
Asymptotics of meanders with fixed number of bigons

Vincent Delecroix (joint with É. Goujard, P. Zograf et A. Zorich)

CNRS, LaBRI, Bordeaux

Warwick, march 2018

V. Delecroix (LaBRI) 1 / 27



What is a meander

Definition
A meander is a homotopy class of pairs of transverse smooth curves
(γ1, γ2) on the sphere.
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Following the literature, we will have a marked point on the blue curve so
that intersections can be numbered (and avoid complications with
automorphisms).
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Faces and bigons

A meander cut the plane into faces with an even number of sides 2j . We
call j − 2 the degree.

γ1

γ2

Sum of degrees = -4. The bigons are the faces of degree −1.
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Some numbers

Mn,k = number of meanders with 2n crossings and k bigons
Mn =

∑
k Mn,k = number of meanders with 2n crossings

n Mn,4 Mn,5 Mn,6 Mn,7 Mn,8 Mn,9 Mn,10 Mn

2 2 0 0 0 0 0 0 2
3 6 0 2 0 0 0 0 8
4 8 16 16 0 2 0 0 42
5 20 40 110 60 30 0 2 262
6 12 168 416 576 462 144 48 1828
7 42 280 1470 3276 4228 2884 1288 13820
8 32 544 4128 13632 26424 31200 22096 110954
9 54 1152 9102 45468 130410 220488 243990 933458
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Conjectural asymptotics for Mn

Mn = number of meanders with 2n crossings

Conjecture (Di Francesco-Golinelli-Guitter (2000))

Mn ∼ C Rn n−α

where C > 0, R ' 12.2628 and α =
29 +

√
145

12
.

Extensive numerical experiments and extrapolations by Jensen and
Guttman (2000) tend to confirm the conjecture.
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Average order of Mn,k

Mn,k = number of meanders with 2n crossings and k bigons

Theorem (Delecroix-Goujard-Zograf-Zorich)
For all k we have the following asymptotics

∑
n≤x

Mn,k ∼
2

k!(k − 4)!

(
2
π2

)k−3(2k − 4
k − 2

)2 x2k−5

2k − 5
.

Examples∑
n≤x

Mn,4 ∼
6
π2

x3

3

∑
n≤x

Mn,5 ∼
80
3π4

x5

5

∑
n≤x

Mn,6 ∼
490
9π6

x7

7
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Meanders as square tiled surfaces of genus 0

C B B C

AA

DD

A surface in Q(1,−15).

The horizontal curves and vertical curves dual to
the squares gives a pair of transverse multicurve (γ1, γ2) on the sphere. In
the example: γ1 has three components while γ2 has one.
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Meanders as square tiled surfaces of genus 0

Let Q0,k denote the moduli space of quadratic differentials on the sphere
with k poles. We have

Q0,4 = Q(−14) Q0,5 = Q(1,−15) Q0,6 = Q(12,−16) ∪Q(2,−16)

Lemma
We have

Mn,k = n
∑
S

1
|Aut(S)|

where the sum is over the square tiled surfaces in Q0,k whose horizontal
and vertical directions are made of a single cylinder of height 1.
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Meanders as square tiled surfaces of genus 0 (proof)
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Reformulation of the asymptotics theorem

Lemma
We have

Mn,k = n
∑
S

1
|Aut(S)|

where the sum is over the square tiled surfaces in Q0,k whose horizontal
and vertical directions are made of a single cylinder of height 1.

Theorem (Delecroix-Goujard-Zograf-Zorich)

Let ChZ (respectively CvZ) denote the set of square tiled surfaces in
C = Q(1k−4,−1k) that are made of a single horizontal cylinder (resp.
vertical cylinder) of height one. Then

#{S ∈ ChZ ∩CvZ : Area(S) ≤ x} ∼ 2
k!(k − 4)!

(
2
π2

)k−3(2k − 4
k − 2

)2 x2k−6

2k − 6
.
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#{S ∈ ChZ ∩CvZ : Area(S) ≤ x} ∼ 2
k!(k − 4)!

(
2
π2

)k−3(2k − 4
k − 2

)2 x2k−6

2k − 6
.

Proof steps

1

c(ChZ ∩ CvZ) =
c(ChZ) c(CvZ)

c(CZ)

where c(D) stands for the constant so that
#{S ∈ D : Area(S) ≤ x} ∼ c(D) x

2k−6

2k−6 .
2 compute the terms in rhs: c(ChZ), c(CvZ) and c(CZ).
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The case k = 4

For C = Q(−14) we have

#{S ∈ CZ : Area(S) = n} = σ(n)

#{S ∈ ChZ : Area(S) = n} = n

#{S ∈ ChZ ∩ CvZ : Area(S) = n} =
Mn,4

n
= φ(n)

where φ is the Euler totient function and σ(n) =
∑
d |n

d .

We have

∑
n≤x

φ(n) ∼ 6
π2 x

2 and
∑
n≤x

σ(n) ∼ π2

6
x2.
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σ(n)/n
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σ(n)/n = # "area n s.t.s. in Q(−14)"/n

π2/6
n≡ 3[6]
n≡ 1, 5[6]
n≡ 2, 4[6]
n≡ 0[6]
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The case k = 5

For C = Q(1,−15) we have

#{S ∈ CZ : Area(S) = n} =
3
8

(σ3(n)− (2n − 1)σ(n))

#{S ∈ ChZ : Area(S) = n} =
n(n − 1)(n − 2)

6

#{S ∈ ChZ ∩ CvZ : Area(S) = n} =
Mn,5

n
=??.

where σ3(n) =
∑

d |n d
3.

For the general C = Q(1k−4,−1k) the counting
functions

1 for CZ is expressible in terms of σ ("quasimodularity" by Eskin,
Okounkov, Pandharipande, Engels)

2 for ChZ is a rational multiple of
(n−k+4

k−3

)
3 is not known for the meanders (ChZ ∩ CvZ)!
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Existence of densities

Given a connected component of stratum C, our aim is now to prove that
c(CZ), c(ChZ), c(CvZ) and c(ChZ ∩ CvZ) exist and satisfy

c(ChZ ∩ CvZ) =
c(ChZ) c(CvZ)

c(CZ)
.

V. Delecroix (LaBRI) 18 / 27



Equidistribution in Z2

Let Λ = Z2 be the set
of integral vectors.

20 40 60 80 100

20

40

60

80

100

Theorem
For any relatively compact open set U ⊂ R2 we have as ε→ 0 the
following asymptotics

#(U ∩ (εΛ)) ∼ Vol(U)

ε2
.
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Equidistribution in Z2 (bis)

Let Λ′ ⊂ Z2 be the
set of integral vectors
with relatively prime
entries.
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Theorem
For any relatively compact open set U ⊂ R2 we have as ε→ 0 the
following asymptotics

#(U ∩ (εΛ′)) ∼ 6
π2

Vol(U)

ε2
.

The number 6/π2 ' 0.6079 is the uniform density of Λ′.
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Equidistribution of square tiled surfaces
Let D be a subset of the set of square tiled surfaces in a component of
stratum C. We say that D has uniform density in C if there exists a number
δ(D) so that for any open set U ⊂ C we have as ε→ 0 the following
equivalent

#(U ∩ (εD)) ∼ δ(D)
µMV (U)

εd

where µMV is the Masur-Veech measure on C.

1 By construction of µMV , the set of all square tiled surfaces has
uniform density δ = 1.

2 The definition of square tiled surfaces and densities make sense for
linear GL2(R)-invariant manifolds defined over Q.

3 c and δ are equivalent up to the total mass of the unit hyperboloid

c(D) = δ(D) µ
(1)
MV (C(1)).
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Equidistribution of square tiled surfaces

Theorem (Delecroix-Goujard-Zograf-Zorich)
Let C be a component of stratum of quadratic differentials. Let CZ be the
square tiled surfaces in C and ChZ (respectively CvZ) be the s.t.s with a single
horizontal cylinder with height 1 (resp. vertical cylinder with height 1).
Then ChZ, CvZ and ChZ ∩ CvZ have uniform densities and

δ(Ch ∩ Cv ) = δ(Ch) δ(Cv ) = δ(Ch)2.

V. Delecroix (LaBRI) 22 / 27



Sketch of proof of the equidistribution result

Our approach follows closely the steps of Mirzakhani for counting simple
closed geodesics in hyperbolic surfaces.

step 1: density exists as a whole for CZ, ChZ and CvZ

#{S ∈ D : Area(S) ≤ x} ∼ c(D)
xd

2d
.

for some (more or less) explicit c(D) > 0.

step 2: from density to uniform density via ergodicity of
(
1 Z
0 1

)
or(

1 0
Z 1

)
.

step 3: the intersection ChZ ∩ CvZ satisfies δ(ChZ ∩ CvZ) = δ(ChZ) δ(CvZ)
because of the product structure of C.

V. Delecroix (LaBRI) 23 / 27
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step 2: from density to uniform density via ergodicity of
(
1 Z
0 1

)
or(

1 0
Z 1

)
.

step 3: the intersection ChZ ∩ CvZ satisfies δ(ChZ ∩ CvZ) = δ(ChZ) δ(CvZ)
because of the product structure of C.
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Explicit numbers in genus 0

Theorem
Let C = Q(1k−4,−1k) and ChZ be the set of square tiled surfaces in C with
a single horizontal cylinder of height. Then

1 (Athreya-Eskin-Zorich)

c(CZ) = µ
(1)
MV (Q(1k−4,−1k)) =

π2k−6

2k−5 =
1
4

(
π2

2

)k−3

2 (Delecroix-Goujard-Zograf-Zorich)

c(ChZ) = 2
(
2k − 4
k − 2

)
.

∑
n≤x

Mn,k ∼
2

k!(k − 4)!

(
2
π2

)k−3(2k − 4
k − 2

)2 x2k−5

2k − 5
.
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The computation of CZ (Athreya-Eskin-Zorich)

As usual C = Q(1k−4,−1k).

The formula c(CZ) = µ
(1)
MV (Q(1k−4,−1k)) = 1

4

(
π2

2

)k−3
was a conjecture

of Kontsevich.

The generating series for the square tiled surfaces CZ is quasimodular,
though it seems hard to obtain the formula with this approach.

The proof of Athreya-Eskin-Zorich is quite convoluted and uses the formula
for the sum of Lyapunov exponents Λ+ (Eskin-Kontsevich-Zorich) and the
fact that on the sphere Λ+ = 0 (bundle has dimension 0).
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The computation of ChZ (Delecroix-Goujard-Zograf-Zorich)

Let us consider the case of Q(1,−15).

A A

DDCCBB

h = 1

τ

{(λA, λB , λC , λD , τ) ∈ Z>0 : λA = λB + λC + λD and 0 ≤ τ < λA}

For fixed area n we got 1
3

(n
2

)
n such surfaces.

In general we have to make a count over all separatrix diagrams that are
counted by trees.
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