
Weryfikacja wspomagana komputerowo

2016-2017

Lab 1 – Introduction to Promela and Spin

Vincent Penelle

Topics of this Lab

• Language Promela

• Spin and iSpin

• Modelisation of first programs

• Assert

The goal of this lab session is to introduce you to the SPIN model checker, along with
its associated language, Promela. Promela is a language allowing to model the behaviour
processes acting concurrently on a shared set of resources. Spin allows to run this language
and to verify some properties, e.g. expressed in LTL, over these programs.

If you are interested, you can refer to the basic spin manual1, or the book The SPIN
model checker2.

On your machine, you will have access to spin and a graphical interface called ispin.
You can use the one you prefer. That said, the graphical interface is more convenient to
have a global view of what you are doing, and this exercise session will suppose you are
using it. Feel free to use spin directly from the terminal if you like, but in that case, refer
yourself to the SPIN roadmap3 to have the needed syntax.

Exercice 1: (Basic Promela Examples)

1. Run ispin and explore the interface. Focus on the first three tabs.

2. Open the file step1-init.pml4 and observe the code. init is the process launched
at the launch of the program (equivalent to main in C). Run the code in the tab
Simulate/Replay, and do so in the Verification tab. Observe the results.

3. Open the file step2-proctype.pml5 and observe the code. Here, init creates a child
process H, which run concurrently to it. Execute the program in guided mode and
observe in which order you can display the two messages. Add active [3] before the
keyword proctype. What happens?

1http://spinroot.com/spin/Man/Manual.html
2http://spinroot.com/spin/Doc/Book_extras/index.html
3http://spinroot.com/spin/Man/Roadmap.html
4./step1-init.pml
5./step2-proctype.pml

1

http://spinroot.com/spin/Man/Manual.html
http://spinroot.com/spin/Doc/Book_extras/index.html
http://spinroot.com/spin/Man/Roadmap.html


4. Open the file step3-params.pml6 and observe the code. The process H takes an
argument. Run it in guided mode and observe which order you can obtain on the
executions and what is the effect of the argument.

5. Open the file step4-guards.pml7 and observe the code. The code is similar to the
previous one, except that there is a global variable and two supplementary instruction
manipulating it in H. Can you guess what it changes for the execution of the program?
Run it in guided mode and test your claim.

6. Open the file step5-if.pml8 and observe the code. This code introduces the in-
struction if – notice its syntax. Run it in guided mode, and observe the possible
execution. What is the behaviour of the instruction if?

7. Open the file step6-do.pml9 and observe the code. It introduces the instruction
do. Run it in guided mode and describes its behaviour.

8. Compare the last program with step6-do-niedet.pml10.

Summary of elements seen so far:

• Promela is C-like in its basic syntax.

• Promela run processes in parallel. At the beginning of the program, the process
init is launched.

• To call a proccess, use run H(arguments);

• To have already existing processes at the beginning of the program, use the
keyword active, followed by the number of processes you want to run in [].

• You can use conditions as single instructions. This blocks the process until the
statement is true.

• The if statement behave differently from C: if two conditions are true, the
process can take any of them. You can as well put the else keyword in the if
block, it will be taken only if all other conditions are false.

• The do statement behave similarly to the if statement, except that it repeats
itself. The instruction break allows you to leave a do loop. Notice that the
else keyword also exists for a do.

• Types are bit , bool , byte , pid , short , int , unsigned.

• You can (and should) use global variables.

• The instruction goto is also present (no example given above).

Summary:

6./step3-params.pml
7./step4-guards.pml
8./step5-if.pml
9./step6-do.pml

10./step6-do-niedet.pml

2



• You can also declare arrays (like in C).

Exercice 2: (Channels)
One features of Promela is the existence of channel to pass messages between processes.

A channel is basically a queue. Any process can write to a channel if it is not full and
then put its message at the end of the channel. Any process can read in a channel if it
is not empty and then take its first element (erasing it in the process). Like the guard
instructions, if these instructions are not fireable when a process reads them, it is blocked
until it can fire them.

1. Open the file step7-chan.pml11 and observe its code, and namely the syntax of the
channels. Run it in guided mode and observe the behaviour of the program.

2. Open the file step8-chan2.pml12, observe its code and run it. What is the difference
with the previous program? What means “<eval(i)>”? What happens if you remove
the “< >”?

Channels are used to stock and exchange messages between processes. Formally, they
are queues. A process can put a value v in a channel ch with the instruction ch!v,
and can extract a value from ch and put it into the variable i with the instruction
ch?i. A process reading this instruction is blocked until it can perform it (i.e. it can
actually extract or put something in it).

Summary:

Exercice 3: (Some promela tricks)

1. Open the code step9-atomic.pml13 and run it. What behaviour can you get?

2. Now, put the two instructions printf into a single instruction atomic{· · · }. What
happens?

atomic is an instruction which forces a process to do a block of instructions in a row.
That is useful to restrict the interleaving of processes in simulation. That can be
crucial to verify some properties by restricting the interleaving to section you want
to verify.

Summary:

11./step7-chan.pml
12./step8-chan2.pml
13./step9-atomic.pml

3



Exercice 4: (Assert)
We now turn to a program a bit harder to understand by hand. Open increment-

par.pml14. What do you think it does? We will now begin to use the verification tool to
try to understand what happens without having to investigate by hand.

1. Add the instruction assert(n<=20), after the instruction finish==2;, and run the
verification tool under the verification tab.

2. Replace it with assert(n>=10), and verify it.

3. Which one fail? Observe the trace making it fail.

4. Can you use the atomic to have both assertions satisfied?

assert allows you to specify some properties you want to program to satisfy, and
to have the verification tool tell you if it is satisfied or not, and if not, gives you a
counter-example.

Summary:

Exercice 5: (Mutual Exclusion and Peterson’s Algorithm)
When making concurent programs, a crucial point is avoid undesirable side-effects

between processes that could introduce undesirable behaviour, by having two processes
acting at the same time on the same variable. For example, if a process A tries to read a
variable x and add 1 to its value, if between the read and the write, a process B reads x
and writes back the double of its value, we do not have an expected behaviour. To solve
this, we should ensure that A and B cannot act on x while the other process is currently
using it.

In the modelling of a program, we will identify so-called critical sections which are
the part of the code in which a process access to the shared variables and must not be
interfered with to ensure a correct behaviour. The mutual exclusion problem consist to
determine if it is impossible for two processes to be simultaneously in their critical section.

1. The first algorithm ensuring that two properties has been given by Dekker in 196515.
Open the file Mutual-exclusion-1.pml16 and observe the modelisation of this algo-
rithm. Verify it using spin (add an assert testing a relevant condition).

2. This algorithm is complex. An idea to simplify it could be to use the following
code17. Verify it. Does it work? How can you fix it?

3. A more modern solution is the Peterson’s algorithm (1981). Here18 is its promela
implementation. Observe how simpler it is. Verify it (add an assert at the relevant
place).

4. Propose (and test) a variant of the algorithm working for N concurrent processes.

14./increment-par.pml
15http://en.wikipedia.org/wiki/Dekker’s_algorithm
16./Mutual-exclusion-1.pml
17./Mutual-exclusion-2.pml
18./peterson.pml

4

http://en.wikipedia.org/wiki/Dekker's_algorithm


Exercice 6: (Goats and wolves)
We now ask you to conceive a little program in Promela, and to use the verification

by Spin to know if it can yied a solution.
You have a river. On one side you have G goats and W wolves, who want to go to the

other side. There is a boat in the river, that can welcome L animals at the same time (who
can drive the boat, yes. You are not require to explain how they do that). The trouble
is that if at any time in the boat or one of the banks there are strictly more wolves than
goats, the predator nature of these otherwise nice animals will take over. And we don’t
want any casualty.

• Create a promela program modelling this problem. You are strongly encouraged
to use several process, for example one to load animals to the boat, one to unload
animals, one to move the boat, etc. And leave the non-determinism take care of
the rest. You should as well use atomic to prevent too much strange and useless
behaviours.

• Use assert conditions to test if there is a solution or not. Clue 1: With G=W=3
and L=2, there is a solution. Clue 2: using an assert condition which fails only if
the animals can cross the river may be easier than the contrary.

5


