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What is a meander

Definition
A meander is a homotopy class of pairs of transverse smooth curves
(71,72) on the sphere.
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What is a meander

Definition
A meander is a homotopy class of pairs of transverse smooth curves
(71,72) on the sphere.

AET

Following the literature, we will have a marked point on the blue curve so
that intersections can be numbered (and avoid complications with
automorphisms).
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Faces and bigons

A meander cut the plane into faces with an even number of sides 2j. We
call j — 2 the degree.
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Faces and bigons

A meander cut the plane into faces with an even number of sides 2j. We
call j — 2 the degree.
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Sum of degrees = -4.
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Faces and bigons

A meander cut the plane into faces with an even number of sides 2j. We
call j — 2 the degree.

g

Sum of degrees = -4. The bigons are the faces of degree —1.
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Some numbers
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Some numbers

® M, = number of meanders with 2n crossings and k bigons

V. Delecroix (LaBRI)



Some numbers

® M, = number of meanders with 2n crossings and k bigons

® M, =73, My, = number of meanders with 2n crossings

V. Delecroix (LaBRI) 4/27



Some numbers

® M, = number of meanders with 2n crossings and k bigons

® M, =73, My, = number of meanders with 2n crossings

n Mn74 Mn,5 Mn,6 Mn77 Mn,8 Mn,9 Mn,lO M,
2 2 0 0 0 0 0 0 2
3 6 0 2 0 0 0 0 8
4 8 16 16 0 2 0 0 42
5 20 40 110 60 30 0 2 262
6 12 168 416 576 462 144 48 1828
7 42 280 1470 3276 4228 2884 1288 | 13820
8 32 544 4128 13632 26424 31200 22096 | 110954
9 54 1152 9102 45468 130410 220488 243990 | 933458
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Conjectural asymptotics for M,

M,, = number of meanders with 2n crossings

V. Delecroix (LaBRI)



Conjectural asymptotics for M,

M,, = number of meanders with 2n crossings
Conjecture (Di Francesco-Golinelli-Guitter (2000))
Mp~CR" n™®

29 ++/145

where C > 0, R ~ 12.2628 and oo = B
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Conjectural asymptotics for M,

M,, = number of meanders with 2n crossings

Conjecture (Di Francesco-Golinelli-Guitter (2000))

M,~CR"n¢
where C > 0, R ~ 12.2628 and oo = %

Extensive numerical experiments and extrapolations by Jensen and
Guttman (2000) tend to confirm the conjecture.
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Average order of M, x

M, x = number of meanders with 2n crossings and k bigons
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Average order of M, x

M, x = number of meanders with 2n crossings and k bigons

Theorem (Delecroix-Goujard-Zograf-Zorich)

For all k we have the following asymptotics

2\ "3 [2k — 4\? x2k-5
M, — —_—
Z k™~ kl(k 4)! (71'2) (k—2) 2k —5

n<x
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Average order of M, x

M, x = number of meanders with 2n crossings and k bigons

Theorem (Delecroix-Goujard-Zograf-Zorich)

For all k we have the following asymptotics

2\ "3 [2k — 4\? x2k-5
M, = SN
D Mo~ k Ki(k —4)! (ﬂ) (k—2) 2k —5

n<x
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Meanders as square tiled surfaces of genus 0

A surface in Q(1, —1°).
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Meanders as square tiled surfaces of genus 0

C

B

B

C

A surface in Q(1,—1°). The horizontal curves and vertical curves dual to
the squares gives a pair of transverse multicurve (7y1,72) on the sphere.
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Meanders as square tiled surfaces of genus 0

C

B

B

C

A surface in Q(1,—1°). The horizontal curves and vertical curves dual to
the squares gives a pair of transverse multicurve (7y1,72) on the sphere. In
the example: ~1 has three components while v, has one.
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Meanders as square tiled surfaces of genus 0

Let Qg x denote the moduli space of quadratic differentials on the sphere
with k poles. We have

Qoa=Q(—1%) Qos=09(1,-1%) Qos = Q(12,-1°)U Q(2, 1)
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Meanders as square tiled surfaces of genus 0

Let Qg x denote the moduli space of quadratic differentials on the sphere
with k poles. We have

Qoa=Q(—1%) Qos=09(1,-1%) Qos = Q(12,-1°)U Q(2, 1)

Lemma
We have

1
M, = _—
n ; [Aut(S)]

where the sum is over the square tiled surfaces in Qg x whose horizontal
and vertical directions are made of a single cylinder of height 1.

V. Delecroix (LaBRI) 8/27



Meanders as square tiled surfaces of genus 0 (proof)

SalaWdah

=

2

V. Delecroix (LaBRI)



Meanders as square tiled surfaces of genus 0 (proof)
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Meanders as square tiled surfaces of genus 0 (proof)

&

V. Delecroix (LaBRI)



Meanders as square tiled surfaces of genus 0 (proof)
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Reformulation of the asymptotics theorem

Lemma
We have

1
Mni =12 T3 (s)

where the sum is over the square tiled surfaces in Qg whose horizontal
and vertical directions are made of a single cylinder of height 1.

Theorem (Delecroix-Goujard-Zograf-Zorich)

Let Ch (respectively CY) denote the set of square tiled surfaces in
C = Q(1k=*, —1K) that are made of a single horizontal cylinder (resp.
vertical cylinder) of height one. Then

> 2\ K3 /o) _ a\2 4 2k—6
h V. < ~N— | — 0
#{S e€C;NCy : Area(S) < x} Kk — &)1 <7r2> <k—2) k—6
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Reformulation of the asymptotics theorem

Theorem (Delecroix-Goujard-Zograf-Zorich)

Let C£ (respectively Cy) denote the set of square tiled surfaces in

C = Q(1k=*, —1k) that are made of a single horizontal cylinder (resp.
vertical cylinder) of height one. Then

5 O NK=3 /o _ 4\ 2 5 2k—6
h v . < ~N — | — — .
#{S e C;NCy : Area(S) < x} Kk — &)1 <7r2) (k—2> 2k —6

Proof steps
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Reformulation of the asymptotics theorem

Theorem (Delecroix-Goujard-Zograf-Zorich)

Let C£ (respectively Cy) denote the set of square tiled surfaces in

C = Q(1k=*, —1k) that are made of a single horizontal cylinder (resp.
vertical cylinder) of height one. Then

) ) k—3 2k — 4 2X2k—6
h v . < ~N — | — ——

v

Proof steps
° (C7) <(cy)
c c(Cy
ccpney) = —L-2
( Z Z) C(CZ)
where ¢(D) stands for the constant so that

#{S € D: Area(S) < x} ~ c(D) 5=
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Reformulation of the asymptotics theorem

Theorem (Delecroix-Goujard-Zograf-Zorich)

Let C£ (respectively Cy) denote the set of square tiled surfaces in

C = Q(1k=*, —1k) that are made of a single horizontal cylinder (resp.
vertical cylinder) of height one. Then

) ) k—3 2k — 4 2X2k—6
h v . < ~N — | — ——

v

Proof steps
° (C7) <(cy)
c c(Cy
ccpney) = —L-2
( Z Z) C(CZ)
where ¢(D) stands for the constant so that

#{S € D: Area(S) < x} ~ c(D) 5=

@ compute the terms in rhs: c(CL), c(C¥) and c(Cz).
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The case k =4

For C = Q(—1*) we have
#{S € Cz : Area(S) = n} = o(n)
#{SeCh: Area(S)=n} =n

#{SecChncy : Area(S) = n} = M:"‘ = ¢(n)

where ¢ is the Euler totient function and o(n) = Z d.
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The case k =4

For C = Q(—1*) we have

#{S € Cz : Area(S) = n} = o(n)
#{ScCh:Area(S)=n} =n

M,
#{Sechncy: Area(S) =n} = n"‘ = ¢(n)
where ¢ is the Euler totient function and o(n) = Zd We have
din
Z¢(”) ~ ix2 and Za(n) ~ 7['_2X2
2 6

n<x n<x
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o(n)/n = # "area n s.t.s. in Q(—1%)"/n

3F |—7%/6
i n = 3[6]
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The case k =5

For C = Q(1,—1°) we have

#{S € Cy : Area(S) = n} = 3(03@) _ 20— 1)o(n))
#{S e Ch: Area(S) = n} = nn = 13(’7 —2)
4IS €ChnCy: Area(S) = n} = Mgﬁ .

where a3(n) =>4, ds.
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The case k =5

For C = Q(1,—1°) we have

#{S € Cz : Area(S) = n} = 3(03(n) —(2n—1)o(n))
#{S e Ch: Area(S) = n} = nn = 13(,7 —2)
#{Sechncy: Area(S)=n} = @ =77

where a3(n) =3, d*. For the general C = Q(1¥~*, —1¥) the counting
functions

@ for Cz is expressible in terms of o ("quasimodularity" by Eskin,
Okounkov, Pandharipande, Engels)

@ for C! is a rational multiple of (", *3*)

© is not known for the meanders (C2 N CY)!
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# "areans.t.s.in Q(1, —1°) " / n?
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Existence of densities

Given a connected component of stratum C, our aim is now to prove that
c(Cz), c(Ch), c(CY¥) and c(Ch N CY) exist and satisfy

e(ch) (e

c(Chncy) = (C2)
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Equidistribution in Z?

100 s
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Let A = Z2 be the set

of integral vectors. 40
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Equidistribution in Z?

100

80

60
Let A = Z2 be the set

of integral vectors. 40

20

20 40 60 80 100

Theorem
For any relatively compact open set U C R? we have as ¢ — 0 the
following asymptotics

(U () ~ Y29,
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Equidistribution in Z? (bis)
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Equidistribution in Z? (bis)

100 f.,.

80

Let ' C Z2 be the 60
set of integral vectors

with relatively prime 40
entries.
20
20 40 60 80 100
Theorem

For any relatively compact open set U C R? we have as ¢ — 0 the
following asymptotics

#(U N (eN)) ~ % V°lgU).
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Equidistribution of square tiled surfaces

Let D be a subset of the set of square tiled surfaces in a component of
stratum C. We say that D has uniform density in C if there exists a number

0(D) so that for any open set U C C we have as ¢ — 0 the following
equivalent

U
#(Un (D)) ~ a(p) 1Y)

where ppy is the Masur-Veech measure on C.
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Equidistribution of square tiled surfaces

Let D be a subset of the set of square tiled surfaces in a component of
stratum C. We say that D has uniform density in C if there exists a number

0(D) so that for any open set U C C we have as ¢ — 0 the following
equivalent

#(Un (D)) ~ o(p) “1A4Y)

where ppy is the Masur-Veech measure on C.

@ By construction of upy, the set of all square tiled surfaces has
uniform density § = 1.
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Equidistribution of square tiled surfaces

Let D be a subset of the set of square tiled surfaces in a component of
stratum C. We say that D has uniform density in C if there exists a number

0(D) so that for any open set U C C we have as ¢ — 0 the following
equivalent

#(Un (D)) ~ o(p) “1A4Y)

where ppy is the Masur-Veech measure on C.
@ By construction of upy, the set of all square tiled surfaces has
uniform density § = 1.

@ The definition of square tiled surfaces and densities make sense for
linear GLy(R)-invariant manifolds defined over Q.
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Equidistribution of square tiled surfaces

Let D be a subset of the set of square tiled surfaces in a component of
stratum C. We say that D has uniform density in C if there exists a number
0(D) so that for any open set U C C we have as ¢ — 0 the following
equivalent

pmv (U)

#(UN (D)) ~ 5(D) “1

where ppy is the Masur-Veech measure on C.

@ By construction of upy, the set of all square tiled surfaces has
uniform density § = 1.

@ The definition of square tiled surfaces and densities make sense for
linear GLy(R)-invariant manifolds defined over Q.

© c and § are equivalent up to the total mass of the unit hyperboloid

c(D) = 3(D) pi, (CV).
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Equidistribution of square tiled surfaces

Theorem (Delecroix-Goujard-Zograf-Zorich)

Let C be a component of stratum of quadratic differentials. Let Cy be the
square tiled surfaces in C and Cl} (respectively CY) be the s.t.s with a single
horizontal cylinder with height 1 (resp. vertical cylinder with height 1).
Then CJ, C¥ and Cl N CY have uniform densities and

5(CLNC,) =6(Ch) 6(Cy) = 5(Cp)>.
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Sketch of proof of the equidistribution result

Our approach follows closely the steps of Mirzakhani for counting simple
closed geodesics in hyperbolic surfaces.
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Sketch of proof of the equidistribution result

Our approach follows closely the steps of Mirzakhani for counting simple
closed geodesics in hyperbolic surfaces.
step 1: density exists as a whole for Cz, Cf and CY

d
#{SeD: Area(S) < x} ~ ¢(D) ;‘—d.

for some (more or less) explicit ¢(D) > 0.
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Sketch of proof of the equidistribution result

Our approach follows closely the steps of Mirzakhani for counting simple
closed geodesics in hyperbolic surfaces.
step 1: density exists as a whole for Cz, Cf and CY

d
#{SeD: Area(S) < x} ~ ¢(D) ;‘—d.

for some (more or less) explicit ¢(D) > 0.

step 2: from density to uniform density via ergodicity of <(1) ?) or

(= 1)
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Sketch of proof of the equidistribution result

Our approach follows closely the steps of Mirzakhani for counting simple
closed geodesics in hyperbolic surfaces.
step 1: density exists as a whole for Cy, Cg and Cjy

d

#{S€D: Area(S) < x} ~ (D) ;Ld.

for some (more or less) explicit ¢(D) > 0.
. . o .. 1 Z
step 2: from density to uniform density via ergodicity of 0o 1)°

(= 1)

step 3: the intersection C2 N CY satisfies §(C2 N Cy) = 5(Ch) §(CY)
because of the product structure of C.
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Explicit numbers in genus 0

Theorem

Let C = Q(1x=*,—1k) and CI be the set of square tiled surfaces in C with
a single horizontal cylinder of height. Then

© (Athreya-Eskin-Zorich)

c(Cz) = pig (4 ~14) = Ts

@ (Delecroix-Goujard-Zograt-Zorich)

c(Ch) =2 (2:__ 24) .
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Explicit numbers in genus 0

Theorem

Let C = Q(1x=*,—1k) and CI be the set of square tiled surfaces in C with
a single horizontal cylinder of height. Then

© (Athreya-Eskin-Zorich)

2k—6 1 2\ k=3
((Cz) = uh), (Q(1F4, 1k = T — (” )

@ (Delecroix-Goujard-Zograt-Zorich)
2k — 4
hy _

2 k=3 1ok — 4\ ? x2k=5
> My~ —
k KI(k —4)! k—2) 2k—5

n<x
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The computation of Cz, (Athreya-Eskin-Zorich)

As usual C = Q(1+x—4 —1K).
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The computation of Cz (Athreya-Eskin-Zorich)

As usual C = Q(1+x—4 —1K).

2

k-3
The formula ¢(Cz) = ,us\},{/(Q(lk_“, 1) =1 (%) was a conjecture
of Kontsevich.
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As usual C = Q(1+x—4 —1K).

2

k-3
The formula ¢(Cz) = ,us\},{/(Q(lk_‘l, 1) =1 (%) was a conjecture
of Kontsevich.

The generating series for the square tiled surfaces Cyz is quasimodular,
though it seems hard to obtain the formula with this approach.
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The computation of Cz (Athreya-Eskin-Zorich)

As usual C = Q(1+k—* —1%).

2

k—3
The formula ¢(Cz) = ,us\},{/(Q(lk_‘l, 1) =1 (%) was a conjecture
of Kontsevich.

The generating series for the square tiled surfaces Cyz is quasimodular,
though it seems hard to obtain the formula with this approach.

The proof of Athreya-Eskin-Zorich is quite convoluted and uses the formula
for the sum of Lyapunov exponents A™ (Eskin-Kontsevich-Zorich) and the
fact that on the sphere AT = 0 (bundle has dimension 0).
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The computation of CJ (Delecroix-Goujard-Zograf-Zorich)

Let us consider the case of Q(1, —1%).

- A _ A
hzl] Lo—o—o—%J
B B Cc C D D

{(Aa; A, A, AD,T) €EZso: Aa=Ag+Ac+Ap and 0<7 < Aa}
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The computation of CJ (Delecroix-Goujard-Zograf-Zorich)

Let us consider the case of Q(1, —1%).

- A _ A
hzl} Lo—o—o—%/
B B c C D D

{(Aa, Ay A, AD,T) €Zso: Aa=Ag+Ac+Ap and 0<7 < Ap}

For fixed area n we got (3)n such surfaces.
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The computation of CJ (Delecroix-Goujard-Zograf-Zorich)

Let us consider the case of Q(1, —1%).

- A _ A
hzl} Lo—o—o—%/
B B c C D D

{(Aa, Ay A, AD,T) €Zso: Aa=Ag+Ac+Ap and 0<7 < Ap}

For fixed area n we got (3)n such surfaces.
In general we have to make a count over all separatrix diagrams that are
counted by trees.

V. Delecroix (LaBRI) 26 /27
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