there are at most two
blocks of bs (by symmetry at most two blocks of as), i.e. w ∈ a∗b∗a∗b∗a∗ ∩Σ2k

sb :

– for k odd, w is uniquely determined by ScatFactk+1(w) ∩Σk
sb,

– for k even, w is uniquely determined by ScatFactk+2(w) ∩Σk
sb.
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Multidimensional subshifts of �nite type are discrete dynamical systems as a set of colorings
of an in�nite regular grid with elements of a �nite set A together with the shift action. The set of
colorings is de�ned by forbidding a �nite set of patterns all over the grid (also called local rules).
The most simple and most considered grids of this type are Z2 and more generally Zd for d ≥ 1.
In this case, one can consider a coloring as a bi-dimensional and in�nite word on the alphabet A.

They are notably involved in statistical physics in the study of so-called lattice models. These
models are often simple to describe : for instance, the hard square model is de�ned on alphabet
A = {0, 1} and by forbidding two 1 to appear on horizontally or vertically adjacent positions of
the lattice. However, these models and their physical constants, such as the entropy are di�cult
to apprehend with general methods, and involve speci�c properties of the considered model.

Although it is known that it is possible to compute the entropy of one-dimensional version of
these models by computing the greatest eigenvalue of a matrix which derives from the description
of the subshift, this is not possible for multidimensional subshifts. This is the consequence of a
result by M. Hochman and T. Meyerovitch in 2010, which states that the possibles values of the
entropy for multidimensional subshifts of �nite type are the Π1-computable numbers, including in
particular non-computable numbers.

The method developed for this purpose originates in the work of R. Berger and R. Robinson. It
has been developed further in order to characterize other dynamical aspects of SFT with computa-
bility conditions, with similar constructions. It consists in the implementation of Turing machines
in hierarchical structures that emerge from the local rules.

However, models studied in statistical physics obey to strong dynamical constraints and there
is still hope to include them into a sub-class of subshifts of �nite type for which the entropy is
uniformly computable (this means that there is an algorithm which can provide arbitrarily precise
approximations of the entropy, provided the precision and the local rules of the subshift). An
example of a constraint de�ning a class where this is veri�ed is the block gluing : this was proved
by R. Pavlov and M. Schraudner. This property means that two square blocks can be viewed in any
relative positions in some element of the subshift provided that the distance between the two blocks
is su�ciently large, with minimal distance not depending on the size of the blocks) is a computable
real number. Although they provided a construction to realize some class numbers as entropy of
block gluing SFT, they did not prove a characterization, and this problem seems di�cult. However,
it could be possible to �nd broader class for which the entropy is still computable.

A strategy to understand the limit between the general regime where Hochman and Meyero-
vitch's result holds and this restricted block gluing class is to quantify this property. This means
imposing that two patterns can be glued in any two positions in a con�guration of the subshift,
provided that the distance is great enough, where the minimal distance is a linear function of the
size of these patterns.

In a work with Mathieu Sablik, we made a step towards the limit, proving that the result of
Hochman and Meyerovitch is robust under the linear version of this property (where the minimal
distance function is O(n) where n is the size of the two square blocks). The aim of this talk
would be, after a presentation of the problem, to give an insight on the obstacles to this property
in the initial construction of Hochman and Meyerovitch, using a construction slightly simpler to
present, and on the methods used to overcome the obstacles. These methods involves in particular
a modi�cation of the Turing machine model and an operator on subshifts that acts by distortion.
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Abstract. We investigate the avoidability of unary patterns of size of
four with morphic permutations. More precisely, we show how to identify
precisely, given the positive integers i, j, k, the alphabets over which a
pattern xπi(x)πj(x)πk(x) is avoidable, where x is a word variable and π
is a function variable with values in the set of all morphic permutations of
the respective alphabets. This continues the work of [Manea et al., 2015],
where a complete characterisation of the avoidability of cubic patterns
with permutations was given.

1 Introduction

The avoidability of patterns in infinite words is an old area of interest with a first
systematic study going back to Thue. In these initial papers it was shown that
there exist a binary infinite morphic word and a ternary infinite morphic word
that avoid cubes and squares, respectively. That is, these infinite words do not
contain instances of the patterns xxx and xx, respectively.

In this article, we are studying the avoidability of repetitions in a gener-
alised setting. Namely, we are interested in the avoidability of unary patterns
with functional dependencies between variables. We are considering patterns like
xπi(x)πj(x)πk(x), where x is a word variable while π is function variable, which
can be replaced by bijective morphisms only. The instances of such patterns over
an alphabet Σ are obtained by replacing x with a concrete word, and π by a
morphic permutation of Σ. For example, an instance of the pattern xπ(x)xπ(x)
over Σ = {a, b} is the word uvuv such that |u| = |v|, and v is the image of u
under any permutation on the alphabet. Considering the permutation a → b,
and b→ a, then aba|bab|aba|bab is an instance of xπ(x)xπ(x).

In this setting, we continue the work of [Manea et al., 2015] as follows. In
that paper, a complete characterisation of the avoidability of cubic patterns
with permutations xπi(x)πj(x) was given. Furthermore, it was shown that there
exists a ternary word that avoids all patterns πi1(x) . . . πir (x) where r ≥ 4, x
a word variable over some alphabet Σ, with |x| ≥ 2 and |Σ| ≥ 3, and the
πij function variables that may be replaced by anti-/morphic permutations of
Σ. However, this result only holds when the length of x is restricted to be at
least 2. Also, it was shown that all patterns πi1(x) . . . πin(x) with n ≥ 4 under
morphic permutations are avoidable in alphabets of size 2, 3, and 4, but there
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exist patterns which are unavoidable in alphabets of size 5. We extend these
results by showing how to determine exactly, for a given unary pattern P of size
four with permutations, which are the alphabets in which it is avoidable.

The main result of our paper is that given i, j, k, we show how to compute the
value m such that the pattern xπi(x)πj(x)πk(x), with i, j, k ≥ 0, is unavoidable
in alphabets of size at least m and avoidable in alphabets of size 2, 3, 4, . . . ,m−1.
To achieve this, we define a series of parameters that allow us to characterize, for
each alphabet, what form the instances of the pattern may have over a certain
alphabet. Then, we show that for each pattern there exists an interval (whose left
end is 2 and right end is defined based on the respective parameters) such that
over each alphabet whose size is in the respective interval, there exists an infinite
word that does not contain instances of the given pattern. The structure of the
paper is as follows: we first give a series of basic definitions and preliminary
results. Then we define the aforementioned parameters, and show how to use
them to compute, for a given pattern, the minimum size σ of an alphabet over
which the respective pattern is unavoidable. Finally, we show the correctness
of the computation done in the previous step: for alphabets with less than σ
symbols the pattern is avoidable.

2 Preliminaries

We define Σk = {0, . . . , k − 1} to be an alphabet with k letters; the empty word
is denoted by ε. For words u and w, we say that u is a prefix (resp. suffix) of w,
if there exists a word v such that w = uv (resp. w = vu). If f : Σk → Σk is a
permutation, we say that the order of f , denoted ord(f), is the minimum value
m > 0 such that fm is the identity. If a ∈ Σk is a letter, the order of a with
respect to f , denoted ordf (a), is the minimum number m such that fm(a) = a.

In this paper, we consider only unary patterns (i.e., containing only one
variable) with morphic permutations, that is, all function variables are unary
and are substituted by morphic permutations only.

The infinite Hall word h is defined as h = limn→∞ φnh(0), for the morphism
φh : Σ∗3 → Σ∗3 where φh(0) = 012, φh(1) = 02 and φh(2) = 1. The infinite word
h avoids the pattern xx (squares).

3 Avoidability of patterns under permutations

In this section we try to identify an upper bound on the size of the alphabets
Σm in which a patterns xπi(x)πj(x)πk(x), with i, j, k ≥ 0 is unavoidable, when
π is substituted by a morphic permutation.

In the pattern xπi(x)πj(x)πk(x), the factors x, πi(x), πj , or πk(x) are called
x-items in the following. Our analysis is based on the relation between the pos-
sible images of the four x-items occurring in a pattern, following the ideas of [?].
For instance, we want to check whether in a possible image of our pattern, all
four x-items can be mapped to a different word, or whether the second and the
last x-items can be mapped to the same word, etc.
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To achieve this, we define in Table 1 the parameters αi, with 1 ≤ i ≤ 14.

α1 = inf{t : t - i, t - j, t - k, t - |i− j|, t - |i− k|, t - |j − k|} 0123
α2 = inf{t : t | i, t - j, t - k, t - |j − k|} 0012

α3 = inf{t : t - i, t | j, t - k, , t - |i− k|} 0102

α4 = inf{t : t - i, t - j, t | |i− k|} 0121

α5 = inf{t : t - i, t - j, t - |i− j|, t - |i− k|, t | |j − k|} 0122

α6 = inf{t : t | i, t | j, t - k} 0001

α7 = inf{t : t | i, t - j, t | k} 0010

α8 = inf{t : t - i, t | j, t | k} 0100

α9 = inf{t : t - i, t | |i− j|, t | |i− k|} 0111

α10 = inf{t : t | i, t - j, t | |j − k|} 0011

α11 = inf{t : t - i, t | j, t | |i− k|} 0101

α12 = inf{t : t - i, t | k, t | |i− j|} 0110

α13 = inf{t : t - i, t - k, t | |i− j|} 0112

α14 = inf{t : t - i, t - j, t | |i− j|} 0120

Table 1. Definition of the values αi, with 1 ≤ i ≤ 14.

Now based on combinatorial relations, we define the some collections of sets.
The idea behind all these collections is to generate sets of parameters αis that
cannot be avoided and have a minimal cardinality. No matter what will be added
to these sets will preserve their unavoidability, while erasing something from
them will make them avoidable. To obtain these collections we used a computer
program and randomly generated some unavoidable sets of parameters of size
five. Using the similarities between the instances modelled by these sets, defined
in terms of (gapped) squares and cubes occurring in their digit representation,
we developed an algorithm to generate more sets of patterns. Based on these
relations we constructed fourteen sets Sis . We just define one of them as an
example.

Let S1 be the collection of sets (each with five elements) that contain α1 and:

– one of the αis whose representation has a prefix or a suffix square, but no
gapped cube. That is: α2 or α5.

– one of the αis that has a gapped square, but does not have two gapped
squares. These are α3 or α4.

– one of the αis that contain cubes or two squares: α6 or α9 or α10.
– one of the αis that contain gapped cubes: α7 or α8.

For example, one possible set from S1 is {α1, α2, α4, α6, α7}.

Lemma 1 Let K ′ ⊂ K be any subset of size at most 4 of K. There exists an
infinite word w such that w does not contain 4-powers and if w contains an
instance of the pattern xπi(x)πj(x)πk(x) then it can not be modelled by any
tuples of the set of patterns K ′.

Theorem 1. Let i, j, k be positive integers such that i 6= j 6= k 6= i, and consider
the pattern p = xπi(x)πj(x)πk(x). Let σ = min{max(S) | S ∈ ∪1≤i≤13Si}. Then
σ ≥ 5 and p is unavoidable in Σm, for m ≥ σ.
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Proof. We briefly prove this Theorem. The complete proof is in the main paper.
We checked with the aid of a computer, by a straightforward backtracking al-
gorithm, that if m ≥ max(S), for some S ∈ ∪1≤i≤13Si, then p is unavoidable in
Σm. Our computer program tries construct a word as long as possible by always
adding a letter to the current word it constructed by backtracking; this letter is
chosen in all possible ways from the letters contained in the word already, or it
may also be a new letter. ut

4 Algorithm to generate avoidable cases

Algorithm 1 Algorithm to generate avoidable cases

1: Let n = 13. Using the sets Si, (1 ≤ i ≤ 13), generate all sets of αis of cardinality n,
that have no unavoidable sets of patterns as subset; show that they are avoidable;

2: For all n from 12 downto 4, generate all sets of cardinality n that have no unavoid-
able sets of patterns as subset; these sets should not be subsets of the avoidable
sets of αis of cardinality n+1 (to avoid generating repetitive avoidable sets of cases
generated in the past step); show that they are avoidable.

Theorem 2. Given a pattern p = xπi(x)πj(x)πk(x) we can determine effec-
tively the values m, such that the pattern is avoidable in Σm.

Proof. We briefly prove this Theorem. The complete proof is in the main paper.
In Theorem 1, we proved that given the patternp = xπi(x)πj(x)πk(x), for each
i, j, and k, we can compute the cardinality of an alphabet over which the pattern
is unavoidable. Now to show that this is the minimum cardinality over which
the pattern of size four is unavoidable, we proceed as follows. We will show that
the subsets and the complements of all the sets Si ,(1 ≤ i ≤ 13) are avoidable.
By complement we mean here all the sets of parameters αi of which the sets
Patterns of Size Four with Morphic Permutations are not subsets of. The reason
to define it this way is that if a set of parameters is unavoidable, whatever we
add to it remains unavoidable, so this set should not be subset of any avoidable
set of patterns. Furthermore, to show that the value α = αi, 1 ≤ i ≤ 14 in the
set Sj , 1 ≤ j ≤ 13, is the minimum cardinality of an alphabet over which the
pattern of size four is unavoidable, we should prove that αi is the minimum value
such that if we add it to the set Sj\αi, makes it unavoidable set of patterns.
To reach this, we proved that all proper subsets of the sets Sj , 1 ≤ j ≤ 13 are
avoidable sets of patterns. ut
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Given a finite non-empty set A, let AN denote the set of (right) infinite words x =
x1x2x3 · · · with xi ∈ A. For each infinite word x = x1x2x3 · · · ∈ AN, the factor complexity
px(n) counts the number of distinct blocks (or factors) xixi+1 · · ·xi+n−1 of length n occur-
ring in x. First introduced by Hedlund and Morse in their seminal 1938 paper [13] under
the name of block growth, the factor complexity provides a useful measure of the extent of
randomness of x. Periodic words have bounded factor complexity while digit expansions
of normal numbers have maximal complexity. A celebrated theorem of Morse and Hed-
lund in [13] states that every aperiodic (meaning not ultimately periodic) word contains
at least n + 1 distinct factors of each length n. Sturmian words are those aperiodic words
of minimal factor complexity: px(n) = n + 1 for each n ≥ 1.

Other notions of complexity have been successfully used in the study of infinite words
and their combinatorial properties [1, 5, 6, 7, 15, 16]. In this note, we introduce and study
two new complexity functions based on the notions of open and closed words [8]. We recall
that a word u ∈ A+ is said to be closed if either u ∈ A or if u is a complete first return to
some proper factor v ∈ A+, meaning u has precisely two occurrences of v, one as a prefix
and one as a suffix. Otherwise, if u is not closed then u is open. For example, abbbab and
aabaaabaa are both closed words while ab and abaabbababbaaba are both open. It is easily
seen that all privileged words [15] are closed and hence so are all palindromic factors of
rich words [9]. The terminology open and closed was first introduced by the authors in [3]
although the notion of a closed word had already been introduced earlier by A. Carpi and
A. de Luca in [4]. For a nice overview of open and closed words we refer the reader to the
recent survey article by G. Fici [8].

To each infinite word x ∈ AN we consider the functions f c
x, f

o
x : N→ N which count the

number of closed and open factors of x of each length n ∈ N. We study the behaviour of
these complexity functions for Arnoux-Rauzy words [2]. Recall an infinite word x ∈ AN is
called an Arnoux-Rauzy word if it is recurrent and if x contains, for each n ≥ 0, precisely
one right special factor of length n which is a prefix of |A|-many factors of x of length n+1
and precisely one left special factor of length n which is a suffix of |A|-many factors of x

∗This work was performed within the framework of the LABEX MILYON (ANR-10-LABX-0070) of
Université de Lyon, within the program ”Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the
French National Research Agency (ANR), and has been supported by RFBS grant 18-31-00009
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of length n + 1. In particular one has px(n) = (|A| − 1)n + 1 and each factor u of x has
precisely |A| distinct complete first returns. Arnoux-Rauzy words were first introduced in
[2] in the special case of a 3-letter alphabet. Let us note that in case |A| = 2, then x is
Sturmian. Since for any word x ∈ AN we have that f c

x(n) + fo
x(n) = px(n), it suffices to

understand the behaviour of f c
x(n).

Our main result in Theorem 1 below provides an explicit formula for the closed com-
plexity function f c

x(n) for an Arnoux-Rauzy word x on a t-letter alphabet A. The formula
is expressed in terms of two related sequences associated to x. The first is the sequence
(bk)k≥0 of the lengths of the bispecial factors ε = B0, B1, B2, . . . of x, ordered in increasing

length. The second is the sequence (p
(k)
a )k≥0a∈A where for each k ≥ 0, the t coordinates of

(p
(k)
a )a∈A are the lengths of the t first returns in x to Bk. More precisely, p

(k)
a = |R(k)

a | − bk

where R
(k)
a is the complete first return to Bk in x beginning in Bka. Both sequences have

already been extensively studied in the literature. In particular, following [11] one has that

bk =

∑
a∈A p

(k)
a − t

t− 1
.

Furthermore, for each k ∈ N, the coordinates of (p
(k)
a )a∈A are coprime and each is a period

of the word Bk. Moreover, Bk is an extremal Fine and Wilf word i.e., any word u having

periods (p
(k)
a )a∈A and of length greater than bk is a constant word, i.e., u = an for some

n (see [17]). The sequence (p
(k)
a )k≥0a∈A is computed recursively as follows : p

(0)
a = 1 for each

a ∈ A. For k ≥ 1, let a ∈ A be the unique letter such that aBk−1 is a right special factor

of x. Then p
(k)
a = p

(k−1)
a , and p

(k)
b = p

(k−1)
b + p

(k−1)
a for b ∈ A \ {a}.

Theorem 1. Let x ∈ AN be an Arnoux-Rauzy word. For each k ∈ N and a ∈ A set

Ik,a = [bk−1 − pk + p
(k)
a + 2, bk + p

(k)
a ] where pk = minb∈A{p

(k)
b }. Let

F (a, n) =
∑
k∈N

n∈Ik,a

(d(n, Ik,a) + 1) (1)

where for n ∈ Ik,a, the quantity d(n, Ik,a) denotes the minimal distance from n to the
endpoints of the interval Ik,a. Then the number of closed factors of x for each length n is
f c
x(n) =

∑
a∈A F (a, n).

It is easily checked that the length of each interval Ik,a is 2pk − 2 and that for each
fixed n the sum in (1) is actually a finite sum.

The following figures illustrate the behaviour of the closed complexity function f c
x in

the case of the Fibonacci word and the Tribonacci word.
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It is evident that in general f c
x is not monotone. However as a consequence to Theorem 1

we are able to show :

Corollary 2. Let x be an Arnoux-Rauzy word. Then lim inf f c
x(n) = +∞.

In contrast, it is shown in [14] that for any paperfolding word x, lim inf f c
x(n) = 0, in

other words, for infinitely many n, x has no closed factors of length n.
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ON THE GROUP OF A RATIONAL MAXIMAL BIFIX

CODE

JORGE ALMEIDA, ALFREDO COSTA, REVEKKA KYRIAKOGLOU,
AND DOMINIQUE PERRIN

Abstract. We give necessary and sufficient conditions for the group of
a rational maximal bifix code Z to be isomorphic with the F -group of
Z ∩ F , when F is recurrent and Z ∩ F is rational. The case where F is
uniformly recurrent receives special attention.

1. Introduction

In the past few years, special attention has been given to bifix codes which
may not be maximal but are maximal within some language, which is usually
chosen to be recurrent or uniformly recurrent. This line of research has
produced new and strong connections between bifix codes, subgroups of free
groups and symbolic dynamical systems (cf. [4] and the sequels [5, 6, 7, 8]).

If Z is a thin maximal bifix code and F is a recurrent set, then X = Z∩F
is an F -maximal bifix code, that is, a maximal bifix code within F (with X
finite if F is uniformly recurrent) [4]. This leads to a process of “relativiza-
tion” of several previously known definitions for maximal codes. An impor-
tant example is the group G(Z) of a rational code Z, i.e., the Schützenberger
group of the minimum ideal J(Z) of the syntactic monoid M(Z∗) of Z∗. In
this case, the relativization consists in taking the intersection X = Z ∩ F
and the Schützenberger group of the minimum J -class JF (X) that inter-
sects the image of F in M(X∗), when X is rational. This group, denoted
by GF (X), is the F -group of X. How are G(Z) and GF (X) related? They
are not always isomorphic, even if Z is a group code (i.e., Z is a code with
M(Z∗) a finite group) and F is uniformly recurrent. In [4] it is shown that
if Z is a group code and F is Sturmian, then G(Z) and GF (X) are isomor-
phic. This was extended to tree sets in the manuscript [10], thanks to a
novel approach consisting in exploring links between G(Z), GF (X) and the
Schützenberger (profinite) group G(F ) of the minimum J -class J(F ) of the
topological closure of F within the free profinite monoid generated by the
alphabet of F , and, with the help of these links, taking advantage of results
on G(F ) from [2, 3]. Building on this approach, we get new results about
when G(Z) ' GF (X) holds, recovering previous results in the process.

2. Preliminaries on free profinite monoids

Here A is always a finite alphabet. Take u, v ∈ A∗. If u 6= v, there is
a homomorphism ϕ : A∗ → M onto a finite monoid such that ϕ(u) 6= ϕ(v).

2010 Mathematics Subject Classification. 20M05, 20E18, 37B10, 68R15.
Key words and phrases. maximal bifix code, rational code, group code, syntactic

monoid, F -group, Schützenberger group, uniformly recurrent set, free profinite monoid.
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Let r(u, v) be the minimum for |M |. We may consider the metric d on A∗

such that d(u, v) = 2−r(u,v) if u 6= v. The free profinite monoid Â∗ is the
compact monoid resulting from the completion of A∗ under d, a terminology

justified as Â∗ is the free object in the class of A-generated profinite monoids.

For an extended introduction, see [11]. The elements of Â∗ are called pseu-

dowords over A. Words of A∗ are topologically isolated in Â∗. Pseudowords

generalize words, but the structure of Â∗ is richer than that of A∗. Next
is a glimpse of that. If F is a factorial subset of A∗, then the topological

closure F is itself factorial in Â∗, and when F satisfies the stronger property
of being recurrent, there is a minimum J -class J(F ) contained in F , which
moreover is regular. Maximal subgroups of J(F ) were identified in [2, 3].

We mention that the proper factors (that is, strictly J -above) of u ∈ Â∗\A∗

belong to A∗ if and only if u ∈ J(F ) for some uniformly recurrent set F [1].

3. Preparatory technical results

In this section we prepare the main results of the next section.
Recall that a parse of a word w with respect to a subset X of A∗ is

a triple (v, x, u) such that w = vxu with v ∈ A∗ \ A∗X, x ∈ X∗ and
u ∈ A∗ \ XA∗. The number of parses of w with respect to X is denoted
by δX(w). The F -degree of X is dF (X) = sup{δX(w) | w ∈ F}. The degree
of X is d(X) = dA∗(X). For F recurrent containing a bifix code X, one has
dF (X) finite if and only if X is F -thin and an F -maximal bifix code [4].

The notion of parse was generalized to pseudowords in [10], and so we

may extend δX to Â∗. Since then, we obtained the following useful tool.

Proposition 3.1. Consider a factorial set F of A∗. Let X be a rational
subset of F with finite F -degree d. Then δX(w) ≤ d for every w ∈ F , and
the mapping δX : F → {1, . . . , d} thus defined is continuous, if we endow
{1, . . . , d} with the discrete topology.

A pseudoword u is forbidden in Y ⊆ Â∗ if u is not a factor of an element
of Y . The next proposition was deduced with the help of Proposition 3.1.
We explain the notation used there. Let L be a rational language of A∗. By

the universal property of Â∗, the syntactic homomorphism ηL : A∗ →M(L)

admits a unique extension to a continuous homomorphism η̂L : Â∗ →M(L).

Proposition 3.2. Let Z be a rational maximal bifix code of A∗. Suppose that
F is a recurrent subset of A∗ and that the intersection X = Z∩F is rational.
The equality dF (X) = d(Z) holds if and only if the elements of J(F ) are
forbidden in Z. Moreover, if dF (X) = d(Z) then η̂Z∗(J(F )) ⊆ J(Z).

Consider a language L of A∗. Let u, v ∈ A∗. By definition, ηL(u) ≤ ηL(v)
if and only if the context of u is contained in the context of v.

Proposition 3.3. Let Z and F be subsets of A∗, with F factorial, and

let X = Z ∩ F . Suppose Z∗ and X∗ are rational. Let e, f ∈ Â∗ \ {1} be

idempotents, and let u, v ∈ Â∗ with u = euf , v = evf and u ∈ F . Then:

(1) η̂X∗(u) ≤ η̂X∗(v)⇒ η̂Z∗(u) ≤ η̂Z∗(v), if e and f are forbidden in Z;
(2) η̂Z∗(v) ≤ η̂Z∗(u)⇒ η̂X∗(v) ≤ η̂X∗(u), if e and f are forbidden in X.
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Applying the preceeding tools, we deduce relationships between the max-
imal subgroups of J(F ), J(Z) and JF (Z ∩ F ), for suitable Z and F .

Theorem 3.4. Let F be a factorial subset of A∗, take a rational prefix
code Z of A∗, and suppose X = Z ∩ F is a rational F -maximal prefix code.

Let H be a maximal subgroup of Â∗ with H ⊆ F and the elements of H being
forbidden in Z. Consider the maximal subgroup HX of M(X∗) containing
η̂X∗(H) and the maximal subgroup HZ of M(Z∗) containing η̂Z∗(H). There
is an injective homomorphism α : HX → HZ such that the diagram

(3.1) H
η̂Z∗ //

η̂X∗
��

HZ

HX

α

<<

commutes.

4. Main results

Based on the technical results of the previous section, namely Theo-
rem 3.4, we deduce our main results.

Let F be a recurrent set of A∗. Say that a rational code Z of A∗ is F -
charged if η̂Z∗ maps maximal subgroups of J(F ) onto maximal subgroups
of J(Z). A rational code X contained in F is weakly F -charged if η̂X∗ maps
maximal subgroups of J(F ) onto maximal subgroups of JF (X).

Theorem 4.1. Consider a recurrent subset F of A∗ and a rational bifix
code Z of A∗ with finite degree such that X = Z ∩ F is rational. Let H be
a maximal subgroup of J(F ). The following conditions are equivalent:

(1) Z is F -charged;
(2) dF (X) = d(Z), GF (X) ' G(Z) and X is weakly F -charged;
(3) dF (X) = d(Z), |GF (X)| = |G(Z)| and X is weakly F -charged.

Recall that if F ⊆ A∗ is (uniformly) recurrent and Z is a maximal bifix
code of A∗, then Z ∩ F is an F -maximal bifix (finite) code [4].

We show that a group code of A∗ is F -charged when F is an uniformly re-
current connected set (that is, with only connected extension graphs, see [5])
with alphabet A. Therefore, we get the following corollary.

Corollary 4.2. If Z is a group code of A∗ and F is a uniformly recurrent
connected set of alphabet A, then d(Z) = dF (Z∩F ) and G(Z) ' GF (Z∩F ).

We say that a rational code Z is nil-simple if all idempotents of M(Z∗)
are in J(Z). Group codes and finite codes are nil-simple. If F is uniformly
recurrent and Z is nil-simple, the equality dF (X) = d(Z) in Theorem 4.1
becomes redundant, as seen next.

Theorem 4.3. Let Z be a uniformly recurrent subset of A∗, and let Z be a
nil-simple rational maximal bifix code Z of A∗. The following are equivalent:

(1) Z is F -charged;
(2) GF (Z ∩ F ) ' G(Z) and Z ∩ F is weakly F -charged;
(3) |GF (Z ∩ F )| = |G(Z)| and Z ∩ F is weakly F -charged.

Moreover, if Z is F -charged, then d(Z) = dF (Z ∩ F ).
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The special case of Corollary 4.2 in which Z is a group code and F is
Sturmian was first proved in [4].

We also studied F -groups as permutation groups acting in a natural man-
ner. In what follows, QY is the set of vertices of the minimal automaton
of Y ∗, and iY is the corresponding initial state.

Theorem 4.4. Let F be a recurrent subset of A∗. Suppose that Z is a
rational bifix code of finite degree d. Let X = Z ∩ F and suppose that X
is rational. Let H be a maximal subgroup of J(F ) such that HZ = η̂Z∗(H)
is a maximal subgroup of J(Z), and let HX = η̂X∗(H). Take the map
f : QX ·HX → QZ ·HZ given by f(iX · u) = iZ · u, for u ∈ H, and take the
unique group isomorphism α : HX → HZ such that Diagram (3.1) commutes.
Then the pair (f, α) is an equivalence of permutation groups with degree d.
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Complexity of Robinson tiling
Abstract

Galanov Ilya
galanov@lipn.univ-paris13.fr

Raphael Robinson in his work on undecidability of the domino problem [1] introduced
the set of six tiles depicted in Figure 1. The tiles can be rotated and reflected, one tile
can fit to the other only in such a way that the arrow head matches arrow tail and each
2× 2 block must contain exactly one bumpy corner, the leftmost in Figure 1.

(a) (b) (c) (d) (e) (f)

Figure 1: Tiles of type (a) are called bumpy corners, tiles of type (b) are called corners,
all the other tiles are called arms.

It is possible to tile the Euclidean plane with copies of this six tiles, but only in an
aperiodic way. The key to this result is that any Robinson tiling has a hierarchical struc-
ture (see Figure 2). For all 𝑛, it is possible to define the supertiles of rank 𝑛 inductively.
Bumpy corner tiles are said to be supertiles of the first rank, supertiles of second and
third rank are shown in Figure 2. An increasing union of supertiles of rank 𝑛 is called an
infinite order supertile. The Robinson tiling can be either made of only one infinite order
supertile or contain two or four infinite order supertiles.

We will prove that the number of distinct blocks of size 𝑛×𝑛 (with 𝑛 ≥ 2) that could
appear in a Robinson tiling made of one infinite order supertile is defined by the formula

𝐴(𝑛) = 32𝑛2 + 72𝑛 · 2⌊log2 𝑛⌋ − 48 · 22⌊log2 𝑛⌋.

Similar method for counting the number of factors in the paper folding sequence was
used by Jean-Paul Allouche in [2].

1
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Figure 2: Hierarchy.
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(a) (b)

Figure 3: Supertiles of second and third rank.
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Abstract2

We introduce and study the notion of an abelian anti-power in the context of combinatorics on3

words. An abelian anti-power of order k (or simply an abelian k–anti-power) is a concatenation4

of k consecutive words of the same length having pairwise distinct Parikh vectors. This definition5

therefore generalizes to the abelian setting the notion of a k–anti-power, as introduced in [G. Fici6

et al., Anti-powers in infinite words, J. Comb. Theory, Ser. A, 2018], that is a concatenation of k7

pairwise distinct words of the same length. In particular, we deal with the question to determine8

whether a word contains abelian k–anti-powers for arbitrarily large k. A word with bounded abelian9

complexity clearly cannot contain abelian anti-powers of arbitrary order. We show that the Sierpiǹski10

word (whose abelian complexity grows logarithmically) does not contain abelian 11–anti-powers.11

Another question is to find words with low factor complexity that contain both abelian powers and12

abelian anti-powers of arbitrary order. We show that all paperfolding words have this property.13

1 Introduction14

Many of the classical definitions in combinatorics on words (e.g., period, run, power, factor complexity,15

etc.) have a counterpart in the abelian setting, though they may not enjoy the same properties.16

Recall that the Parikh vector P (w) of a word w over a finite ordered alphabet A = {a1, a2, . . . , a|A|} is17

the vector whose i-th component is equal to the number of occurrences of the letter ai in w, 1 ≤ i ≤ |A|.18

For example, the Parikh vector of w = abbca over A = {a, b, c} is P (w) = (2, 2, 1). This notion is at the19

basis of the abelian combinatorics on words, where two words are considered equivalent if and only if20

they have the same Parikh vector.21

The fundamental result of Morse and Hedlund [4] (an infinite word is aperiodic if and only if its factor22

complexity is unbounded) does not hold anymore in the case of the abelian complexity (the function that23

counts the number of distinct Parikh vectors of factors of length n for each n), as there exist aperiodic24

words with bounded abelian complexity. In fact, Richomme et al. [5] have observed that if a word has25

bounded abelian complexity, then it contains abelian powers of any order — an abelian power of order26

k is a concatenation of k words having the same Parikh vector. However, this is not a characterization27

of words with bounded abelian complexity. Madill and Rampersad proved that the regular paperfolding28

word has unbounded abelian complexity [3], and Štěpán Holub proved that it contains abelian powers29

of any order [2].30

In a recent paper [1], the first and the third author, together with Antonio Restivo and Luca Zamboni,31

introduced the notion of an anti-power. An anti-power of order k, or simply a k–anti-power, is a32

concatenation of k consecutive pairwise distinct words of the same length. E.g., aabaaabbbaba is a33

4–anti-power.34

In [1], it is proved that the existence of powers of any order or anti-powers of any order is an35

unavoidable regularity for infinite words:36

1



Theorem 1. [1] Every infinite word contains powers of any order or anti-powers of any order.37

Note that in the previous statement there is no hypothesis on the alphabet size.38

In this paper, we extend the notion of an anti-power to the abelian setting.39

Definition 2. An abelian anti-power of order k, or simply an abelian k–anti-power, is a concatenation40

of k consecutive words of the same length having pairwise distinct Parikh vectors.41

For example, aabaaabbbabb is an abelian 4–anti-power. Notice that an abelian k–anti-power is a42

k–anti-power but the converse does not necessarily holds (which is dual to the fact that a k–power is an43

abelian k–power but the converse does not necessarily holds).44

We think that an analogous of Theorem 1 may still hold in the case of abelian anti-powers, but45

unfortunately the proof of Theorem 1 does not seem to be generalizable to the abelian setting.46

Problem 1. Does every infinite word contain abelian powers of any order or abelian anti-powers of any47

order?48

Clearly, if a word has bounded abelian complexity, then it cannot contain abelian anti-powers of49

arbitrary order. However, we show in this paper that the converse is not true. Indeed, we prove that the50

Sierpiǹski word does not contain abelian 11–anti-powers. The Sierpiǹski word has logarithmic abelian51

complexity (by construction) and contains abelian powers of any order (since it contains arbitrarily long52

blocks of bs).53

An infinite word can contain both abelian powers of any order and abelian anti-powers of any order.54

This is the case, for example, of any word with full factor complexity. However, finding a class of55

words with low factor complexity satisfying this property seems a more difficult task. Indeed, most of56

the well-known examples of aperiodic words (Thue-Morse, Sturmian words, etc.) have bounded abelian57

complexity, hence they cannot contain abelian anti-powers of any order — whereas, by the aforementioned58

remark of Richomme et al. [5], they contain abelian powers of any order. Building upon the theory that59

Štěpán Holub developed to prove that all paperfolding words contain abelian powers of any order [2], we60

prove that all paperfolding words contains also abelian anti-powers of any order.61

References62

[1] G. Fici, A. Restivo, M. Silva, and L. Q. Zamboni. Anti-powers in infinite words. J. Comb. Theory,63

Ser. A, 157:109–119, 2018.64

[2] S. Holub. Abelian powers in paper-folding words. J. Comb. Theory, Ser. A, 120(4):872–881, 2013.65

[3] B. Madill and N. Rampersad. The abelian complexity of the paperfolding word. Discr. Math.,66

313(7):831–838, 2013.67

[4] M. Morse and G. A. Hedlund. Symbolic dynamics. Amer. J. Math., 60:1–42, 1938.68

[5] G. Richomme, K. Saari, and L. Zamboni. Abelian complexity of minimal subshifts. J. Lond. Math.69

Soc., 83(1):79–95, 2011.70

2



Inflation of digitally convex polyominoes

Jean-Pierre Borela, Lama Tarsissib, Laurent Vuillonc
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Euclide B, 2000 Route des Lucioles, 06900 Sophia Antipolis, France
cUniv. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LAMA, 73000 Chambéry, France
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1. Introduction

In the literature, many papers introduced and studied different convexity notions. For example, Kim and Rosenfeld
in [1] investigated different notions of discrete convex sets, where a set in Euclidean geometry is convex if and only
if for any pair of points p1, p2 in a region R, the line segment joining them is completely included in R. In discrete
geometry on square grids, this notion refers to the digitally convex convexity. We recall that a polyomino is a finite
4-connected set of unit squares in the lattice Z2. If P is a polyomino and if for all p1, p2 inside P and such that the
discret segment joining them is completely included in P then P is a digitally convex polyomino. Digitally convex
polyominoes are also the discretization of convexes of R2, except when this discretization is not 4-connected. It implies
that the intersection of two such polyominoes is also digitally convex, as soon as it is 4-connected.

In this talk, we would like to study discrete geometrical constructions to deflate or inflate digitally convex poly-
ominoes.

2. How to deflate a digitally convex polyomino?

We first study how to deflate a digitally convex polyomino P. This polyomino P can be decomposed into four
paths. Indeed, a polyomino P is a finite set thus we define the minimal bounded box which is a rectangle such that
P touches the four sides of the rectangle. Those paths start at the first unit square of intersection with each side of
the rectangle. We denote the unit squares of intersection by W (the lowest unit square on the leftmost side), N (the
leftmost unit square in the top side), E (the highest unit square on the rightmost side) and S (the rightmost unit
square on the bottom side). The contour of a convex polyomino is then the union of the four (clockwise) paths WN ,
NE, ES and SW .

We use the result given by Brlek et al. [2] where they introduced a link between convexity and combinatorics on
words by encoding the contour of the convex polyomino. Their result was based on Christoffel and Lyndon words.
They considered each path of the convex polyomino and used the alphabet A = {0, 1, 0, 1} to code the boundary of
each polyomino where 0, 1, 0, 1 encode →, ↑,←, ↓ respectively.

The main result in [2] states that a convex polyomino is characterized by the fact that the WN path admits a
unique Lyndon factorization `n1

1 . . . `nk

k where the `i’s have decreasing slopes and they are primitive Christoffel words,
and similar results for the three other paths.

It is not difficult to deflate the digitally convex polyomino. Indeed, we look at the set {s1, s2, · · · , sk+1} of unit
squares (called corners) in the boundary of the polyomino such that each si are exactly the unit square corresponding
to the extremities of each factor `

nj

j in the factorization given before (see Figure 1), or equivalently have a common
unit square with the convex hull of the polyomino. Remove any square si, then the new polyomino is still digitally
convex, and this process can be iterated.

This property has two consequences.

Email addresses: jean-pierre.borel@unilim.fr (Jean-Pierre Borel), lama.tarsissi@unice.fr (Lama Tarsissi),
laurent.vuillon@univ-smb.fr (Laurent Vuillon)
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Figure 1: A digitally convex polyomino, its convex hull and its corners (grey unit squares) and a smaller digitally convex polyomino.

1. Given two digitally convex polyomino C1 ⊂ C2, C2 can be deflated to C1 in such a way that at each step one
unit square only is canceled and such that at each step we have a digitally convex polyomino: as the polyomino
C2 is bigger than C1 it contains a corner which is not in C1, then cancel this corner.

2. It is possible to inflate step by step from C1 to C2, by the reverse process. However, it does not give a practical
way to choose the unit square that we must add at each step.

3. How to inflate a digitally convex polyomino?

It is more difficult to get effective methods to inflate a convex polyomino C1 to a convex polyomino C2 where
C1 ⊂ C2 with the constraint that we must add a single unit square at each step and maintain the digitally convex
property at each step until reaching C2.

3.1. The spiral and strate constructions

First of all we take C1 as a unit square anywhere inside C2.

Figure 2: The spiral construction

We first investigate the spiral construction by adding a corner around the polyomino from a unit square polyomino
by adding at each step a corner in a clockwise order (see Figure 2). This construction leads to an octogonal shape
digitally convex polyomino. However, by keeping only those unit squares which are contained in C2 (see Figure 3 left
and center), we get a global construction of C2 such that we maintain the convexity property at each step.

Figure 3: Two spiral and a strate construction of a digitally convex polyomino

In fact, we have many variants of this construction, by considering 4-connected spiral or 8-connected spiral or
strate construction (see Figure 3). The strate construction consists in taking at first the lowest unit squares from the
left to the right, and to continue to the second row in a correct order, and so on (see Figure 3, right). It has many
variants.

If we try to inflate some digitally convex polyomino by the spiral method, it works only when we take special
octogones (see Figure 4, left). In the general case, the convexity property disappears at some steps (see Figure 4,
right, unit square number 8).

2



Figure 4: The spiral inflation

Thus now we must add unit squares using one construction of the paper of Dulio et al.[4], the authors introduces
the split operator (based on the Borel Laubie standard factorization of Christoffel words [3]) in order to add unit
square to the border of a digitally convex polyomino. By this operation the Christoffel property of words along the
four paths is maintained and thus the difficult part of the inflation remains to maintain the monotony of the slopes of
each Christoffel word along the four paths.

3.2. The split operator

From now on, we are working on the WN path. The split operator, as mentioned in [4], considers the furthest
point of the Christoffel word `i with respect to its line segment and switches the factor 01 to 10. Using this operator
and replacing the factors is equivalent to adding a unit square to the polyomino. We obtain in this case two new
Christoffel words `+i and `−i , where `i = `−i `

+
i is the standard factorization of the Christoffel word, and `−i < `i < `+i

both for slopes and lexical order. The split operator consists in replacing `i by `+i `
−
i in the coding word of the path.

Then the convexity property remains true in the simple case :

`i+1 ≤ `−i < `+i ≤ `i−1.

but these inequalities can fail.
So we might have different cases and situations, that we will present in the next section depending on the property

of each unit square to add.

3.3. Adding one unit square:

We start by considering the case, where we will add one unit square to the convex C1(j) for a given j (C1(j)
represents the jth step of the construction that is C1 with j added unit squares). Which means that with this case
we reach the step C1(j + 1). In fact, three different cases can occur:

1. The first case, where we add a unit square on the Christoffel word `i with ni = 1 of a given path using the split
operator and no problems are faced. Which means the monotone order of slopes is maintained, i.e., as the split
operator consists in replacing `i by `+i `

−
i in the coding word of the path:

`i+1 ≤ `−i < `+i ≤ `i−1.

and the convexity is conserved.

2. The second case also needs ni = 1. It is if we add a unit square to `i of a given path we keep the Lyndon
factorization property, but this factorization is not as in the first case

`n1
1 . . . (`

ni−1

i−1 `+i )`−i `
ni+1

i+1 . . . `nk

k .

The convexity is conserved in this second case.

3. The third case that we can face, is if we add a unit square to `i of a given path we loose the Lyndon factorization
property; which means the monotone order of slopes is no longer correct, and the new polyomino is not digitally
convex.
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However, we can get a characterization of the first case. We give this characterization in the simplest case, which
corresponds to ni = 1. Going back to the factorization `n1

1 . . . `nk

k of the WN path, cases 1 or 2 occur when the
following conditions are satisfied.

1. `i+1 ≤ `−i or `i+1 = `−ki ` for some positive integer k and some Christoffel word `;

2. `i−1 ≥ `+i or `i−1 = ``+k′

i for some positive integer k′ and some Christoffel word `.

3.4. An inflation method

We consider as before two distinct digitally convex polyominoes C1 ⊂ C2. Then there always exists in each of the
four paths describing C1 at least one Christoffel word corresponding to the cases 1 or 2 before. More precisely, we can
choose the longest Christoffel word of the path, among those which does not correspond to some side of C2. It gives
an effective method to inflate C1 to C2 and conserving the convex property at each step.

Some other methods based on completely different considerations could be investigated. For example we can use
a continuous and increasing deformation of the border of the convex hull of C1 to the border of the convex hull of
C2, such that this deformation contains at any time at most one integer point. An effective construction of such a
deformation can be made, using simple arguments but encountering some technical difficulties.
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Séries Q-Hadamard et Q-automates circulaires

Louis-Marie Dando ∗et Sylvain Lombardy ∗

On étudie ici les séries formelles sur un monöıde libre A∗ finiment engendré
avec coefficients dans un corps commutatif K, avec K égal à Q, R ou C. Dans ce
cadre, les séries rationnelles et les séries reconnaissables cöıncident et le produit
d’Hadamard (ou produit terme à terme, noté ⊙) de deux séries rationnelles est
rationnel [8].

On considère deux opérations naturelles liées au produit d’Hadamard. Soient
s et t deux séries formelles dans K〈〈A∗〉〉.

— si pour tout w dans A∗, 〈t, w〉 6= 0, alors le quotient d’Hadamard de s et
t est défini par :

s
⊙

t
=

∑

w∈A∗

〈s, w〉

〈t, w〉
w;

— si pour tout w dans A∗, 〈s, w〉∗ =
∑

k>0
〈s, w〉k existe, alors l’itération

d’Hadamard de s est défini par :

s⊛ =
∑

w∈A∗

〈s, w〉∗w.

Proposition 1 L’ensemble des séries K-rationnelles n’est clos ni par quotient
d’Hadamard (cf. [7]), ni par itération d’Hadamard.

On définit donc l’ensemble des séries d’Hadamard comme la plus petite famille
de séries contenant les séries rationnelles et close pour ces opérations.

Théorème 2 L’ensemble des séries K-Hadamard sur A∗ est définie de manière
équivalente comme
a) l’ensemble des quotients d’Hadamard de séries K-rationnelles ;
b) la clôture des séries K-rationnelles par somme, produit d’Hadamard et itération
d’Hadamard.

Remarquons que l’ensemble des séries K-Hadamard n’est pas clos pour les
opérations rationnelles (il n’est même pas clos par produit de Cauchy).

On considère par ailleurs des automates circulaires à multiplicité dans un
corps. Comme un automate pondéré classique, lors de tout calcul, un tel auto-
mate lit son entrée de gauche à droite en calculant une valeur comme produit
des valeurs associées aux transitions empruntées ; mais en plus, arrivé à la fin
de son entrée l’automate peut soit stopper s’il se trouve dans un état final, soit
emprunter une transition spéciale qui replace la tête de lecture au début du mot.
La valeur associée à un mot est la somme (potentiellement infinie) des valeurs

∗LaBRI UMR 5800, Université de Bordeaux, INP Bordeaux, CNRS, Bordeaux, FRANCE
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des calculs acceptant ce mot. Si tout mot a une valeur bien définie, l’automate
est dit valide et son comportement est la série dans laquelle le coefficient de
chaque mot est la valeur calculée par l’automate.

Ce modèle naturel d’automate – souvent considéré comme une restriction
des automates bi-directionnels [3, 5] – permet, dans le cas non pondéré, de
reconnâıtre l’intersection de deux langages avec une machine qui compte un
nombre linéaire d’états par rapport aux automates d’entrée et, dans le cas
pondéré, de réaliser avec la même complexité le produit d’Hadamard de deux
séries (même dans le cas de poids non commutatifs).

Comme on ne peut pas décider si la série réalisée par un Q-automate proba-
biliste a tous ses coefficients strictement inférieurs à 1/2 [4], si la série réalisée
par un Q-automate a tous ses coefficients strictement inférieurs à 1, en faisant
boucler un tel automate, on ne peut pas décider si l’automate circulaire obtenu
est valide.

Proposition 3 Il n’est pas décidable si un Q-automate circulaire est valide.

Ceci est à mettre en lien avec le fait qu’on ne peut pas décider si le support d’une
série Q-rationnelle est A∗ tout entier ; on ne peut donc pas décider si l’inverse
d’Hadamard d’une telle série est défini.

Par contre, si les séries sont bien définies, on a l’équivalence suivante.

Théorème 4 L’ensemble des séries réalisables par des K-automates circulaires
valides est exactement l’ensemble des séries K-Hadamard.

Corollaire 5 L’équivalence des Q-automates circulaires valides est décidable.

De fait, le comportement s de tout Q-automate circulaire peut être représenté
par une paire de Q-automates classiques réalisant des séries t1 et t2 telles que

s =
t1

⊙

t2

. Savoir si deux comportements s =
t1

⊙

t2

et s′ =
t
′
1

⊙

t
′
2

sont égaux

revient alors à savoir si t1 ⊙ t′
2
et t′

1
⊙ t2, qui sont des séries Q-rationnelles, sont

égales. Or, l’équivalence des séries Q-rationnelles est décidable [1].

Comme nous l’avons dit plus haut, les automates circulaires peuvent être
vus comme restriction des automates bi-directionnels (ou boustrophédons) ; ces
derniers sont donc au moins aussi puissants. Dans le cas non pondéré, tous ces
modèles sont équivalents aux automates classiques [9, 6], alors que dans les cas
pondérés les automates bi-directionnels peuvent être strictement plus puissants
que les automates circulaires, eux-mêmes plus puissants que les automates clas-
siques (voir par exemple [2] pour le cas des transducteurs, équivalents à des
automates sur le semi-anneau RatB∗).

De manière assez surprenante, dans le cas des corps, les automates bi-
directionnels ne sont pas plus puissants que les automates circulaires.

Théorème 6 Toute série réalisée par un K-automate bi-directionnel peut être
réalisée par un K-automate circulaire.
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A definition and counting of biperiodic recurrent configurations in
the sandpile model on Z2

Henri Derycke Yvan Le Borgne — Univ. Bordeaux, Bordeaux INP, CNRS, LaBRI,
UMR5800, F-33400 Talence, France

Abstract

For the sandpile model on the usual two dimensional grid, we propose a weaker version
of Dhar criterion to define recurrent configurations among stable biperiodic configurations. We
check this new criterion via an algorithm which auto-stabilises to a canonical ultimately periodic
behaviour independent of details in its not fully specified initialisation. This leads to ultimately
periodic edge/vertex traversals similar to those of Cori-Le Borgne [2] in the case of finite graphs
and then to a bijection with some cycle-rooted forests on the torus describing the period. A
determinantal formula [5] counts all those forests and the refinement with some monodromy
parameters allows to identify in some coefficients the number of recurrent configurations.

The Abelian sandpile model was introduced by physicists Bak, Tang and Wiesenfeld in [1]
as a model of self-organized criticality. Given a simple, undirected graph (V ∪ {s}, E) where we
distinguish s as the sink of the graph, we consider configurations in this model which are an
assignments η : V 7→ Z of some grains of sand on each vertex. We say that η is stable at x ∈ V if
η(x) < deg(x), and η is stable if it is stable at all x ∈ V . If η is unstable at x, then x is allowed
to topple which means that the vertex x sends one grain along each incident edge. This toppling
is said legal. A toppling is forced when it is not necessarily legal. Grains arriving at the sink are
lost. Given a configuration η, we define a stabilization as a sequence of allowed topplings until a
stable configuration is reached. The result of all stabilizations is unique due to commutations of
topplings of unstable vertices and is noted stab(η).

Let P (η) be the result of a stabilization of η + 1s∼, that is η with an extra grain on each
neighbour of s, which may be interpreted as a forced toppling of the sink. P (η) is also called
the Dhar criterion since the set of recurrent configurations is a subset of the stable configurations
characterized by Dhar [4] as the fixed points of P . For such a fixed point, each vertex topples
exactly once in this process. The notion of recurrence is related to a natural Markov chain in
this model not discussed here [3], and it is well studied for its connection with spanning trees [4],
uniform spanning tree, the Tutte polynomial on the underlying graph [2]. Also on finite graphs,
the set of recurrent configurations equipped with the operation (η, µ) 7→ stab(η + µ) is an abelian
group [3]. When the graph is the grid Z2, the existence of such a group is open.

One of our motivations is the search of finite groups on a subset of recurrent configurations
on Z2, which may be subgroups of the hypothetical (infinite) group. We focus on the subset of
biperiodic configurations on the grid defined as follows. Let ~P1, ~P2 ∈ Z2 two non collinear vectors.
A configuration η of Z2 is biperiodic of period (~P1, ~P2) if for all x ∈ Z2, η(x+ ~P1) = η(x+ ~P2) = η(x).

Several approaches are suggested by litterature to define the notion of recurrence: for example,
adding one edge per period to an extra vertex called the sink (dissipative sandpiles [6]), another
example merges in one sink vertex all vertices outside a finite polygon and then scale this polygon [7].
Our approach relies on a weaker form of Dhar criterion and leads to a degenerate polygon which is
an half-plane. Indeed we place the sink at infinity in a direction by analogy to the projective plane.
The sink s is a point at infinity and will be describe by an euclidean vector ~s = (sx, sy) ∈ Z2 where
gcd(sx, sy) = 1. Note that ~s and −~s refer to different sinks.
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The sink being sent to infinity, the difficulty of toppling it appears. We replace this by a forced
toppling of an half-plane of line boundary orthogonal to the sink ~s.

Definition 1 (Weak Dhar criterion in a rational direction). A configuration η is said recurrent in
the direction of the sink ~s if and only if for any k ∈ Z the forced toppling of the vertices of the
half-plane {(x, y) ∈ Z2 | sxx+ syy ≥ k} leads to the legal toppling of all other vertices.

Proposition 1. There exists execution of the weak Dhar criterion on biperiodic configurations that
is auto-stabilizing to an ultimately periodical behaviour which does not depend on the position of
the half-plane defined by a line colinear to ~s⊥ and can be simulated in finite time.

C1 C2 C1 C2 C1 C2

Forced zone

Frozen zone

W

y0

y0 + t
“sweep line”

Used edge Frozen edge Toppled vertices

Figure 1: Weak Dhar criterion after step t, C1 and C2 are next connected components

Sketch of the proof when ~s = (0,−1) (that can be generalized for all ~s). Let η be a recurrent con-
figuration in direction (0,−1) of period (~P1, ~P2). Without losing generality, we can assume that
~P1 = (W, 0) and ~P2 = (0, H) where W,H > 0. We equip the set of edges with the following order
≺~s. Let e1 (resp. e2) be an edge of middle m1 (resp. m2) in the usual embedded of Z2, e1 ≺~s e2
if and only if ~s· ~m1 < ~s· ~m2 or (~s· ~m1 = ~s· ~m2 and ~s⊥· ~m1 < ~s⊥· ~m2) where ~s· ~m1 is the usual scalar
product between ~s and ~m1 and ~s⊥ is the vector (−sy, sx). For ≺(0,−1), edges are ordered increas-
ingly from top to bottom in priority, ties broken from left to right. When a vertex become unstable,
it topples and its grains are sent along incident edges which become pending. Such a crossing grain
is received at opposite endpoint when this pending edge is activated. We control the process of
stabilisation by activating the maximal pending edge according to ≺~s (see [2] for details).

We start by a forced toppling of the half-plane ~(x, y)· (−~s) = y ≤ y0 ∈ Z, denoted H≤y0 .
The remaining legal topplings, more precisely edges allowed to be activated, are enclosed between
this half-plane and a “sweep line” y = y0 + t, where t ≥ 0 is called a step of execution for Dhar
criterion. More precisely at each step t > 0, we only consider edges which middle has ordinate
y ∈ [y0, y0 + t]. Thus there is a forced toppled zone y ≤ y0, a frozen zone y > y0 + t and a working
zone y0 < y ≤ y0 + t, see Figure 1. Since η is recurrent, at step t there is at least one vertex vt
that topples on line y = y0 + t. The order ≺~s guarantees that the set of connected components of
untoppled vertices in the working zone is periodic of period (W, 0) (C1 and C2 on Figure 1) and
that these components are finite as long as η is recurrent since enclosed between the sweep line
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and the sequences of topplings leading to toppled vertices (vt + k ~P1)k∈Z. Thus the toppling of a
vertex v is independent of the toppling of each v + k(W, 0) with k ∈ Z∗. This observation allows
to simulate the criterion on a cylinder [1,W ]×Z with a periodic configuration of period (0, H) for
some H.

The more we force topplings, the more we topple vertices. This and translation symmetry ~P2

implies that if a vertex v topples at step t+H, then v− (0, H) = v− ~P2 topples no later than step
t. As a corollary, at most one of the vertices (v + k ~P2)k∈Z can topple legally in any H consecutive
steps. Thus for any H consecutive steps, there is at most WH vertices that topple.

We can show by contradiction that each vertex v topples at some step. For any vertex v, either
all (v + k ~P2)k∈Z topples or there exists kv such that exactly (v + k ~P2)k≥kv do not topple. If not
all vertices topples at some step, we can define kWH = maxv kv where v runs over the subset S of
the vertices of [1,W ] × [1, H] for which kv is defined and S := [1,W ] × [1, H] \ S the complement
subset. By definition, in the half-plane H>y0+kW,HH , the subsets (S + k ~P2)k≥kWH

never topples

and all other vertices in (S+k ~P2)k≥kW,H
topples. From this, we also deduce the existence of a step

tW,H such that no vertex in the half plane H≤y0+kW,HH can legally topple at steps t ≥ tW,H . For

steps t ≥ tW,H , only vertices in (S + k ~P2)k≥kW,H
periodically topples. This describes an (infinite)

sequence of legal topplings toward a stable configuration where (S + k ~P2)k≥kWH
did not topple,

which is a contradiction with the recurrence of η (so S = ∅).
Hence, let T be the first step when all vertices of [1,W ]× [1, H] has been toppled. Since there

is at most WH vertices that topple at step T , the sequence of toppling that destabilizes the last
untoppled vertex of [1,W ]× [1, H] starts on line y = y0 + T , is at most of length WH and ends to
a line below y = y0 +H so T ≤ H +WH. So the criterion is finite and effective.

Moreover, from steps T + 1 to T +H, we observe the ultimately periodic behaviour of the Dhar
criterion: WH vertices topple, all having distinct copies in the fundamental domain [1,W ]× [1, H].
In addition, for k ≤ H, the half-plane H≤y0+k has toppled at step T so forcing toppling of this
half-plane, instead of H≤y0, results after T − k steps in the same set of toppled vertices. So the
ultimately periodic behaviour of Dhar criterion starting either by H≤y0 or H≤y0+k are the same.

The proof induces a bijection with a subset of cycle rooted spanning forests [5] on the toroidal
grid: from step T + 1 to step T + H, we attach to each vertex and its repetitions the edge that
destabilizes it. In order to respect the order ≺~s on the cylinder, it is enough to process the toppling
in only one repetition of each connected component at a given step. The result is a cycle rooted
spanning forest of the toroidal grid with non contractible cycles. These cycles correspond to infinite
periodic branches in the plane whose slopes are not orthogonal to ~s.

Theorem 1. Let ~s be a sink. The set of recurrent biperiodic configuration of pattern size W ×H
on Z2 is in bijection with the set of cycle rooted spanning forests of the toroidal grid W ×H whose
slope (a, b) is such that a · sx + b · sy 6= 0.

We assume in the next part that W,H ≥ 2. We call NCRSF a non-contractible cycle rooted
spanning forests. We want to count the recurrent configurations in a direction ~s. By definition of
homology, the image of one copy of an (oriented) cycle of homology class (i, j) ∈ Z2 starting at
(x, y) into the plane ends at (x+ jW, y+ iH). Kenyon [5] gives the following determinantal formula∑

NCRSFs γ

(
2− ziwj − z−iw−j

)k
= det ∆ where (i, j) is the homology class of the cycles of γ and

k their number, z is the monodromy of cycles with homology class (1, 0), w is the monodromy of
cycles with homology class (0, 1), ∆ is the Laplacian on the line bundle with connection 1 over all
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w−1

w

z−1

z

1

W

H

Figure 2: Connection Φ on the
torus W ×H

kj
ki

0 1 2 3 4

0 31300528 541732 1528 1
1 31300528 5427200 31232 4
2 541732 31232 6
3 1528 4
4 1

Figure 3: The number of NCRSF on a toroidal
grid 4× 4 in each direction where k = gcd(ki, kj)

oriented edges except those crossing the blue (connection w or w−1) and red sides (connection z or
z−1) of a fix fundamental rectangle as in figure 2. Then ∆(v) =

∑
u→v v − Φu→vu where Φu→v is

the connection value on edge u→ v.
Due to planarity of the grid, a cycle cannot cross itself on the toroidal grid. Thus the homology

class (i, j) of a cycle in this graph has gcd(i, j) = 1. Moreover the length of such a cycle is at least
|Wj|+ |Hi|. That gives the first part of the following proposition.

Proposition 2. Given γ a NCRSF on a toroidal grid W ×H, if γ has k cycles with homology class
(i, j) then i and j are co-prime and |kjW |+ |kiH| ≤WH. Reciprocally for any (i, j) ∈ Z2 co-prime
and any k > 0 such that |kjW |+ |kiH| ≤WH, there exists a NCRSF of parameters (i, j, k).

The second part of this proposition is achieved by k repetitions of a digital line from Bresenham’s
line algorithm (with corners).

We denote Qi,j,k =
(
2− ziwj − z−iw−j

)k
for any k > 0 and any (i, j) ∈ S = {(0, 1)} ∪ {(a, b) |

a > 0 and gcd(a, b) = 1}, the (Qi,j,k)i,j,k are linearly independent. So the number of NCRSFs
is the sum of the coefficients (αi,j,k)i,j,k of det ∆ in the decomposition in (Qi,j,k)i,j,k: det ∆ =∑

i,j,k αi,j,kQi,j,k. One can show that αi,j,k = αi,−j,k for i > 0.

Proposition 3. The number of biperiodic recurrent configurations in direction ~s of size W ×H is∑
(i,j,k)∈S~s αi,j,k where S~s = {(i, j, k) | (i, j) ∈ S, k > 0, |kjW |+ |kiH| ≤WH, iWsx + jHsy 6= 0}.

This formula enhances the counting the recurrent configurations in a direction that was limited
to enumeration. Some explicit results are given on Figure 3. Some extra results up to m× n with
m,n ≤ 9 can be found at https://www.labri.fr/perso/hderycke/biperiodic_recurrent/.
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RETURN WORDS AND DERIVATED SEQUENCES TO ROTE SEQUENCES

KATEŘINA MEDKOVÁ

1. Introduction

We study complementary symmetric Rote sequences, which are sequences over the binary alphabet
{0, 1} with factor complexity C(n) = 2n and with language closed on exchange of letters 0↔ 1. We refer
about the work in progress [7].

Rote in [8] proved that a sequence v = v0v1 · · · is complementary symmetric Rote sequence if and
only if its first difference sequence u = u0u1 · · · , which is defined by ui = vi − vi+1 mod 2, is Sturmian
sequence.

Our aim is to describe return words and derivated sequences of complementary symmetric Rote se-
quences. In the sequel, we will call them simply Rote sequences. The study is based on the link between
Rote and Sturmian sequences and recent work about derivated sequences of Sturmian sequences [1, 6].

Let u = u0u1u2 · · · be an infinite sequence and let w = uiui+1 · · ·ui+n−1 be its factor. The integer i
is called an occurrence of the factor w. A return word to a factor w is a word uiui+1 · · ·uj−1 with i and
j being two consecutive occurrences of w such that i < j.

Let w be a prefix of u which has k return words r0, r1, . . . , rk−1. Then the sequence u can be written
as a concatenation of these return words: u = rd0rd1rd2 · · · and the derivated sequence of u to prefix w is
the sequence du(w) = d0d1d2 · · · . For simplicity, we consider two derivated sequences to be the same if
they differ only by a permutation of letters. We work only with sequences which are uniformly recurrent,
i.e. each prefix w of u occurs in u infinitely many times and the set of all return words to w is finite.

Recall that the factor w of u is right special, if both words w0 and w1 are factors of u. Analogously
the left special factor is defined. The factor is bispecial, if it is both left and right special. To find all
derivated sequence it suffices to study only right special prefixes. Indeed, if the prefix w is not right
special, then there is a unique letter a such that wa is a factor of u. Thus the occurrences of w and wa
in u coincides and they have the same return words and derivated sequences. If u is aperiodic, then w is
always a prefix of some right special prefix of u.

We focus on standard Sturmian sequences, i.e. the sequences whose each prefix is left special. In that
case, we can take into consideration only bispecial prefixes to find all derivated sequences.

2. Rote sequences and associated Sturmian sequences

We define the mapping S which maps factors of Rote sequence to factors of associated Sturmian
sequence.

Definition 1. The mapping S : {0, 1}+ → {0, 1}∗ is for every v = v0v1 · · · vn ∈ {0, 1}+ of length at
least 2 defined by S(v0v1 · · · vn) = u0u1 · · ·un−1, where ui = vi + vi+1 mod 2 for all i ∈ {0, 1, . . . , n− 1},
S(v0) = ε.

We can naturally extend the domain of S to {0, 1}N and write the associated Sturmian sequence u to
the Rote sequence v as u = S(v). To each Sturmian sequence, there are two associated Rote sequences
v and v′. Since we have v′ = E(v), we work only with Rote sequences starting with the letter 0 without
lose of generality. The factors of Rote sequence v and associated Sturmian sequence u are closely related.

Proposition 2. Let u be a Sturmian sequence and v be a Rote sequence such that u = S(v). The word u
is a factor of u if and only if both words v, v′ such that u = S(v) = S(v′) are the factors of v. Moreover,
for every i ∈ N, i is an occurrence of u in u if and only if i is an occurrence of v in v or an occurrence
of v′ in v.
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2 KATEŘINA MEDKOVÁ

To study return words and derivated sequences of a given Rote sequence, we have to examine these
objects in the case of associated Sturmian sequence. In [6] the authors describe derivated sequences
of fixed points of Sturmian morphisms. Their basic idea is to suitably decompose a given Sturmian
morphism onto some elementary morphisms.

A morphism is a mapping ψ : A∗ → B∗ such that ψ(uv) = ψ(u)ψ(v) for all u, v ∈ A∗. If A = B, ψ
is a morphism over A∗. The domain of the morphism ψ can be naturally extended to AN. The matrix
of a morphism ψ over A∗ is a matrix Mψ defined by (Mψ)ab = |ψ(a)|b for all a, b ∈ A. The morphism is
primitive, if there is a positive integer k such that all elements of (Mψ)k are positive.

A fixed point of a morphism ψ is a sequence u such that ψ(u) = u. The sequence u is substitutive
if u = σ(v) for a morphism σ and a sequence v which is a fixed point of morphism θ. Moreover, u is
substitutive primitive if θ is primitive. Durand in [3] proved that sequence u is substitutive primitive if
and only if u has finite number of distinct derivated sequences.

A morphism ψ is Sturmian if ψ(u) is Sturmian sequence for any Sturmian sequence u. Consider the
following elementary Sturmian morphisms ϕb and ϕβ defined by

ϕb :
0→ 0

1→ 01
with Mb =

(
1 1
0 1

)
and ϕβ :

0→ 10

1→ 1
with Mβ =

(
1 0
1 1

)
.

By [4] to a given standard Sturmian sequence u we can uniquely assign the pair: directive sequence
z ∈ {b, β}N and the sequence (u(n))n≥0, where u(n) ∈ {0, 1}N is a standard Sturmian sequence, such that
for every n ∈ N we have

u = ϕz0z1...zn−1(u(n)) .

The directive sequence z contains infinitely many letters b and infinitely many letters β. In addition, z is
purely periodic, i.e. z = z∞, if and only if u is the fixed point of the morphism ϕz. This fixing morphism
ϕz is always primitive.

3. Return words to prefixes of Rote sequences

Vuillon in [13] showed that an infinite sequence is Sturmian if and only if each non-empty factor has
exactly two distinct return words. Using some results from [2] we show that all derivated sequences of
Rote sequences to non-empty prefixes are over a ternary alphabet.

Theorem 3. Let v be a Rote sequence. Then every non-empty prefix x of v has exactly three distinct
return words.

In addition, we can construct the return words in Rote sequence using the relevant return words in
associated Sturmian sequence. We need an auxiliary definition of stability.

Definition 4. The word u = u0u1 · · ·un−1 ∈ {0, 1}∗ is called stable (S) if
∑n−1
i=0 ui = 0 mod 2. Other-

wise, u is unstable (U).

Definition 5. Let w be a prefix of a Sturmian sequence u with return words r, s. Due to Vuillon’s result
[9] u is a concatenation of blocks rks and rk+1s or blocks srk and srk+1 for some positive integer k. With
respect to the return words of w we distinguish three cases:

i) w is of type SU(k), if r is stable and s is unstable;
ii) w is of type US(k), if r is unstable and s is stable;
iii) w is of type UU(k), if both r and s are unstable.

The type of prefix w is denoted Tw.

We do not define the type SS since it cannot appear in Strumian sequences. We use these prefix types
to describe the return words to corresponding prefixes in Rote sequences.

Theorem 6. Let x be a prefix of a Rote sequence v. Denote by u the Sturmian sequence S(v) and by w
its prefix S(x) with return words r and s. Then the prefix x of v has three return words A,B,C ∈ {0, 1}+
such that:

i) r = S(A0), srk+1s = S(B0) and srks = S(C0) if w is of type SU(k);
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ii) rr = S(A0), rsr = S(B0) and s = S(C0) if w is of type US(k);
iii) rr = S(A0), rs = S(B0) and sr = S(C0) if w is of type UU(k).

Remark 7. We can also determine the type of w using the matrix Pw composed of the Parikh vectors of
return words to w. Let w be a prefix of a Sturmian sequence u with return words r, s, where r is the
more frequent return word. Then the matrix Pw is defined by:

Pw =

(
|r|0 |s|0
|r|1 |s|1

)
mod 2 ,

where |u|a denotes the number of letters a in the word u. Then the type Tw of the prefix w is

i) SU if Pw =

(
p q
0 1

)
ii) US if Pw =

(
p q
1 0

)
iii) UU if Pw =

(
p q
1 1

)
for some numbers p, q ∈ {0, 1}.

4. Derivated sequences of Rote sequences

Theorem 8. Let v be a Rote sequence with non-empty bispecial prefix x. Then the derivated sequence
dv(x) is uniquely determined by derivated sequence du(w) of u = S(v) to the prefix w = S(x) and by
type Tw of prefix w.

Moreover, we are able to construct derivated sequence dv(x) of a given Rote sequence v to a prefix x
if we know the type of S(x) and the derivated sequences of S(v) to S(x).

First, we explain how to determine the type of a given prefix w of a standard Sturmian sequence u.
Clearly it suffices to study only bispecial prefixes. Let us order the bispecial prefixes of u by their length
starting from the shortest one. Their types can be determined using results from Section 3 of [6], where
the authors explain how prefixes and their return words change under application of morphisms ϕb and
ϕβ .

Proposition 9. Let u be a standard Sturmian sequence with directive sequence z ∈ {b, β}N. Then the
type of its n-th bispecial prefix w is given by the natural number k and the matrix Pw, where

i) Pw = Mz0Mz1 · · ·Mzn−1

(
1 0
0 1

)
mod 2 if the sequence znzn+1zn+2 · · · has a prefix bkβ,

ii) Pw = Mz0Mz1 · · ·Mzn−1

(
0 1
1 0

)
mod 2 if the sequence znzn+1zn+2 · · · has a prefix βkb.

The derivated sequences of a given Sturmian sequence u are described in detail in [6]. In particu-
lar, if u is a standard Sturmian sequence with directive sequence z = z0z1z2 · · · , then the derivated
sequence du(w) to the n-th bispecial prefix w is standard Sturmian sequence with directive sequence
znzn+1zn+2 · · · .

It is well known that all Sturmian sequences are 2iet sequences. We show that derivated sequences of
Rote sequences are 3iet sequences. A three interval exchange transformation T : [0, 1)→ [0, 1) is given by
partition of interval [0, 1) into three subintervals IA = [0, α), IB = [α, α+ β) and IC = [α+ β, 1) and by
permutation π on the set {1, 2, 3} which expresses how these subintervals are rearranged, see [5] for more
details. The 3iet sequence u = u0u1u2 · · · ∈ {A,B,C}N of transformation T with initial point ρ ∈ [0, 1)
is defined by un = L if Tn(ρ) ∈ IL for all n ∈ N.

Proposition 10. Let v be a Rote sequence with non-empty prefix x, let u = S(v) be a standard Sturmian
sequence with prefix w = S(x). If du(w) is 2iet sequence of transformation with intervals [0, α) and [α, 1)
and initial point ρ, then the derivated sequence dv(x) is 3iet sequence of transformation T with initial
point ρ, where T is given by:

i) intervals [0, α), [α, 2α− k(1− α)), [2α− k(1− α), 1) and permutation (3, 2, 1) if w is of type
SU(k);

ii) intervals [0, 2α− 1), [2α− 1, α), [α, 1) and permutation (3, 2, 1) if w is of type US(k);
iii) intervals [0, 2α− 1), [2α− 1, α), [α, 1) and permutation (2, 3, 1) if w is of type UU(k).
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Now we suppose that directive sequence z is purely periodic, i.e. u is fixed point of morphism ϕz.
By [6], sequence u has at most |z| distinct derivated sequences. We prove that the associated Rote

sequence v has a finite number of distinct derivated sequences too and so by Durand’s result from [3] it
is substitutive primitive.

Theorem 11. Let v be a Rote sequence and let S(v) = u be a standard Sturmian sequence which is a
fixed point of a morphism ϕz. Then

i) v has at most 3|z| distinct derivated sequences, each of them is fixed by a morphism;
ii) v is substitutive primitive.

Moreover, using our results and Durand’s construction from [3] we can construct the fixing morphisms
of these derivated sequences algorithmically.
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Formal Intercepts of Sturmian words

Caïus Wojcik

Abstract :

We study Sturmian words, and particularly the second parameter descri-
bing this class of words.

Sturmian words are in�nite words over a 2-letter alphabet. They are de-
�ned as the in�nite words having lowest unbounded complexity. Namely, a
theorem of Morse and Hedlund states that an in�nite word is ultimately per-
iodic if and only if it has bounded complexity. Sturmian words are characte-
rised by the properties of not being ultimately periodic, and being balanced,
that is, the number of 1 appearing in factors of a given length only takes two
values.

The �rst parameter decribing a Sturmian word is its slope, de�ned as
the asymptotic proportion of 1, and characterises the set of factors of the
sturmian word. Through the continued fraction expansion of this irrational
number one can construct a distinguished Sturmian word of the correspon-
ding slope, called the characteristic word, which is the only sturmian word
of this slope admitting two sturmian extensions on the left.

Sturmian words are obtained geometrically by drawing a line on the plane
and coding the crossing through a vertical line by a 1 and the horizontal line
by a 0. The slope of the sturmian word being obtained through the slope
of the considered line, and the second parameter, the intercept, is usually
presented as the real number on the y-axis intersecting the line.

The characteristic word may be described using so-called standard and
central words. The �rst ones are obtained by a concatenation process similar
to Euclide's algorithm on integers. The second ones are obtained by removing
the last two letters of a standard word, and are palindromic words with
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two relatively prime periods, realizing the sharp bound of Fine and Wilf's
theorem.

On the other hand, we study the repetition function of sturmian words,
de�ned as the number of distinct factors of a given length appearing at
the beginning of an in�nite word. This function is related to the diphantine
exponent of in�nite words, and in the case of sturmian words, it has been
shown that the diophantine exponent is bounded if and only if the partial
quotients of the continued fraction expansion of the slope are bounded.

We study the repetition function using so-called Rauzy graphs of in�nite
words, also called factor graphs. Rauzy graphs are de�ned as a sequence of
directed graphs, with vertexes the factors of a �xed in�nite word and arrows
linking two factors if one is obtained by the other by a one-letter shift. The
Rauzy graphs of arbitrary words are in general di�cult to compute, but in
the case of sturmian words they are particularly simple.

Indeed, the rauzy graphs of sturmian words are constituted of two cycles,
patched together by a common part. The length of these two cycles are linked
to the denominator of the sequence of convergents in the continued fraction
expansion of the slope. Also, the evolution of the Rauzy graphs in the case
of sturmian word may be fully described.

Any in�nite word de�nes an in�nite path on its Rauzy graph. Since these
paths must be coherent with each others, there are a lot of restrictions on
the possible paths taken by a given word. The consideration of these paths
for di�erent element of the shift orbit of the base word is a natural point of
view of combinatorics on words. The repetition function can be read on those
path, since it is the length of the longest hamiltonian path at the beginning
of the base word's path.

Among the two cycles of the Rauzy graph of a sturmian word there a
distinguished one, that we call the referent cycle, de�ned as the one through
whom the characteristic word �rst passes. Indeed, we can compute the num-
ber of times the characteristic word turns around a cycle, and take it as a
reference for other sturmian words. We use this idea to compute the length
of cycles in Rauzy graphs, using the fact that the �rst repeated factor at the
beginning of the characteristic word is its pre�x.

These description of Rauzy graphs give another understanding of the so-
called three-gap theorem, stating that an arithmetic sequence on the circle
divides it into arcs with at most three possible lengths, corresponding to the
frequencies of factors in the sturmian word. Indeed, two factors belonging
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to the same branch of the Rauzy graph will have same frequencies, and the
frequencies of the factors of the common part will be the sum of the two
other frequencies.

The dynamical point of view of sturmian words as coding of rotations on
the circle gives an analytic description of the intercept. Namely, an intercept
can be expressed as an in�nite alternating sum of irrational number obtained
by shifting the original sequence of partial quotients, pounded with integer
coe�cients satisfying Ostrowski conditions. However, computations di�cul-
ties aside, there remains the problem of combinatorialy de�ne the intercept,
in addition to the non-injectivity of this representation.

Ostrowski conditions may be view as a condition of injectivity of the num-
ber system associated to the continuants of the continued fraction expansion.
They describe the rule that are being applied when one wants to sum two
integers written in Ostrowski expansion, an operation that is very far from
being understood.

In the dynamical setting given by an in�nite word, and given an element
in its dynamical subshift, realized as an approximation by su�xes of the base
word, one can naturally consider the sequence of natural integers encoding
each of the corresponding su�xes. In the context of Sturmian words, this
sequence consists of partial expansions of an in�nite Ostrowski expansion,
linking the chaos of dynamics to the rigidity of combinatorics.

This in�nite Ostrowski expansion is obtained by reading the operation of
shifting on the Rauzy graphs of Sturmian words. Namely, the partial sums
are obtained by considering the case of a length that is the increment of the
length of bispecials that are purely central (that is, coming from standard
words that are not semi-standard).

This observation allows us to de�ne what we call the formal intercept of
a sturmian word. They are formally de�ned as the projective limit of the
system of integers with a given maximal number of terms in their Ostrowski
expansion. Our main result is that this de�nition fully describes in a combi-
natorial and dynamical point of view the set of Sturmian words, in a bijective
way.

To prove this result, we use the particularly simple shape of Rauzy graphs
of Sturmian words. We use the computations of lengths of cycles previously
obtained to check the congruences relations to build a Sturmian words as-
sociated to a given formal intercept. For the converse, we characterize the
formal intercept as an exact approximation of a given Sturmian word.
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We will compute the formal intercept of the two sturmian extensions of
the caracteristic word. They have the particularity of having their support
in even places and odd places respectively, the support being de�ned as the
set of indices with non-zero Ostrowski coe�cients.

We will present the content of a work in progress, that goes as follows.

The action of the shift on Sturmian words allows us to add 1 to a formal
intercept, therefore de�ning the addition of a formal intercept with a natural
number. We will say that two formal intercept are equivalent whenever they
coincide up to addition by some integers. For Sturmian words that are not
equivalent to the characteristic word, this reduces to equality of almost all
Ostrowski coe�cients.

On the other hand, given a formal intercept one can use product formulas
on reversal of standard words to de�ne a Sturmian word. However this process
will not reach the sturmian words that are equivalent to the characteristic
word without being one of its su�xes. This operation, presented as a product
formula, is convenient when considering questions of computations.

The sturmian words obtained by this process have a formal intercept
that is complementary of the base intercept. That is, for a sum law de�ned
on the set of classes of equivalence of Sturmian words, this amounts to the
consideration of the opposite of a given Sturmian word.

The sum law de�ned this way would give us an isomorphism between
the set of equivalence classes of Sturmian words and the quotient of the real
numbers by the subgroup generated by 1 and the slope of the sturmian word.
We will present how certain formulas on continuants of continued fraction
expansions of quadratic numbers can be interpreted as elements of torsion
in the group of equivalence class of Sturmian words, giving an asymptotic
realisation of the operation of division by a natural integer in Ostrowski
expansion.
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UN ENSEMBLE INFINI DÉCIDABLE DE POINTS
FIXES SANS CUBE ADDITIF

DAMIE JAMET, FLORIAN LIETARD, AND THOMAS STOLL

Résumé. Dans ce travail, nous exhibons une classe infinie de
points fixes de morphismes pour lesquels le problème d’évitabilité
des cubes additifs est décidable. Pour cela, nous étendons l’algo-
rithme proposé par Cassaigne et al. [1] à l’ensemble des morphismes
semblables (au sens des matrices d’incidence) au morphisme étu-
dié dans leur article. Comme dans l’article de Cassaigne et al., la
preuve est en partie informatique : autrement dit, elle nécessite
une étude exhaustive, par ordinateur, d’un grand nombre de cas.

Le premières études sur les problèmes d’évitement remontent aux
travaux de A. Thue [2, 3]. On sait ainsi qu’il existe un mot infini sans
carré sur un alphabet de trois lettres (un carré est un mot fini de la
forme w1w2 où w1 = w2).

Dans [4], F.M. Dekking montre qu’il est existe un mot infini sur 3
lettres sans cube abélien (un mot fini w1w2 sur l’alphabet Σ est un carré
abélien si w1 et w2 sont de même longueur et si w1 est l’image de w2

par une permutation de Σ). Dans [5], V. Keränen a montré l’existence
d’un mot infini sur 4 lettres sans carré abélien.

Dans [1], Cassaigne et al. montrent que le point fixe w0 =
lim
n→∞

ϕn
0 (0) = 031430 . . . du morphisme ϕ0 : 0 7→ 03, 1 7→ 43, 3 7→

1, 4 7→ 01 est sans cube additif : un cube additif est un mot fini sur
Σ ⊂ N de la forme w1w2w3 où w1, w2 et w3 sont trois mots finis de
même longueur et : ∑

i1∈w1

i1 =
∑
i2∈w2

i2 =
∑
i3∈w3

i3.

Dans notre exposé nous montrerons dans un premier temps que l’al-
gorithme proposé dans [1] s’étend de manière naturelle à l’ensemble
des morphismes semblables (au sens des matrices d’incidence) au mor-
phisme ϕ0. En particulier, nous exhibons ainsi une classe potentielle-
ment infinie (à un facteur multiplicatif et à une translation des lettres
près sur l’alphabet) de points fixes sur 4 lettres sans cube additif.

Bien que les morphismes considérés soient semblables deux à deux, il
est intéressant de constater que leurs points fixes ne possèdent pas tous
les mêmes propriétés additives. Par exemple, soit w1 = lim

n→∞
ϕn
1 (6) =

602106 . . . le point fixe du morphisme ϕ1 : 0 7→ 2, 1 7→ 62, 2 7→ 10, 6 7→
1
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60 semblable au morphisme ϕ0. Le mot infini w1 est l’image du mot in-
fini w0 par la transformation de {0, 1, 3, 4} dans {0, 1, 2, 6} comme suit :
0 7→ 6, 3 7→ 0, 1 7→ 2, 4 7→ 1. Notre implémentation de l’algorithme de
Cassaigne et al. 1 nous donne une preuve informatique du fait que w1

est sans cube additif. Cependant, alors que nous conjecturons que tous
les carrés additifs dans w0 sont des carrés abéliens, nous remarquons
que le mot w1 possède des carrés additifs propres, autrement dit, non
abéliens, comme par exemple

w1 = 6 0 2 1 0 6 2 2 6 0 1 0 1 0 6 0 2 6 2 2 6 2 2 6 0 2 · · ·
Cette partie sera consacrée à une étude numérique détaillée de ce phé-
nomène.

Nous terminerons notre exposé par une présentation des pistes envi-
sagées pour nous attaquer aux problèmes ouverts suivants :
(1) Existe-t-il un mot infini sur l’alphabet {0, 1, 2, 3} sans cubes ad-

ditifs ?
(2) Quel est le plus petit morphisme sur 3 lettres dont le point fixe

ne possède pas de cubes additifs ?
(3) Existe-t-il un mot infini sur un alphabet fini sans carrés additifs ?
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Autour du déséquilibre des mots C-adiques

Mélodie Andrieu

28 mai 2018

Résumé

Nous étudions une propriété combinatoire, le déséquilibre, d’une classe particulière de mots
sur l’alphabet {a, b, c} : les mots C-adiques. En particulier, nous exhibons des familles de mots
C-adiques de déséquilibres arbitrairement grands, et même des mots C-adiques de déséquilibre
infini. Ces constructions ont été obtenues par l’exploration d’un automate et l’étude de ses
chemins.

1 Motivations

À l’algorithme de fraction continue soustractif décrit par l’itération de l’application

(R+)2 → (R+)2

(x, y) 7→ (x− y, y) si x ≥ y
(x, y − x) sinon

est associée une classe particulière de mots infinis binaires : les mots sturmiens. Ceux-ci jouissent de
deux caractérisations combinatoires : d’une part, ce sont exactement les mots de complexité n+ 1,
c’est-à-dire les mots qui admettent n + 1 facteurs de longueur n pour tout entier n ; d’autre part,
ce sont les mots apériodiques dont le déséquilibre vaut 1, c’est-à-dire les mots apériodiques dans
lesquels chaque lettre apparaît, à une unité près, un même nombre de fois dans tous les facteurs
d’une longueur donnée.

Plusieurs tentatives ont été faites pour généraliser les fractions continues à des triplets de réels
positifs. Un tel algorithme pourrait permettre d’approcher simultanément deux réels par une suite
de couples de nombres rationnels.

Dans ce document, nous nous interrogeons sur les mots C-adiques, qui sont les mots ternaires
associés à l’algorithme [3] :

(R+)3 → (R+)3

(x, y, z) 7→ (x− z, z, y) si x ≥ z
(y, x, z − x) sinon.

Tout comme les mots d’Arnoux-Rauzy, ces mots sont de complexité 2n+1. L’intérêt de cet algorithme
est qu’il admet comme instance n’importe quel triplet de réels positifs, contrairement à l’algorithme
d’Arnoux-Rauzy qui n’est défini que sur un ensemble de mesure de Lebesgue nulle.

Aussi, il est naturel de s’interroger sur l’existence d’une borne uniforme pour le déséquilibre.
Hélas, comme pour les mots d’Arnoux-Rauzy [2], nous pouvons construire des familles de mots C-
adiques de déséquilibre aussi grand que souhaité, et même, par un lemme de pompage, des mots de
déséquilibre infini.
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2 Déséquilibre, mots C-adiques

Soit u un mot fini sur l’alphabet ternaire A = {a, b, c} et α ∈ A une lettre. On désigne par
|u|α le nombre d’occurrences de la lettre α dans le mot u. Le vecteur de Parikh de u est le vecteur
χ(u) = (|u|a, |u|b, |u|c), qui compte les multiplicités de chacune des lettres de l’alphabet. Remarquons
que la somme des coordonnées de ce vecteur est égale à la longueur du mot u, que l’on note |u|. Étant
donné deux mots de même longueur u et v, on appelle vecteur de déséquilibre de u et v la différence
de leurs vecteurs de Parikh. La somme des coordonnées d’un tel vecteur est nulle. Le déséquilibre
d’un mot infini w est la quantité (éventuellement infinie) :

d = sup
n∈N

sup
u,v∈Fn(w)

||χ(u)− χ(v)||∞,

qui s’écrit encore :
d = sup

n∈N
sup

u,v∈Fn(w)
max

α∈{a,b,c}
||u|α − |v|α|.

Elle mesure les iniquités de répartition entre les lettres dans un mot donné.

Dans toute la suite, on s’intéressera aux substitutions c1 : a 7→ a, b 7→ ac, c 7→ b et c2 : a 7→ b, b 7→
ac, c 7→ c, qui proviennent de l’algorithme de fraction continue 1 [3]. On notera aussi C = {c1, c2}.

Un mot C-adique est un mot infini de la forme w = limn→∞s1 ◦ ... ◦ sn(w′), où (sk)k∈N ∈ CN

porte le nom de suite directrice de w, et où w′ est un mot infini quelconque sur A ; avec la condition
supplémentaire que chacune des substitutions c1 et c2 apparaisse une infinité de fois dans la suite
directrice.

Remarque : pour S un ensemble de substitutions, on peut étudier les mots S-adiques dans un
cadre plus général [1].

Enfin, pour s ∈ C, nous introduisons les applications −s et s− qui, à un mot fini non vide u,
associent le mot s(u) auquel on efface la première (resp. la dernière) lettre. Ces applications ne sont
pas des morphismes.

3 Construction de mots de C-adiques de déséquilibres arbitraire-
ment grands

Pour tout entier n, nous souhaitons exhiber un mot C-adique de déséquilibre supérieur à n. Pour
ce faire, nous allons construire par récurrence une suite (wn)n∈N de mots C-adiques, et donner sur
chacun d’eux deux facteurs un et vn de même longueur, dont le vecteur de déséquilibre est de norme
n. Cela assure que wn a pour déséquilibre au moins n. L’intuition de ces constructions provient de
l’exploration d’un automate et de l’étude de ses chemins.

Construction de (wn).

Soit w0 n’importe quel mot C-adique, par exemple c1◦c2◦c1◦c2◦...(a). Posons w1 = c2◦c2◦c2(w0)
et pour tout n ≥ 1 : {

wn+1 = c2n+2
1 ◦ c2(wn) si n est impair

wn+1 = c2n+2
2 ◦ c1(wn) sinon.

Pour tout entier n, wn est un mot C-adique.

Construction des suites de facteurs (un) et (vn).
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La lettre b apparaît dans w0 (la complexité nous le garantit), donc acc = c2 ◦ c2 ◦ c2(b) apparaît
dans w1. Posons u1 = ac, v1 = cc et, pour tout n ≥ 1 :{

un+1 = c−1 ◦ (c1 ◦ c1)n ◦ c1 ◦ c2(un) si n est impair
vn+1 = c1 ◦ (c1 ◦− c1)n ◦ c1 ◦ c2(vn){
un+1 = c2 ◦ (c2 ◦ c−2 )n ◦ c2 ◦ c1(un) sinon.
vn+1 =

− c2 ◦ (c2 ◦ c2)n ◦ c2 ◦ c1(vn)

Les mots un et vn sont bien facteurs de wn, pour chaque n.

Lemme 1. Soit n ≥ 1.
— Si n est impair, alors un commence par a et termine par c, vn commence et termine par c,

et χ(un)− χ(vn) = (n, 1− n,−1).

— Sinon, alors un commence et termine par a, vn commence par a et termine par c, et χ(un)−
χ(vn) = (1, n− 1,−n).

Theorème 1. Il existe des mots C-adiques de déséquilibre arbitrairement grand.

4 Construction de mots C-adiques de déséquilibre infini

Nous venons de construire une famille de mots C-adiques pour laquelle le déséquilibre n’est pas
borné. Toutefois, le déséquilibre des mots pris individuellement peut l’être. Pour construire un mot
dont le déséquilibre est infini, nous allons recourir à un lemme de pompage.

La première étape consiste à montrer que lorsque l’on compose un mot C-adique par l’une ou
l’autre des substitutions c1 et c2, on ne rééquilibre pas le mot au-delà d’une certaine proportion.

Proposition 1. Si w est un mot C-adique de déséquilibre Des(w) ≥ 3n, alors c1(w) (resp. c2(w))
est un mot C-adique de déséquilibre Des(w) ≥ n.

Pour tout entier naturel m, on note désormais Cm := {s0 ◦ ... ◦ sm−1 ∈ {c1, c2}m}, et C∗ :=
∪m∈NCm.

Corollaire 1 (Lemme de pompage). ∀s ∈ C∗,∀n ∈ N,∃σ ∈ C∗ tel que pour tout mot C-adique w,
Des(s ◦ σ(w)) ≥ n.

Theorème 2. Il existe un mot C-adique de déséquilibre infini.

Démonstration. D’après le corollaire 1, je peux construire une suite (σk)k∈N ∈ (C∗)N telle que pour
tout entier naturel n et pour tout mot C-adique w, le déséquilibre du mot σ0 ◦ ... ◦ σn(w) vaut
au moins n. Ainsi, le mot limite w∞ = limn→∞ σ0 ◦ ...σn(w0) (s’il existe, sinon prendre une valeur
d’adhérence de la suite), où w0 est un mot C-adique quelconque, est lui même un mot C-adique
(chaque σk fourni par le corollaire contient c1 et c2), et son déséquilibre vaut au moins n, pour tout
n ; il est donc de déséquilibre infini.
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Abstract

We establish several recurrence relations and an explicit formula for the
number of factorizations of the length-n prefix of the Fibonacci word into
a (not strictly) decreasing sequence of standard Fibonacci words (OEIS
sequence A300066).

1 Introduction

Extended Ostrowski numeration systems were introduced in [4] to solve a prob-
lem on palindromes in Sturmian words. A representation of n in such a system
related to a given Sturmian slope corresponds to a factorization of the prefix
of length n of the standard Sturmian word of this slope as a concatenation of
finite standard words in a non-strictly decreasing order. Since in this abstract
we consider only the Fibonacci case, it is reasonable to give a Fibonacci exam-
ple: consider the prefix abaababaabaaba of the Fibonacci word of length 14 and
its decompositions to standard words s0 = a, s1 = ab, s2 = aba, s3 = abaab,
s4 = abaababa, s5 = abaababaabaab in a decreasing order. We see that

abaababaabaaba = (abaababaabaab)(a) = s5s0

= (abaababa)(abaab)(a) = s4s3s0

= (abaababa)(aba)(ab)(a) = s4s2s1s0

= (abaababa)(aba)(aba) = s4s2s2

= (abaab)(aba)(aba)(aba) = s3s2s2s2

= (abaab)(aba)(aba)(ab)(a) = s3s2s2s1s0.

These six factorizations correspond to six valid representations of 14:

14 = 100001 = 11001 = 10111 = 10200 = 1300 = 1211.

If we restrict ourselves to representations corresponding to strictly decreasing
sequences, or, which is the same, to the representations only containing zeros
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and ones, their number for each n is equal to the well-studied OEIS sequence
A000119 (see, e.g., [2]). In particular, the lower limit of the sequence is 1, and
the upper asymptotics grows as O(

√
n). But here we consider the number of all

valid representations of n, denoted by T (n), so that, for example, T (14) = 6,
the obtained sequence is new and was just recently uploaded to the OEIS as
A300066. Here we prove a series of recurrence relations and an explicit formula
for it.

2 Result

Let φ denote the golden ratio, φ = 1+
√
5

2 . The Fibonacci word is a Sturmian
word s = s[1]s[2] · · · of the slope 1/(φ + 1) = 1/φ2 and of zero intercept, that
is, for all n, we have

s[n] =

{
a, if {n/φ2} < 1− 1/φ2,

b, otherwise.
(1)

Here {x} denotes the fractional part of x. Another way to construct s is to
consider it as a limit s = lim sn of finite standard words

s−1 = b, s0 = a, sn+1 = snsn−1 for all n ≥ 0. (2)

We write N = kn · · · k0 and call this representation of N valid if ki ≥ 0 for all

i and s(0..N ] = skn
n s

kn−1

n−1 · · · sk0
0 , where s(0..N ] is the prefix of length N of the

Fibonacci word. The number of valid representations of N is denoted by T (N).

Proposition 1. If s[n] = a, all valid representations of n end with an even
number of 0s. If s[n] = b, all of them end with an odd number of 0s.

The main result of this abstract is the following

Theorem 1. If s[n] = a, then T (n) = ⌈n/φ2⌉, or, which is the same, T (n)
is equal to the number of occurrences of b to s(0..n] plus one. If s[n] = b,
then T (n) = ⌈n/φ3⌉, or, which is the same, T (n) is equal to the number of
occurrences of aa to s(0..n] plus one.

The proof of the theorem is based on several recurrence relations on T (n):

Proposition 2. For all s, T (r0) ≥ T (r). If r = r′102k for some k ≥ 0, then
T (r0) = T (r).

Proposition 3. For all z ∈ {0, 1}∗ and for all k ≥ 1,

T (z102k) = T (z102k−2) + T (z(01)k).

Proposition 4. For all z ∈ {0, 1}∗ and for all k ≥ 1,

T (z10k1) =

{
T (z10k+1), if k is odd,

T (z10k) + T (z(01)k/2), if k is even.
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Propositions 2 to 4 give a full list of recurrence relations sufficient to compute
T (n) for every n > 1, starting from T (1) = 1. In particular, as corollaries, we get
simple formulas on the values of T on Fibonacci numbers and their predecessors:
starting from F1 = 1, F2 = 2, Fn+2 = Fn+1 + Fn, we get

T (F2n−1) = T (F2n) = F2n−3 + 1

and
T (F2n − 1) = T (F2n+1 − 1) = F2n−2.

The same recurrence relations serve to prove Theorem 1.

3 Acknowledgement

We are deeply grateful to J. O. Shallit for computing the first values of the
considered sequence and submitting it to the On-Line Encyclopedia of Integer
Sequences.

References

[1] J.-P. Allouche, J. Shallit. Automatic Sequences: Theory, Applications,
Generalizations. Cambridge University Press, 2003.

[2] J. Berstel. An exercise on Fibonacci representations. Theor. Inform. Appl.
35 (2002) 491–498.
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Abstract

We consider a variation on a classical avoidance problem from com-
binatorics on words that has been introduced by Mousavi and Shallit
at DLT 2013. Let pexpi(w) be the supremum of the exponent over the
products of i factors of the word w. The repetition threshold RTi(k)
is then the infimum of pexpi(w) over all words w ∈ Σω

k . Moussavi and
Shallit obtained that RTi(2) = 2i and RT2(3) = 13

4 . We show that
RTi(3) = 3i

2 + 1
4 if i is even and RTi(3) > 3i

2 + 1
6 if i is odd and i > 3.

Keywords: Words; Repetition avoidance.

1 Main results

Mousavi and Shallit [2] have considered two generalizations of the avoidance
of fractional repetitions in infinite words. A word is circularly r+-power-free
if it does not contain a factor pxs such that sp is a repetition of exponent
strictly greater than r. Let Σk = {0, 1, . . . , k − 1}. The smallest real number
r such that w is r+-power-free is denoted by cexp(w). Let RTC(k) denote the
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minimum of cexp(w) over every w ∈ Σω
k . Similarly, pexpi(w) is the smallest

real number r such that every product of i factors of w is r+-power-free word
and RTi(k) is the minimum of pexpi(w) over every w ∈ Σω

k .
In this paper, we consider the ternary alphabet. We obtain bounds on

RTi(3) which extend the result of Mousavi and Shallit that RT2(3) = 13
4

.

Proposition 1. RT2(k) = RTC(k).

Proof. The language of words in Σ∗
k avoiding circular repetitions of exponent

at least e (or strictly greater than e) is a factorial language. As it is well-
known [1], if a factorial language is infinite, then it contains a uniformly
recurrent word w. By Proposition 14 in [2], pexp2(w) = cexp(w). This
implies that RT2(k) = RTC(k).

Proposition 2. If i is even and i > 2, then RTi(3) > 3i
2

+ 1
4
.

Proof. Mousavi and Shallit [2] have proved that RT2(3) = 13
4

, which settles
the case i = 2. We have double checked their computation of the lower
bound RT2(3) > 13

4
. Suppose that i is a fixed even integer and that w3

is an infinite ternary word. The lower bound for i = 2 implies that there
exists two factors u and v such that uv = te with e > 13

4
. Thus, the prefix

t3 of uv is also a 2-terms product of factors of w3. So we can form the i-
terms product (t3)i/2−1uv which is a repetition of the form tx with exponent
x = 3

(
i
2
− 1

)
+ e > 3

(
i
2
− 1

)
+ 13

4
= 3i

2
+ 1

4
. This is the desired lower

bound.

Proposition 3. If i is odd and i > 3, then RTi(3) > 3i
2

+ 1
6
.

Proof. Suppose that i > 3 is a fixed odd integer, that is, i = 2j + 1. Suppose
that w3 is a recurrent ternary word such that the product of i factors of w3 is
never a repetition of exponent at least 3i

2
+ 1

6
= 3j+ 5

3
. First, w3 is square-free

since otherwise there would exist an i-terms product of exponent 2i. Also,
w3 does not contain two factors u and v with the following properties:

• uv = t3,

• u = te with e > 5
3
.

Indeed, this would produce the i-terms product (uv)ju which is a repetition
of the form tx with exponent x = 3j + e > 3j + 5

3
.
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So if a, b, and c are distinct letters, then w3 does not contain both u =
abcab and v = cabc and w3 does not contain both u = abcbabc and v = babcb.
A computer check shows that no infinite ternary square-free word satisfies
this property. This proves the desired lower bound.

Proposition 4. If i is even and i > 2, then RTi(3) 6 3i
2

+ 1
4
.

Proof. Let i be any even integer at least 2. To prove this upper bound, it is
sufficient to construct a ternary word w satisfying pexpi(w) 6 3i

2
+ 1

4
. The

ternary morphic word used in [2] to obtain RT2(3) 6 13
4

seems to satisfy
the property. However, it is easier for us to consider another construction.
Let us show that the image of every 7/5+-free word over Σ4 by the following
45-uniform morphism satisfies pexpi 6

3i
2

+ 1
4
.

0 7→ 010201210212021012102010212012101202101210212

1 7→ 010201210212012101202101210201021202101210212

2 7→ 010201210120212012102120210121021201210120212

3 7→ 010201210120210121021201210120212012102010212

First, we check that such ternary images are
(

202
135

+
, 36

)
-free using the

method in [3]. Since 202
135

< 3
2
, the period of every repetition formed from i

pieces and with exponent at least 3i
2

must be at most 35. Then we check
exhaustively that the ternary images do not contain two factors u and v such
that

• uv = te,

• e > 3,

• 9 6 |t| 6 35.

Thus, the period of every repetition formed from i pieces and with exponent
strictly greater than 3i

2
must be at most 8. Finally, we check exhaustively

that pexpi 6
3i
2

+ 1
4

by considering only i-terms products that are repetitions
of period at most 8.

3



2 Concluding remarks

We conjecture that RTi(3) = 3i
2

+ 1
6

for every odd i > 3, based on numerical
evidence. We hope to get a suitable morphism and a proof of this case in the
near future. Then the next step would be to consider the 4-letter alphabet.
A quick computer check shows that RTi(4) > i + 1

2
for every i > 2 and we

conjecture that this is best possible. However, a proof of an upper bound
of the form RTi(4) 6 i + c cannot be similar to the proof of Proposition 4.
That is because the multiplicative factor of i, which drops from 3

2
when k = 3

to 1 when k = 4, forbids that the constructed word is a morphic image of a
Dejean word.
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In his seminal work The Art of Computer Programming [4], Knuth was the first to consider
a number of classic data structures from the point of view of the permutations they could
produce from the identity permutation, or equinumerously, the permutations which the
data structure can sort. In the case of a single stack, there are two possible operations:
I, which moves the next element from the input onto the stack, and O, which outputs
the top element of the stack (see Figure 1, top left). A permutation {p1, p2, . . . , pn} of
the numbers {1, 2, . . . , n} is said to be stack-sortable if it is possible for the elements to
be input in the order p1, p2, . . . , pn and output in the order 1, 2, . . . , n. Knuth noticed
that the permutations sortable using a single stack are exactly those which avoid the
pattern 231, and that these are enumerated by the Catalan numbers. Knuth posed the
same question for a number of other data structures, in particular, he asked how many
permutations of each length can be sorted using a double ended queue (deque), two stacks
in parallel (tsip) or two stacks in series (tsis).

In [1], Albert and Bousquet-Mélou characterised the counting function P (t) for tsip-
sortable permutations in terms of a generating function Q(u, a) for weighted quarter
plane loops. This solves the enumeration problem for tsip-sortable permutations in the
sense that P is characterised by a system of functional equations. Using a similar method
we discovered a simple relationship between the counting function D(t) for deque-sortable
permutations and the counting function P (t), thereby solving the enumeration problem
for deque-sortable permutations in the same sense. The enumeration of tsis-sortable per-
mutations appears to be more difficult, as we have so far only been able to compute the
first 20 coefficients of the associated counting function S(t).

It is convenient to consider these permutations from the perspective of sequences of moves
which sort them. For example, A stack-sortable permutation is uniquely determined by
the sequence of operations I, O which sorts it. This operation sequence is then a word
over the alphabet {I, O} which contains n occurrences of each letter, with the restriction
that the number of I’s preceding any O is at least the number of O’s preceding that
O. Using this classification, it is easy to see that these words, and hence stack-sortable
permutations, are enumerated by the Catalan numbers.

The operation sequence for a deque-sortable or tsip-sortable permutation is a word over
the alphabet {I1, I2, O1, O2}, while for a tsis-sortable permutation, the associated alpha-
bet is {ρ, λ, µ} (see Figure 1). We call these operation sequences deque-words, tsip-words
and tsis-words, respectively. In these cases the correspondence between operation se-
quences and sortable permutations is not bijective because, in general, multiple different
operation sequence can sort the same permutation.
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Figure 1: The allowed operations for a stack (top left), deque (top right), two stacks in
parallel (bottom left) and two stacks in series (bottom right).

For two stacks in parallel, Albert and Bousquet-Mélou found a restricted class of operation
sequences which are in bijection with their associated permutations. These canonical
operation sequences are those with the following two properties:

1. The subwords I1O2 and I2O1 are forbidden

2. Any subword of the operation sequence which is itself a tsip-word begins with I1.

This classification allowed them to related the generating function P (t) for tsip-sortable
permutations to a generating function Q(u, a) for weighted quarter plane walks. Subse-
quently, we found a similar class of canonical operation sequences for deques, which are
those deque-words with the above two properties as well as the following additional prop-
erty: when the deque contains at most 1 element, only the moves I1 and O1 are allowed,
not I2 or O2.

By enumerating canonical deque-words, we derive the following relationship between the
counting function D(t) for deque-sortable permutations, and the counting function P (t)
for tsip-sortable permutations:

2D(t) = 2 + t+ 2Pt− 2Pt2 − t
√

1− 4P + 4P 2 − 8P 2t+ 4P 2t2 − 4Pt.

Despite the fact that both problems are now in some sense solved, it is still not proven
that the radii of convergence tp of P (t) and td of D(t) are equal. From the expression
above, we can deduce that if

1− 4P + 4P 2 − 8P 2t+ 4P 2t2 − 4Pt > 0
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for all t ∈ [0, tp), then td = tp. It is conjectured, however, that the expression above is equal
to 0 at t = tp, so it is not possible to prove the inequality by simply approximating the left
hand side. Since the function P has a simple characterisation in terms of the generating
function Q(u, a) for weighted quarter plane loops, the question of whether td = tp can
be reduced to questions about Q. We show that the following three conjectures from [1]
imply that td = tp.

Conjecture 1. The series Q(u, a) is (a+ 1)-positive. That is, Q takes the form

Q(u, a) =
∑
n≥0

unPn(a+ 1),

where each polynomial Pn has positive coefficients.

Conjecture 2. the radius of convergence ρQ(a) of Q(·, a) is given by

ρQ(a) =


1

(2 +
√

2 + 2a)2
, if a ≥ −1/2,

−a
2(a− 1)2

, if a ∈ [−1,−1/2].

Conjecture 3. The series Qu(u, a) = ∂Q
∂u

is convergent at u = ρQ(a) for a ≥ −1/3.

Finally, using the solutions to these two problems, we have computed over 1000 coefficients
of each of the series P (t) and D(t). We find that the coefficients of P (t) behave as
κp · µn · nγ, where µ = 8.281402207 . . . and γ ≈ −2.473, while the coefficients of D(t)
behave as κd ·µn ·n−3/2. In particular, we find that the growth rates of these two sequences
agree to 10 significant digits, adding credence to the conjecture that tp = td.

In the case of tsis-sortable permutations, we have computed the first 20 coefficients of the
associated generating function S(t). Our analysis suggests that the coefficients behave
like κs · µns · nγs , where µs ≈ 12.4 and γs ≈ −2.5.
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The rigidity property for a measure-theoretic dynamical systems is the
convergence to the identity of a sequence of powers of the map. We look at
examples of rigid and non-rigid systems in the class of interval exchanges.
Following those coming from square-tiled surfaces, which will be mentioned
in P. Hubert’s lecture, we consider the famous Veech example of 1969 and
some generalizations, which are finite extensions of rotations of angle α with
marked points βi : by the same word-combinatorial methods as in those pre-
vious cases, we can prove they are rigid if α has unbounded partial quotients,
non-rigid if the coding by the partition defined by the βi is linearly recur-
rent. In the intermediate case when α has bounded partial quotients but the
coding is not linearly recurrent, we have partial results using the Ostrowski
expansions of the βi related to α: there are rigid examples, including Veech
1969 in this case, and non-rigid ones providing the first known examples of
non-rigid not linearly recurrent interval exchanges.
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Etude de l’automate minimal des écritures en base 2p des
multiples de l’ensemble de Thue-Morse

Adeline Massuir

30 mai 2018

Ce travail a été réalisé en collaboration avec Emilie Charlier et Célia Cisternino.
L’ensemble de Thue-Morse, T , est l’ensemble des nombres naturels dont l’écriture en base 2

contient un nombre pair de 1. Les premiers éléments sont 0, 3, 5, 6, 9, . . . Cet ensemble est clairement
2-reconnaissable. En effet, l’automate suivant accepte les représentations en base 2 de ces nombres :

1

2

0

0

1 1

De plus, on peut facilement, à partir de cet automate, décrire l’automate qui accepte les repré-
sentations de ces nombres dans une base qui est une puissance de 2. Enfin, T n’étant clairement
pas ultimement périodique, on sait par le théorème de Cobham qu’il ne peut être b-reconnaissable
pour un b qui n’est pas une puissance (entière positive) de 2.

Nous nous sommes donc intéressées à l’automate minimal de chacun des langages

repb (mT )

où b = 2p (avec p > 0) et m ∈ N0.
Pour ce faire, nous avons commencé par construire un automate qui acceptait ce langage.

Plusieurs étapes sont nécessaires. Tout d’abord, on construit un automate qui accepte les couples
(repb(n), repb(mn)) pour tous les naturels n (en prenant pour convention qu’on ajoute des 0 de
tête au plus court des deux mots afin que les deux composantes aient la même longueur). Ensuite,
on construit l’automate acceptant le langage

{(repb(t), repb(n)) : t ∈ T , n ∈ N}

(avec la même convention que précédemment). Ensuite, on effectue le produit des deux automates,
pour obtenir un automate acceptant le langage suivant (toujours avec la même convention) :

{(repb(t), repb(mt)) : t ∈ T }

Finalement, il nous reste à projeter le label de chaque arc sur sa deuxième composante.
A partir de cet automate, nous avons pu prouver que, si on note b = 2p et m = k2i où p > 0,

k impair et i ≥ 0, alors le nombre d’états de l’automate minimal du langage

repb (mT )

1



est 2k + d ipe.
Ce travail fait écho à l’article de B. Alexeev 1, dans lequel il détermine le nombre d’états de

l’automate minimal de chaque langage repb (mN) pour tous m, b ∈ N0. Toutefois, nos procédés de
démonstration sont différents des siens.

1. Boris Alexeev, Minimal DFA for testing divisibility, Journal of Computer and System Sciences 69 (2004), 2,
pp. 235–243.
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Generalized Beatty sequences and complementary triples

Abstract

A Beatty sequence is the sequence A(n) = bnαc for n ≥ 1, where α is a positive real number. What
Beatty observed is that when B is the sequence B(n) = bnβc, with α and β satisfying

1

α
+

1

β
= 1, (1)

then (A(n)) and (B(n)) are complementary sequences, that is, the sets {A(n) : n ≥ 1} and {B(n) : n ≥ 1}
are disjoint and their union is the set of positive integers.

A generalized Beatty sequence is a sequence v defined by v(n) = pbnαc + qn + r, where α, p, q, r are
real numbers. These occur in several problems, as for instance in homomorphic embeddings of Sturmian
languages in the integers ([1]).

Question 1 Let α be an irrational number, and let A defined by A(n) = bnαc for n ≥ 1 be the Beatty
sequence of α. Let Id defined by Id(n) = n be the identity map on the integers. For which sixtuples of
integers p, q, r, s, t, u are the two sequences

v = pA+ q Id + r and w = sA+ t Id + u

complementary sequences?

Question 2 For which nonatuples of integers (p1, q1, r1, p2, q2, r2, p3, q3, r3) the three sequences

vi = piA+ qi Id + ri, i = 1, 2, 3

are a complementary triple?

Here a complementary triple are three sequences, with the property that the sets they determine are
disjoint with union the positive integers.

In this talk, based on joint work with Jean-Paul Allouche I give (incomplete) answers to these ques-
tions.

[1] Michel Dekking, The Frobenius problem for homomorphic embeddings of languages into the inte-
gers, Theoretical Computer Science 732(2018),73-79.
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Joint work with V. Berthé, F. Dolce, F. Durand and D. Perrin

Dendric words are infinite words defined in terms of extension graphs that
describe the left and right extensions of their factors. Extension graphs are
bipartite graphs that can be roughly described as follows: given an infinite
word x, and given a finite factor w of x, one puts an edge between left and right
copies of letters a and b such that awb is a factor of x. Dendric words are defined
by requiring that the extension graph of each of its factor is a tree. This class
of words with linear factor complexity includes classical families of words such
as Sturmian words, codings of interval exchanges, or else, Arnoux-Rauzy words.
Dendric words have striking combinatorial, ergodic and algebraic properties.
This includes in particular algebraic properties of their return words [4], and
of maximal bifix codes defined with respect to their languages [2, 5, 6]. They
have been introduced in [4] and studied in several papers (as, for instance, [5,
6]), under the name of tree words. We have chosen to call them here dendric
words, and the subshifts they generate dendric subshifts, in order to avoid any
ambiguity with respect to the notion of tree shift that refers to shifts defined on
trees, and not on words (see e.g. [1]).

In this talk, based on [7], I investigate the properties of substitutive dendric
words and prove some rigidity properties. Rigidity of an infinite word x has to
do with the algebraic properties of its stabilizer Stab (x), that is the monoid of
substitutions that fix it: an infinite word generated by a substitution is rigid
if all the substitutions in Stab (x) are powers of a unique substitution. In this
work, we concentrate on the iterative stabilizer according to the terminology
of [9]: we focus on non-erasing morphisms and on infinite words generated by
iterating a substitution.

There are numerous results on the two-letter case concerning rigidity (see [10,
11] and also [3]). It is indeed well known that Sturmian words generated by
substitutions are rigid [10, 11]. The situation is more contrasted as soon as
the size of the alphabet increases. For instance, over a ternary alphabet, the
stabilizer of a given infinite word can be infinitely generated, even when the
word is generated by iterating an invertible primitive morphism (see [8, 9]).

Our main results are the following, where §-adic expansions correspond to
the limit of compositions of substitutions of the form σ1 ◦ · · · ◦ σn, §e stands for

1



the set of elementary positive automorphisms of the free group generated by the
alphabet of the word and tame substitutions are elements of §∗e.

Theorem 1. A recurrent dendric word over an alphabet A is primitive substitu-
tive if and only if it has an eventually periodic primitive §e-adic representation.

Theorem 2. Let x be a dendric word. Primitive substitutions in the stabilizer
Stab (x) of x coincide up to powers. More precisely, if x is a fixed point of both
σ and τ primitive substitutions, then there exist i, j ≥ 1 such that τ i = σj.

Let x be a recurrent substitutive dendric word. There is a primitive tame
substitution θ such that any primitive substitution σ ∈ Stab (x) has a power that
is (tamely) conjugate to a power of θ, that is, there exists a tame substitution τ
such that σi = τθjτ−1, for some i, j ≥ 1.

In particular, if x is a dendric word, any primitive substitution in Stab (x)
is a tame substitution.

Theorem 3. Let (X,S) be an aperiodic minimal dendric subshift. Then it
admits no rational topological eigenvalue.

Corollary 4. Let (X,S) be an aperiodic minimal dendric subshift. Then, it
can neither be generated by a primitive constant length substitution, nor be a
Toeplitz subshift.

Our proofs rely on the notion of return words and on the so-called Return
Theorem [4] that states that for every infinite dendric word defined over the
alphabet A, the set of (right) return words is a basis of the free group generated
by the alphabet A.
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